Shock-tunnel investigations on the evolution and morphology of shock-induced large separation bubbles

Sriram, R. ; Jagadeesh, G. (2016) Shock-tunnel investigations on the evolution and morphology of shock-induced large separation bubbles The Aeronautical Journal, 120 (1229). pp. 1123-1152. ISSN 0001-9240

Full text not available from this repository.

Official URL: http://doi.org/10.1017/aer.2016.45

Related URL: http://dx.doi.org/10.1017/aer.2016.45

Abstract

Shock-tunnel experiments are carried out to study the strong interaction between an impinging shock wave and boundary layer on a flat plate, accompanied by large separation bubble with a length comparable to the distance of the location of shock impingement from the leading edge of the plate. For nominal freestream Mach numbers ranging from 6 to 8.5, moderate to high total enthalpies of 1.3MJ/kg to 6MJ/kg are simulated in the Indian Institute of Science's hypersonic shock tunnels HST-2 (a conventional Hypersonic Shock Tunnel) and Free Piston Shock Tunnel (FPST) with freestream Reynolds numbers ranging from 4 × 106/m to 0.3 × 106/m. The strong impinging shock is generated by a wedge (or shock generator) at an angle of 30.96° to the freestream. From the time-resolved Schlieren flow visualisations using a high-speed camera and surface pressure measurements on the flat plate using fast response sensors, a statistically steady flow field with a large separation bubble was established within the short test time of the shock tunnels (around 600µs in HST-2 and 300µs in FPST). The role of various parameters on the interaction – Mach number, location of shock impingement and flow total enthalpy – are investigated from the measured separation length and surface pressure distribution. For the nominal Mach number of 8.5, with shock impingement at 100mm from the leading edge, the separation length increased from 60mm to 70mm as the total enthalpy is increased from 1.6MJ/kg to 2.4MJ/kg; whereas it dropped drastically to 30-40mm at 6MJ/kg. This is due to the prominence of real gas effects at higher enthalpies.

Item Type:Article
Source:Copyright of this article belongs to Cambridge University Press.
Keywords:Hypersonic flow; shock boundary-layer interaction (SBLI); Separated flow; Shock-tunnel experiments
ID Code:127450
Deposited On:17 Oct 2022 05:00
Last Modified:17 Oct 2022 05:00

Repository Staff Only: item control page