Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres

Navarro-Mendoza, María Isabel ; Pérez-Arques, Carlos ; Panchal, Shweta ; Nicolás, Francisco E. ; Mondo, Stephen J. ; Ganguly, Promit ; Pangilinan, Jasmyn ; Grigoriev, Igor V. ; Heitman, Joseph ; Sanyal, Kaustuv ; Garre, Victoriano (2019) Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres Current Biology, 29 (22). 3791-3802.e6. ISSN 0960-9822

Full text not available from this repository.

Official URL: http://doi.org/10.1016/j.cub.2019.09.024

Related URL: http://dx.doi.org/10.1016/j.cub.2019.09.024

Abstract

Centromeres are rapidly evolving across eukaryotes, despite performing a conserved function to ensure high-fidelity chromosome segregation. CENP-A chromatin is a hallmark of a functional centromere in most organisms. Due to its critical role in kinetochore architecture, the loss of CENP-A is tolerated in only a few organisms, many of which possess holocentric chromosomes. Here, we characterize the consequence of the loss of CENP-A in the fungal kingdom. Mucor circinelloides, an opportunistic human pathogen, lacks CENP-A along with the evolutionarily conserved CENP-C but assembles a monocentric chromosome with a localized kinetochore complex throughout the cell cycle. Mis12 and Dsn1, two conserved kinetochore proteins, were found to co-localize to a short region, one in each of nine large scaffolds, composed of an ∼200-bp AT-rich sequence followed by a centromere-specific conserved motif that echoes the structure of budding yeast point centromeres. Resembling fungal regional centromeres, these core centromere regions are embedded in large genomic expanses devoid of genes yet marked by Grem-LINE1s, a novel retrotransposable element silenced by the Dicer-dependent RNAi pathway. Our results suggest that these hybrid features of point and regional centromeres arose from the absence of CENP-A, thus defining novel mosaic centromeres in this early-diverging fungus.

Item Type:Article
Source:Copyright of this article belongs to Cell Press Inc.
ID Code:124287
Deposited On:11 Nov 2021 11:09
Last Modified:11 Nov 2021 11:09

Repository Staff Only: item control page