Loss of centromere function drives karyotype evolution in closely related Malassezia species

Sankaranarayanan, Sundar Ram ; Ianiri, Giuseppe ; Coelho, Marco A ; Reza, Md Hashim ; Thimmappa, Bhagya C ; Ganguly, Promit ; Vadnala, Rakesh Netha ; Sun, Sheng ; Siddharthan, Rahul ; Tellgren-Roth, Christian ; Dawson, Thomas L ; Heitman, Joseph ; Sanyal, Kaustuv (2020) Loss of centromere function drives karyotype evolution in closely related Malassezia species elife, 9 . ISSN 2050-084X

Full text not available from this repository.

Official URL: http://doi.org/10.7554/eLife.53944

Related URL: http://dx.doi.org/10.7554/eLife.53944

Abstract

Genomic rearrangements associated with speciation often result in variation in chromosome number among closely related species. Malassezia species show variable karyotypes ranging between six and nine chromosomes. Here, we experimentally identified all eight centromeres in M. sympodialis as 3–5-kb long kinetochore-bound regions that span an AT-rich core and are depleted of the canonical histone H3. Centromeres of similar sequence features were identified as CENP-A-rich regions in Malassezia furfur, which has seven chromosomes, and histone H3 depleted regions in Malassezia slooffiae and Malassezia globosa with nine chromosomes each. Analysis of synteny conservation across centromeres with newly generated chromosome-level genome assemblies suggests two distinct mechanisms of chromosome number reduction from an inferred nine-chromosome ancestral state: (a) chromosome breakage followed by loss of centromere DNA and (b) centromere inactivation accompanied by changes in DNA sequence following chromosome–chromosome fusion. We propose that AT-rich centromeres drive karyotype diversity in the Malassezia species complex through breakage and inactivation.

Item Type:Article
Source:Copyright of this article belongs to eLife Sciences Publications.
ID Code:124273
Deposited On:10 Nov 2021 11:58
Last Modified:10 Nov 2021 11:58

Repository Staff Only: item control page