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Abstract

We characterize the three and four dimensional commutative non-hermitian fusion
algebras and construct some new examples of these objects. These algebras arise nat-
urally in the study of graphs, specially those associated with von Neumann algebras.
Characterisations of hermitian fusion algebras have been given earlier by Sunder and
Wildberger. Commutative finite-dimensional non-herimitian fusion algebras are alge-
braically isomorphic to certain special Cartan ‘subalgebras of matrices. Every Cartan
subalgebra of M, is a conjugate of the standard Cartan algebra by an orthogonal matrix.
We characterize the orthogonal matrices that can occur here and thus characterize the
four dimensional non-hermitian fusion algebras. The three dimensional ones are
parametrized by the hyperbola {(x,y): 3* — x> = 1 and x,y > 0}. By restricting to a
special subclass of orthogonal matrices obtained by the above characterization, we
construct a family of new commutative finite-dimensional non-hermitian fusion alge-
bras. © 1999 Elsevier Science Inc. All rights reserved.

1. Preliminaries

Finite-dimensional commutative fusion algebras arise naturally in the con-
text of graphs. These have been studied for general graphs and certain special
graphs associated with von Neumann algebras in [4-6]. The hermitian ones
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have been characterized in [6]. In this note, we endeavour to study the
non-hermitian ones which are defined below. The result about the three di-
mensional commutative non-hermitian fusion algebras can be deduced straight
from the definition (see Lemma 1.2). In the rest of the first section we set up
notations and state the known results about the isomorphic images of an
(n + 1)-dimensional fusion algebra in M,,,;. These are known to be Cartan
subalgebras. In Section 2 we characterize those orthogonal matrices which can
conjugate the standard Cartan algebra into a fusion algebra. Theorem 2.5 is the
main result of this section. This is applied in Sections 3 and 4, respectively to
get the examples in any finite dimension and to obtain the characterization of
the four dimensional commutative non-hermitian fusion algebras.

Definition 1.1. A (finite-dimensional) fusion algebra is an associative unital
*_algebra .o/ with a distinguished basis {xp,x,...,x,} such that the ‘structure
constants’ Ni’;. defined by the equation

n
k
XixX; = g Nixx

k=0
satisfy the following conditions:
(i) N5 = N& = &% in other words, x, is the identity of the algebra .oZ;
(i) Nt > 0;

(iii) there exists an involution i — i* of the index set {0, 1,..., n} such that:
(a) x: = X,
(b)

N.O.:{l if i =,
Y 0 ifi#
We shall call .« a signed fusion algebra if it satisfies conditions (i) and (iii)
(a), (b) above and the requirement that ]\’{1‘. € R (rather than (ii) above).
Finally, we shall call a (signed) fusion algebra hermitian if it is the case that
x; =x; Vi
We shall restrict our attention to commutative non-hermitian fusion alge-
bras. We start with the three dimensional ones.

Lemma 1.2. The three dimensional commutative non-hermitian fusion algebras
are in one-one correspondence with the points on the hyperbola

{(x,y): ¥ =% = 1,x,y > 0}.

Proof. The structure constants N,’} of a fusion algebra are such that for any 4, j,
k in the index set, Nf = Nj,.. This can be seen as follows.

n n
o ! * ! nym
XXX, = E Noxixp = E N NpXm,
=0

fm=0



T. Bhattacharyya | Linear Algebra and its Applications 287 (1999) 87-103 89

whence we find that Ni’; is the coefficient of x, in (x;x;x,.). Thus N,fj, is the co-
efficient of x; in (x,x,-x;.). Since these two are conjugates of each other, x, has
the same coefficient in both of them.

Using the above, it is possible to characterize a three dimensional non-
hermitian signed fusion algebra. The basis of such an algebra is of the form
{1,a,a*}. The relation of the structure constants shows that the coefficient of «
in o and ax* are same. Let

o =Ea+na' and aa" =1+ E(a—a).

So the matrix of multiplication by « is:

0 0 1
L,=|1 & ¢
0 n ¢
Thus
1 4 ¢

Lp =L,Li= | & 1428 &+ &
& m+&8 B+
On the other hand, since ao* = 1 + (o + '),

L =L+ &L +1) = [ & 1428 &n+¢

Equating these two matrices, we get 7 — & = 1. Conversely, let (£,7) be any
point on the hyperbola #* — & = 1. Then any three dimensional associative
unital *-algebra with a basis of the form {1, «, a"} satisfying the multiplication
rules

¥ =Cfu4+na" and oo =14 Ea+ o) = o'

is a signed fusion algebra. If we restrict to the positive £-axis, we get a genuine
fusion aigebra. A commutative three dimensional non-hermitian (signed) fu-
sion algebra thus corresponds to a point on the hyperbola ? — & =1. 0O

Given an (n + 1)-dimensional fusion algebra .«7, there is a natural *-algebra
homomorphism, which we denote by ¢, of .« into M, (R) if we map x; to the
matrix L; of left multiplication by x; with respect to the ordered basis
{x0,x1,...,x,} and extend linearly. Note that the matrix L, thus obtained has
the property that the first column has all zeros except the entry on the ith row,
which is 1 (because x; 1s the identity of the algebra) and the first row too has all
zeros except the entry on column #*, which is | (because of the restrictions on
N,_‘]’.). Let the algebra generated by Ly, Ly, ..., L, be €. This is the matrix algebra
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which is @-isomorphic to #. It is an (n + 1)-dimensional commutative C*-
subalgebra of M,,;(R). The following result says that it is also a maximal
commutative C*-subalgebra.

Lemma 1.3. The following conditions on a commutative C*-subalgebra € of
M, (R) are equivalent:

(@) dim € = n + 1;

(b) € is a maximal commutative subalgebra of M,.1(R).

For a proof of this result, see [1,2]. Such a subalgebra is called a Cartan
subalgebra. So every commutative fusion algebra .o/ with basis {xo, x|, ...,x,} is
isomorphic to a Cartan subalgebra € of M, ,;(R) generated by Ly, L,,...,L,.
We briefly sketch below those properties of a Cartan subalgebra which we shall
need.

Lemma 1.4. Any Cartan subalgebra € of M,.1(R) determines a unique pair (p,q)
of non-negative integers. The set of minimal projections of € is given by
{P1,.. ., By, Or,..., 0y}, where P, and Q; are projections of rank one and two,
respectively. One of the integers p and q, however, can be zero.

The set of minimal projections {P,...,P,, O1,...,0,} forms a basis for the
real vector subspace of @ consisting of symmetric matrices. The subspace of
skew-symmetric matrices in ¢ has dimension q. There is a basis {5, S,,...,5,}
of this vector space satisfying S; = 0;5,Q0; and ||S)|| =1, for all j=1,...,4.
Moreover, the matrices S; are unique (upto sign) i.e., if T; form another basis
satisfying 7; = Q,T;Q; and ||T;|| = 1, then 7; = +£S;. For more details on Cartan
subalgebras, see [1-3]. The Cartan subalgebras which we are concerned about
viz., the ones which are isomorphic images of fusion algebras have the fol-
lowing property.

Remark 1.5. If the Cartan algebra % arises from a fusion algebra through the
isomorphism ¢, then at least one projection of rank 1 exists in 4. This can be
seen from the fact that every fusion algebra admits a unique dimension
function (see [4]). Thus we number the rank one projections as Py, Py, ..., P,
This, in particular, means that p + 2¢ = n. From now on, we shall consider
only such Cartan algebras.

If o is an (n + 1)-dimensional fusion algebra among whose basis elements
there are exactly p selfadjoint elements other than identity and ¢ non-selfad-
joint elements then the Cartan subalgebra € is as in Remark 1.5. The following
proposition from [6] provides a complete characterization and one-one cor-
respondence between fusion algebras and Cartan subalgebras of M, (R). Let
{vy,v1,...,v,} be the standard basis for R*™.
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Proposition 1.6. (a) Let o/ be a fusion algebra with basis {xo,x),...,x,}. Let
I={i:i=#} and JC{1,2,...,n}\1 be such that je€J=j ¢J and
|I| + 2|J| = n. Let € be that Cartan algebra which is the @-isomorphic image
of <. Then,

() vy is a cyclic vector for €; and

(i) {S;vo: 1<j<q} and {v; — vy : j € J} are both orthogonal bases for the

same subspace of R"}.

(b) Conversely, suppose € is a Cartan subalgebra of M,.,(R), with minimal
projections Py, ..., P01, ...,Q, as in Remark 1.4. Suppose there exists a 2q
element set JU {j*: jeJ} C {1,2,...,n} such that conditions (i) and (ii) of (a)
are satisfied. Then there exists a signed fusion algebra o/ with precisely p self-
adjoint basis elements such that € is the Cartan subalgebra associated with of .

(c) Suppose € is as in (b) above; let {A4;: 0<j< n} be any basis for €. (For
instance, we may take the basis as Py, P, ..., P,, 01, 51,02, 8, . ..,0,,S;.) Define
the matrix B € M, 1(R) by b; = (4,00, v;). (Thus, the jth column of the matrix B
is just A;vy.) Then B is a non-singular matrix. Let C = B™'. Define

Lk = ZCjkAJ.
/=0

Then these are precisely the matrices L, obtained from the signed fusion algebra
corresponding to € as in (b) above.

2. Fusion algebras and orthogonal matrices

Henceforth, we shall concentrate on commutative non-hermitian fusion
algebras which have two non-selfadjoint elements in their distinguished bases;
consequently, we shall only consider Cartan algebras in M,,,(R) whose ‘anti-
symmetric part’ is one-dimensional, or equivalently, for which g = 1.

Lemma 2.1. Given any Cartan subalgebra € of M, (R), there is an orthogonal
matrix U such that € = U*€oU where € is the Cartan subalgebra generated by
the following set of matrices.

(g O - 0 0] )
0 4 -+ 0 0
D i,a€ R, 0€]0,2n]
0 0 i, 0
(L0 O 0 aRy )

where
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_ cosf —sind
"7 | sin0  cos6 |

This is called the standard Cartan subalgebra.

The above lemma is a very well-known fact. See, for example [1], p. 35 for
the proof. The standard Cartan subalgebra is cyclic. Given (n + 1) real num-
bers 3,1, . - -, ¥, satisfying

Yoo daa A0 and y2, 43 A0, (n

the vector y = (3,1, - .., ¥x) 18 a cyclic vector for the Cartan algebra €. The
next lemma tells how to construct fusion algrebras by conjugating the standard
Cartan subalgebra with a suitable orthogonal matrix. It gives a sufficient
condition which an orthogonal matrix U should satisfy to make U*%,U a
fusion algebra. A full characterization of such orthogonal matrices is presented
in Lemma 2.3.

Lemma 2.2. Let y = (3, )1, - - ., Ya) be a unit vector and Ube an (n+ 1) x (n+ 1)
orthogonal matrix where y satisfies Eq. (1) and U satisfies

2
)’3—1 +¥;

Then the matrix algebra U*€,U can be endowed with a (signed) fusion algebra
structure with exactly two elements of the basis being non-selfadjoint.

172
Uvg=y and U(v,_) —v,) = ( ) (0,...,0, =y, 3,01). (%)

Proof. Let ¢ = U6, U. First note that € is a Cartan subalgebra by Lemma 1.3
because conjugation by an orthogonal matrix does not change the dimension
and also retains commutativity. All that is needed to prove is that ¢ satisfies
the two conditions of Proposition 1.6(a). Then the rest will follow from 1.6(b)
and (¢).

The vector y = (w, 1, ..., ) is of the above form so that it is a cyclic vector
of the standard Cartan algebra. This, in view of condition (i), means that v,
becomes a cyclic vector for the algebra %.

The minimal projections for ¥, are given by

Fy = diag(1,0,0,...,0),
Fy = diag(0,1,0,...,0),

F,_; = diag(0,0,...,0,1,0,0),
F,_, = diag(0,0,...,0,0,1,1).
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Conjugating these with the orthogonal matrix U and setting 4, = U*F;U for
i=1,...,n—1, we get the minimal projections {4q,4,,...,4,-,} for the
Cartan subalgebra . The only two dimensional projection is 4,_,. The anti-
(1) "E)l . Let 4, = U*F,U.
The unique (upto sign) anti-symmetric matrix S, € ¥ which satisfies
Ay 1814,-1 = Sy and ||S) ]} = 1 is, in this case, just 4,,. Since condition (*) is true
for U, we see that

symmetric part of %, is the span of F, = O,_; &

AnUO - U*F;ZUD(] = U*F‘n(y()sylt e syn)

2 + 1/2
= U*(Ov s 707 '_ynayn-n]) = (.}_,1412—)’2,1_> (Un—l - U,,).

This means 4,00/ ||4,v0]| = (1/v2)(v,-1 — v,). Thus the algebra  satisfies the
two conditions of Proposition 1.6(a) with ¢ = 1. Hence it can be endowed with
a fusion algebra structure following 1.6(c). [

Lemma 2.3. Let y= (yo,1,...,y,) be any unit vector in R™; define
= (yg +o ) /2, for 0<k<n; then there exists a unigue
(n+ 1) x (n + 1)-orthogonal matrix Uy whose action on the standard basis is
as follows:

UOUO = 0’0, e ayn)v

Uy, = 254! (0,...,yk,ﬁ,o,...,o> fork=1,. n-3,
Yrs1

CrCr+1

2 2y1/2 2 2
n—1 +yn) ' (V() V2 Vn-1C,_ 2 TVnChn )
- HUy ey Vn—is 2 2 7 +
Y- +yn ys—l +yn

1 » =V Yn-1
UOUn~l = _1#301"':0: 3 120 5 NV 3
a a By + 3007 Oy +37)

1 o~ Vn —Vn—1
UOU = —‘7—a0»"'301 - ) - /7 1
’ ﬁ(cl €1 O+ 0, +0))'

Given any (n — 1) x (n — 1) orthogonal matrix Wy let W be the (n+1) x (n+1)

matrix:
W= (1,,_, & (1/\/5)(: _11>>(11 bWy h)

X <I,,]@(l/\f2)<i j1>>

Then, an orthogonal matrix U satisfies
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2
Vi + 3}
if and only if U= UW, where Uy and W are as above, for some
W, € O(n—1,R).

12
U=y and U(v,_)—v,) = ( ) 0,...,0, =y, 1) (3)

Proof. First note that by construction U satisfies

2
Yooy + 32
The matrix W is such that it leaves vy and v,_| — v, unchanged. So if U = UyW,
then U clearly satisfies Eq. (3).

Conversely, let the orthogonal matrix U be specified on just the two di-
mensional subspace spanned by v and v, — v, as in Eq. (3). Let W = U;'U.
Since both U, and U satisfy Eq. (3), the orthogonal matrix W leaves the vectors
v and v, — v, unchanged. Consider the following orthogonal matrix:

W= (1,,_1 @(1/\/5)(} _11)>W<I,,,1 @(1/&)(1 _11>)

Note that Wuvy=v, and Wv,=v,. Thus W=L & W,ol, for some
(n — 1) x (n — 1) orthogonal matrix W,. That gives the result. [J

1/2
Upve = y and UO(Un—I - Un) = ( ) (0, v ,07 "ymyn~1)-

This lemma leads us to a converse of Lemma 2.2 in the following way.

Lemma 2.4. Let € be a Cartan subalgebra of M, (R) arising from a fusion
algebra through the isomorphism ¢. Then € = U*6,U for some orthogonal
matrix U of the form UyW where Uy and W are as above.

Proof. Let ¥ be a cyclic Cartan subalgebra of M,,;(R) with minimal
projections P, ..., P,—2,Q and cyclic vector »g. Also let § be the unique (up
to sign) skew-symmetric matrix in € such that OSQ = § and ||S]| = 1. Then
there is an orthogonal matrix U such that % = U*%,U and
Uy =y = (o, M,---,a) is a cyclic vector for the standard Cartan algebra
%o. If, moreover, we demand that Svy/||Svo] = (vp-1 = va)/ V2, which
we may in case if ¥ =¢(sf) for some fusion algebra .7, then

U(tn-1 — va) = 1/2/(32_, + »?). Lemma 2.3 then implies that U = UyW. Note
that the Cartan algebra ¢ exactly satisfies the requirements which would
associate with it a fusion algebra according to the isomorphism ¢. Thus if we
fix a cyclic vector y for the standard Cartan algebra, then to any fusion algebra
there corresponds to an (n — 1} x (n — 1) orthogonal matrix U = Uy where
Up and W are as in Lemma 2.3. O

The results of this section are summarised in the following theorem.
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Theorem 2.5. Let o/ be an (n + 1)-dimensional non-hermitian fusion algebra with
exactly two non-selfadjoint elements in the basis. Let € be the Cartan subalgebra
of M, (R) which is isomorphic to o via the map ¢. Then € = U*€,U if and
only if U is an orthogonal matrix satisfying Eq. (3).

3. A family of non-hermitian fusion algebras

Now we use the theorems of the last section to construct non-hermitian
fusion algebras of all finite dimensions with exactly two non-hermitian ele-
ments in their bases.

Theorem 3.1. Let yo,vi,...,vn be real numbers satisfying Eq. (1) and
B4y 4y =1Letci=0+R+ -+ fork=1,....n—2. The
Jollowing set of (n+ 1) matrices forms the basis of a (signed) fusion algebra:

LO = ]n+11
0 0 0 1 0 0 0
0 z:—’;% 0 0 0 0 0
0 0 ifi’—l—‘ 0 0 0 0
L = 0 Huh me . w9
k Ve+1CkCha1 Cht1Ck42 Cp--3€n-2 [
0O o0 -0 a%‘:—ﬁ—; 0 0 0
0 0 0 #";—;*—; 0 0 0
2 172
0 0 0 el 0 0
L . J
I k=1,...,.n-3
2e4Cea1 2 Jor ’ " ’
"0 0 -
_2 i
0 Lo 0
L = . : : (1- zcﬁ—z) I
=2 =@ 2 1 — 2 17242
0 0 O U 0 ena(l = ¢ ;)
. Cn2
R
| ’ ena(l=c2 ;)" |
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[0 0 .- 0 0 0 1
. X2 2
0 0 0 0 Zcie; 2eyer
e 0 Va2 Y2
L _ 0 0 0 26y.-3¢n-2 23602
n—1 — 2
1-2¢
s 0 0 | -
0 0 2e,2(1- ) 2ea(1=c )"
2 2 2.2
1 » . Yn-2 (1-2¢, ) n-n M-
2102 2¢,. 3042 Zc-n,,z(l—cﬁ__z)l/z 2230016 2V2iriey
2 2 22
0 = . Yn-2 1 i NH B
L 2ci2 2653602 20 a(1—c2 2)1”2 2V2me) 2V2e
L,=1L, ,.

Proof. We take the orthogonal matrix U defined earlier and conjugate the
basis {Fy,...,F,} of the standard Cartan algebra defined in Eq. (2) with 1t to
get the basis {4y, ...,4,}. We form the matrix B, whose jth column is the 1st
column of 4;. It is as follows.

B = [U;sFyUyvy, Us P Uy, . . .., Uy FyUptg |

* * : yﬂ—l _yn
= Uy [Fy, By,....Fy = U; (dlag(yo,yn,-..,y,.vz) @ ( "o ))
n n—1

Set C = B~'. Then

¢ = (digtt/m 11 peyw 070 -2 )

Then the columns of C are as follows:

Cro = (1,...,1,0,0),

a2
Cvk:LHI—<1,...,1,—§C—",O,...,O) fork=1,...,n-3,

Ckck'r‘ k41

_ 2 12 2

Cv,,gzg—-i”"—z)——(l,...,l,—c—'izi,o),
Cn-2 l—cn—Z

1 M 2 172
Cv, ) =—=|—,—,0,..., 0,0,(1 —c,_ 1,
ot ﬁ(yocl'ylcl e 0.0, =€) '
L 1 Yo =3 2 N\~1/2
Cb”—ﬁ(ﬁ,ﬁ,o,...,o,o,—(l—Cnﬁz) .

Now we form the matrices
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L= cpd; = U (chij) Up.
J=0 =0

The matrices Lo, L,...,L, are of the above form. They form a basis of the
algebra U;%,U,. O

Remark 3.2. If we choose

Ww>0, yn>¢ fork=01,...,n—3, and ¢ ,<1/2

n—2

we get a genuine fusion algebra.

Here are some numerical examples of the matricial fusion algebras of the
above theorem for special values of the parameters for n = 4, i.e., in dimension
five. Note that the (n + 1)-dimensional ones which we obtained depend on
n— 1 parameters. Since Ly =1,,, and L, = L- | always, we are concerned
about L,..., L, only, in this case, L, Ly, L;. The parameters are 0.3 and y,
subject to yi =39 > 0,32 = /35 + ¥t and )7 +yF + ¥ < 1/2. We further spe-
cialize by putting y, = /32 +37. Then c; =¢,v2 and c = ¢, = c/V2 < 1)2.
This can be made further simpler by the following substitution:

eV?2 = sin#, Jo = cCose, y =csing.

Then
0 1 0 0 0
1 0 cotff 0 0
Li=]|0 cotd 0 0 0 1,
o 0 0 IS
0 0 0 ms s
0 o0 1 0 0
0 cotd 0 0 0
Ly=|1 0 lcot20 0 0
0 0 0 lcot20 0
0 0 0 0 1cot26
0 0 0 0 ]
00 0 S5
;=10 0 0 siriZ() cot26
1 5dy cot20 — ff(» - c;;zo
0 1 1 __ Lot2¢ _ cot2¢

2sinf sin 26 siné sin ¢!
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By the conditions on yy, y1, 12, one has 0 < 0 < n/4 and n/4 < ¢ < n/2. Putting
0 =r/6 and ¢ = n/3, we get

0

L

S O o -

'l
[
|
o o = o o

o o o

L3:

< —

[y

1 0 0 0
0 V3 0 0
Vi 0o 0 o [,
0 0 V3 V3
0 0 V3 V3
0 1 0 0
vV3i 0 0 0
0 3 0 o]
0 0 %o
0 0 0 &
0 0 0 1
0 0 1 1
00 % V3
1 V3 2V3 2
%

[\
S
[y

4. Four dimensional non-hermitian fusion algebras

Theorem 4.1. Let </ be a four dimensional signed fusion algebra with basis
{x0,x1,x2,x3} such that x} = x| and x5 = x3. Then the matrices L; of multipli-
cation by x; with respect to the above basis are as follows: Ly = 14, L3y = L5 and L,

and L; are either

Ll(a,r,G) =

Ly(a,r,6) =

ro 1 0 0

1 Sfila,r,6) fela,r,0)sinf  fr(a,r,0)sinf
0 fila,r,0)sin® fi(a,r,0)cos® 1fr(a,r,0)cosd
0 fi(a,r,0)sind 1fr(a,r,0)cos0 fi(a,r,0)cosd

(0 0 0 1
0 fala,r,0)sin® 1fi(a,r,0)cos® fi(a,r 0)cost
1 f3(aar’ H)COSG ﬁ(aara 0) f;‘(aara 0)
L0 %fz(a,r, #)cost fs(a,r,6) Sfala,r,0)

(4)
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or
ro 1 0 0
1 —fi(a,r.0) fr(a,r,0)sin6 fr(a,r,0)sinf
Llar®) =1\ piar0)singd  —fila,r,0)cost ~1f(a,r,0)cosb
L0 fala,r,0)sin® —1fi(a,r,0)cosd —fi(a,r,0)cost
0 0 0 1
0  fala,r,0)sin®@  —1fi(a,r,0)cos® —fi(a,r,b0)cosd
Lafar0) =\ i 0)coso fala,r,0) fula,r,0) |’
[0 —1fi(a,r,0)cosd fs(a,r,0) e(a,r,0)
(5)
where
fi(a,r,0)

= (—— (2 = r*)cos’0 +3(1 — #*)cosl + av'l ~ rzsin36)/rv1 -,
fola,r,0) = (rz +(2—P)cos20+av1 12 sin20)/2\/§r\/1 A,
fila,r,0) = ( — 32 4 (2= P)cos20 + av1 - 12 sinze) /4r\/1 1,

f4(a, r, 9)
- (a I = r2c0os’0 + (2 — P)sin’0 — (3 — 4%) sine) /2\/5m/1 7,

fsla,r,0) = (a 1—r2cos0 + (2 — r*)sin’0 — 3sin0)/2\/§r\/1 )

Proof. In dimension four, the matrix Uy of Lemma 2.3 is given by,

2.2
)2

Y3ty V1 i
Yo W é_ﬁ% V200D V20200

pJ = =2
V20507 V20507
—¥ Bk
2 Vord  auieh
y3 » -

V) V2050
where y = (3o, y1,)2,3) is a unit vector such that yy # 0,y # 0 and 3§ +)7 < 1.
From the form of it, we see that the matrix U, depends on two parameters y,
and y| only because y; + 3 can be replaced by 1 — ()¢ + y?). The matrix W, is a
2 x 2 orthogonal matrix. So it is either
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(cosH sinﬁ)
—sinf cosf

(—cosf) sinf )
sind  cosf )’
where 8 € {0, 2x]. Since W, depends on 8 (only), let us call it W;(#). Accordingly,
W, the matrix defined in the statement of Lemma 2.3, will be called #(8). Thus
the four dimensional non-hermitian fusion algebras depend on three real pa-

rameters. Two substitutions come in handy for simplifying the calculations.
They are as follows.

%% /
a =~—=2 (note that yoyy # 0) and r = /33 + 7.

or

Yovi
Thus L, and L, are functions of a,r and 6. Among the basis matrices, Ly = 4
and Ly = L;. cos  sin@
When W#(6) = (—sinH cos())’ we have

1 0 0 0

0  cosf —sinf//2 —sinf/v/2
0 sind/v2 (14 cosf)/2 (—1+ cosh)/2
0 sind/v2 (—1+cosf)/2 (1+ cosé)/2

When 6 =0 1.e., W(0) is Iy, then L, and L, are as follows.

r0 | 0 0
(1-24)
v R 0
Li(a,r,0) = 0 0 (1-2%) 1 )
W12 27V
(1-21%)
-O 0 21‘\/1—172. 20V 117
K 0 0 1
] (1-2r%)
0 0 V12 2V1-12
Lz(a,r,O) = | (1-2/2) a 9 h|.
2V1-r2 2W2r 24/2r
1 a a
L 0 212 2v/2r 2v2r

It is interesting to see the numerical form of these matrices for special values
of r.
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0100 00 0 1
Forr=1/v2, L = gg ?, L, = ? 3; Z
0010 01 a a
0 1 0 0
1 2/V3 0 0
Forr=1/2, L, = N V3 23|
0 0 2/V3 1/\/3
0 0 0 1
0 0 2/V3 1/V3
o= 1 1/V3 a |’
1 2/V3  a a

where a is any non-negative real number.

A long computation which consists of first forming the matrix
U(f) = UyW(0) and then conjugating the standard Cartan algebra with it,
yields

Ly(a,r,0) = W(0) <cos()L1(a, r,0) + %_rlzg(Lz(a, r,0) + Ly(a,r, 0)*)) w(6),
. inf) 1 + cosf
atart) = w0) (- 1ar 0+ 52 1 r,0)
+ZL%9ﬂQmJﬁm)Wwy

After completing the calculation using the forms of L (a,r,0) and Ly(a, r, 0)
above, one gets the above form (4).

If, on the other hand, we had started with Wy(6) = _S(;I?SHB 2:;;%) then

following a similar procedure as above we arrive at the form (5).

Since these are the only two possibilities, thus the matrices L; associated with
any four dimensional signed fusion algebra are bound to be of one of the above
forms. [

The characterization of genuine four dimensional fusion algebras is as
follows.
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Theorem 4.4, For 0 < r < 1 and 6 € [0,2x)], let
3sinf — (2 — 2)sin’0

(r.6) = VT =2 cos’d
ta(r, ) = 3r2 — (2 - r*)cos20

2T T/ 2sin20

o) - (2 — ) cos*0 — 3(1 — r*)cost

S Y = T R
ta(r,0) = ~r? — (2 —r*)cos20

A V1I<=rsin20

_ (3—4r%)sin0— (2 - )sin’0
#5(r,0) = V1 —ricos’f '
Define

M, (r,0) = max{a;, 0, %},
Mi(r, 0) = max{as, oq, 25},
my(r,0) = min{oy, 07, 23},

my(r,0) = min{as, ag, a5 }.

Let of be a four dimensional fusion algebra with basis {xo,x1,x,,x3} such that
x} = x) and X, = x3. Let L; be the matrices of multiplication by x; with respect to
the above basis. Then Ly = Ih,L; = L} and L, and L, are necessarily among one of
the following four types:

Type I Ly and L, as in Eq. (4),0<0 < n/2 and a = M (r,8),

Type I L and L, as in Eq. (4), n <0 < 3n/2 and a << my(r,0),

Type III: Ly and Ly as in Eq. (5), n/2 < 8 < n and a < my(r,0),

Type IV: Ly and Ly as in Eq. (5), 3n/2 < 6 < 2n and a = My (r, 6).

Proof. We have already seen that the matrices L; and Z; for a four dimensional
signed fusion algebra are of the form (4) or (5). For genuine fusion algebras,
the entries have to be non-negative. This forces the above ranges where 6 has to
lie and the corresponding intervals for a. [
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