THE METRIC IN PATH-SPACE.

By D. D. Kosaxgsr.

The paths defined by a suitably differentiable symmetric affine con-
nection have the unique join property : that one and only one arc which
is a path connects any two points within a sufficiently restricted n-
dimensional neighbourhood. It can easily be shown that this property
furnishes a map of the neighbourhood upon an open sphere in Eu-
clidean R,. Therefore, the path-space, according to a well-known to-
pological result®, may be endowed with a Riemann metric. But the
relation of this metric to the paths is not clear. It is known that
differentiability, no matter of how high an order, does not suffice by
itself to make the path-equations equivalent to the Euler equations of
a regular variational problem, let alone of a Riemann metric. Thus
there is a gap between the global approach based upon the paths as
curves, and the local which deals with their differential equations. This
difference is reconciled by our main result:

Theorem 1. By a suitable projective change of the (implicit) parameter
t, the paths of a symmetric affine connection may be made the geodesics of
a Riemann metric.

1. The paths of our discussion are defined by

(1.1 B+ ikt =0, 1=1,2,--,n, i*=de'/dt,
%i :dii/dt y Fijk e I-'ikj .

We assume these equations to be tensor invariant, which means that
the coefficients of connection 7',(x) are endowed with a suitable law of
transformation. It is known that the Euler equations of a variational
problem are also tensor invariant (though covariant where (1.1) are
contravariant) hence nothing can be done by mere change of coordinates
towards obtaining a metric. If a metric is broken up into a sum of
homogeneous polynomials of different degrees in x— which includes the
case of a formal series expansion—the symmetric tensors furnished by
coefficients of any given degree must have a vanishing covariant de-
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1) This is the theorem of Whitney (Ann. Math. 37 (1936), 645-630) ; for its application
to group-spaces, see Quart. J. Math. (Oxford, 2), 3 (1952), 307-320, where most of the results
of the present note have been outlined.
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rivative with respect to the I"’s¥. In particular, for a Riemann metric,
we must have a tensor ¢,;= ¢, of non-vanishing determinant g=|g,,l
such that the quadratic form g,p'p’ is definite in p (hence positive
definite, by change of sign if necessary). Finally, we obtain the system
of first order linear partial differential equations

(1.2) 91 = Gis— 9ol 52—9-5e = 0,
*

where the vertical bar and comma in subscript denote covariant and
simple partial differentiation respectively. These equations have the
system of compatibility conditions® :

9u R0 +9,5R 4, =0,

(1.3) .
girRrjlcllm_*_grjR’ ikl|m == O AL AT

where each set of equations is derived by partial differentiation of the
preceding, and the curvature tensor R’;,, has the formula

(1.4) Rijkl:['ijk,l“‘l-wjl'k‘*“l-"i,.l rjk_['irk[‘rjl .

The problem is thus reduced to one of elementary algebra, in that
a system of homogeneous linear equations for the unknowns g;; is found
explicitly ; this must reduce to a finite number of independent equa-
tions, at least one less than the number of g,;. Thus, for the most
general case, no metric exists in this sense.

From the first of (1.3) follows a purely affine condition not involving
gs;» if we contract with the normalized cofactors ¢%:

(1. 5) Rr,.}cl = 0 .

This is only a necessary condition, for the first of (1.3) says that a certain
number of matrices indicated by fixed values of indices k,! must be
antisymmetric, whereas (1.5) is equivalent to the vanishing of corre-
sponding traces.

By projective change of parameter, we mean replacing di by (exp
.\'gb,;dxi)dt, which gives

(1.6) g P+ % (@%5u+ 0%Ps) -

Thus the general projective change of parameter depends upon the
arc, except when ¢, is a gradient vector, the integral then being in-
dependent of the curve of integration—though even here the unique

2) This result, which was undoubtedly known to the classical differential geometers,
does not seem to appear in the available literature before Quart. J. Math. 3 (1952), p. 6.

3) L. P. Eisenbart, Non-Riemannian Geometry (Amer. Math. Soc. Coll. Publ. 8, 1927),
sections 29, 30.
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join property makes it a function of the path. One advantage of this
projective change is that the contraction in (1.5) may thereby be made
to vanish®, For it is easy to show that R’,;,, being antisymmetrie, with
a vanishing exterior derivative (by contraction of the Bianchi identities)
is a curl. Thereafter, ¢, in (1.6) is restricted to be a gradient vector
(. e. of vanishing curl). Thus our main theorem would be reduced to
proving that a metric always exists if R’,., =0 and the paths are modified
as in (1.6) by a gradient vector ¢, .

If proved, we would still have only an existence theorem, indefinite
in the sense that the problem would again reduce to one of algebra.
There is nothing in the method itself to make the tensor g,;, properly
Riemannian; this depends upon initial values, which being suitably
chosen, the metric form will be positive definite at the starting point,
and by continuity for some neighbourhood thereof.

2. Rather than attempt a (necessarily clumsy) proof of the local
theorem, we give the actual specification of the. parameter, which
simultaneously proves results otherwise derived from topology. If a
new mplicit parameter be chosen along the paths in terms of which
each path has differentiable coordinates, the vector ¢, of formula (1.6)
is obviously determined by the choice, so that the proof of Theorem
1 will be furnished by the construction. Starting from a general point
%, in any direction &, we get to a point x on the path by the formal
series expansion :

2 3
(2. 1) xi(:vo, t) =q= w8+tfi == zt' Fijkloéjfk = “5'— % (Fijk-’k"i'k)lo’{' IR
where
(2.2) djdt = &7 2 —(I" a7 4%) 2

" Y

and the zero in subscript indicates replacement of = by x,, ¢ by £ after
the differentiation is finished. To every point distinet from =z, corre-
sponds just one direction & provided we sharpen the concept of direction
and restrict & by
ye o 0,737
(2.3) 20,88 =2V =1, 3;= [ ; J
1,i=3.
This has the important consequence of relating values of ¢ along different
directions, ensuring continuity in the functional relationship between
t and = not only along any fixed path but as « is allowed to vary con-

4) Eisenbart, loc. cit. 32; J. A. Schouten, Der Ricci-Kalkiil, p. 129.
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tinuously in any direction. On the path, the formal expansion gives
us a translation in £, i.e. an Abelian one-parameter group represented
by the Lie-Taylor series. For questions of convergence, we note that
the problem does not arise in the analytic case, while any I” may be
approximated by analytic connection coefficients. The limiting process
would not affect the translation property of the parameter {. For that
matter, we may replace the series by a finite expansion with remainder.

For the mapping onto R,, we take new coordinates y’=t*. This
gives for z(z,y) in (2.1),

(2.4) o =af+yt ~ —21—' Iyl 'y* — —3ch surl WYY A
There is then a 1-1 continuous (and differentiable) mapping of an z-
neighbourhood onto the open sphere > %*<¢. This holds provided there
is no point on any path through z, which is conjugate® to x, the Ja-
cobian |22%/ay’| then having the value unity at the origin, and not vani-
shing throughout the domain under consideration. That is, we have
conmectedness, arcwise connectedness (with path-ares), and orientability in
the neighbourhood mapped. The path-space is assumed to be covered
by such overlapping neighbourhoods, or we restrict the argument to
a connected component, which is so covered.

Though (2.4) makes all paths through x, into straight lines through
the origin, nothing is said about any of the remaining paths of the
neighbourhood. We have at any point just one path in a given direc-
tion. In R,, the whole direction bundle at any point is to be obtained
by parallel transfer of that at the origin. This is impossible for spaces
which are not flat. However, the conditions are that 1) the tangent
direction at any point on a path should correspond to that at any other
on the same path; 2) the relation 1&°=1 should remain quadratic
homogeneous in the local direction system : hence that the correspondence
between two local direction bundles should be linear.  This determines
the structure of the fibre-space (z, @), and solves the mapping problem.

Differentiating (2.1) with respect to the parameter ¢, we hav

fi;z:—' 'Ei—"t[‘ijkl jEk—_“C Jkll()E]E E A
(2. 5) J(é i k
= §(8%—t sl — ") .

That is, the correspondence for tangents at different points on the same

5) M. Morse: Calculus of Variations in the Large (Amer. Math. Soc. Coll. Publ.18, 1934)
particularly chapter V. The present note may therefore be regarded as a contribution to
the affine and projective calculus of variations.
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paths has the linear form

% %
(2.6) #= e, ¢ =2,

Our conditions above are satisfied by taking (2.6) as the general relation-
ship between &’ at the origin and 4’ at any point x(y). We now note
that ¢ has been fixed as the parameter for all paths through the initial
point, both for the x- and the y-space. Therefore there can be no other
restriction upon @ than that derived from 3 &=1. This leads to

Theorem 2. The correspondence between two local direction bundles being
gwen by (2.6), the parameter t is determined on every path by

dtt = g, dx’dx? ,

Y W _ oY 3y”
ax’ ax’ T ox® ax?

2.7

— R
gij — 0Oy

With this metric tensor g,; for the space, the paths become geodesics, t the arc
distance. The relation (2.6) is also necessary and sufiicient to map all paths
wnto straight lines of the y-space with the same t-values for corresponding arc-
segments.

Equations (2.7) are the local reflection of 31&*=1. Itis clear that
g:; S0 defined gives a positive definite fundamental form. We may
note that at the origin, directions in y are identical with those in z
coordinates, [22?/3y’|| becoming the unit matrix at O. Thus (2.6) may
be restated in terms of the transformation between one local coordinate
system and another instead of between the local system and the map
onto R,. We have only to prove the last part of the theorem for if
the correspondence be set up, it will follow that ¢ on any regular smooth
arc in wz-space is measured by the integral of d¢ along its image in y-
space; further, that the paths, having straight lines as images, are lines
of shortest distance.

Suppose now that y=wu+v where u’,»’ are arbitrary displacement
vectors in R,. Our problem reduces to showing what is in effect the
Weierstrass strong-variation condition, namely that x(y)=x(u+v)=x(z
(w), ) =x(x(v), w). In this derivation, parameters and directions in y-
space are determined, say, by y=tZ, u=ty, v=ty. In the x-space, we
have the same parametric values, but some correspondence between
directions will then have to be determined, so that # depends upon
x(u), or % upon x(v). This is obvious because the direction # necessary
to reach the point x (u+v) from x(ux) is not in general the same at
@ (u) as the direction v needed to reach y=wu-+v» from the point y=u
in the y-space. We now expand in formal power series and demand
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term by term equality (taking x,=0 without loss of generality).

2 (=2 @+0) = w v — LTl H o) @ 40+

(2.8)
= o (u)+ ¥ — _21'. I, (@) ot + -
with
z'(u) = u' — ?1F I wtut + -
and

@)= Tlo + Ty glo’ () + T?:‘l'— I ml & (@) 2™ (W) + - .

The last of these equations states that we have a topological change
of space, not a transformation of coordinates. Equating the two sets
of expansions gives us, with rather tedious calculations, precisely con-
ditions (2.6), namely

% %
s Y ax‘
e ou’

whence

L s ol U
vV=—1v, V= ST
au” oz’

This is both necessary and sufficient, for nothing else follows from any
of the higher terms in the series. This completes the proof of both
theorems. We could have used the values in (2.7) for g,; to calculate
Christoffel symbols, and shown that they differ from our original I
by at most projective additions. The formidable calculation involved
in inverting z(y) to y(x) as a formal series expansion makes such a
differential method of little value for insight. Actually these Christoffel
symbols have the values

= oy ot

(2.9) I, Pl e

3. The symmetric affine connections are not essential. Any system
of curves with smoothly turning tangents and the unique join property may be
used to map the meighbourhood into an open sphere in R, by specification of
the parameter on the curves, thereby endowing the space with a Riemann metric
of which the given system of curves are geodesics.

The proof is now obvious, setting up a correspondence between
local direction bundles which is uniquely determined by and conversely
determines the relation between local coordinate systems. The essential
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property common both to the general system of paths and to the ge-
odesics is that if the unique join of two points P and Q be drawn, it
is also the unique join of P with every point on the arc PQ. Thus
we can set up the translation parameter. It is seen that there is no
great generalisation in this result.

Our results have several applications, such as, for example, to more
general path-equations or non-kinematic dynamical systems for which
no variational principle is given a priori, but which can usually be in-
cluded in the above by taking additional coordinates. Inasmuch as the
automorphism group of a Riemann space is a Lie group, it is seen that
the automorphism group of a path-space preserving the parameter is
also a Lie group. Inasmuch as the one-parameter subgroups of a locally
Euclidean topological group and their (left-) cosets form such general
paths, a solution of the Hilbert fifth problem is made fairly simple.
For Riemann spaces in general, we get a whole series of groups, such as
that of rigid motions (preserving the metric), collineations (preserving
path-equations but not the metric, which is then taken into some other
metric), projective collineations (preserving the path-curves, but not the
equations), and so on, each of which is an invariant subgroup of all that
follow.

The geometry of the given path-space is not the same as that after
projective transformation of the parameter. For example, all pro-
jectively flat spaces are equivalent to a flat space; but a projectively
flat Riemann space is one of constant isotropic (Schur) curvature—neces-
sarily positive or zero if the global property is given, while the ge-
ometries differ for different values of the said constant. To visualize
the simplest case, we take a spherical surface in R, and project from
its center upon the plane tangent at the south pole. The convention
may be made that the upper hemisphere projects upon a different side
of the plane than the lower. We get then the one-sided projective
plane (or alternatively stop with the southern hemisphere). If we take
the distance induced on the surface by the Euclidean metric in R,
we obtain the usual spherical geometry. If.the distance for any path-
segment geodesic arc (great circles) is taken to be the same as that
in its projection on the plane (which is a straight line), the metric
geometry is that of the plane. In general, the original z-space need
not be a topological group at all, whereas the y-map on R, can always
be regarded as an Abelian group with vector composition for the group
law.

The reason for these differences is elucidated by the following
considerations. The geometry of the path-space can be based upon the
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concept of parallelism. A vector 4°is said to be parallel-displaced along
a given path if

ax

3.1) ¥y

+ =0 VB=0DI"",

This gives us another method of setting up a linear correspondence
between direction-bundles at two different points joined by a (unique)
path, namely

3¢ — 7t ”» t i {7 i~k ”»
A= 2 —trt| 47— P Ft
(3.2) i
o xr i th ‘ ( —T TL) +
AT dt

This agrees with (2.5) and (2.6) as to the first two terms, but the co-
efficients of ¢ differ by

(3.9) o EER o

The paths themselves are autoparallel lines in both senses, for (3.1)
become the path-equations when 1*=d?. But only the direction vectors
tangent to any given path correspond to themselves under both linear
correspondences, unless the curvature tensor vanishes; in that case a
coordinate system exists for which the paths become straight lines

=0, so that the space is flat and endowable with a proper Euclidean
metric.

In formula (3.2) the higher terms are clearly expressible by covari-
ant derivatives of the curvature tensor. The meaning of (3.2)-(3.3) is
that the local holonomy group is completely determined by the curvature tensor,
and conversely. Formula (3.3) gives the equations of variation.

For our general case, the unique join property excludes such paths
as the geodesics on a cylinder that go at least once around the cylinder.
That is, local arcwise connectedness becomes a completely local property,
the whole arc remaining in the same neighbourhood as the two points
it connects. On the other hand, smoothness or some equivalent concept
is necessary in order to specify the “direction” and obtain one path in
each direction from the unique join of two points.
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