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1. An extension of Riemannian Geometry begins with the postulation of
existence of n* functions of position I‘jkwhlch are transformed by the point trans-
formation (z<—z) in the following manner :
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We here adopt the following notation:—

(a) The “dummy index ” occurring both as subscript and superscript indicates
summation over all values. '

A,ur =A u' + A, u2+............+A’n un

(b) But when underlined, the summation is not to take place ; also, indices on
the same level with a bar over them are to be summed :

A, u" = the rth term in A, ur

Au_=A, ur+ Au,+ .. A u
r r R n n

(#) A comma followed by an additional subscript denotes partial differentia-
tion. A semicolon in place of the comma will indicate that the variable of
differentiation is @" in place of a®

BA:: L JA:: .
~ T :A..,k -~k :A,k
cx cx

(d) A vertical bar in place of the comma or semicolon will be used for covariant
_ differentiation, the indices being those of a tensor.

2. Our equations (1. 1) allow us to perform a good many of the operations
possible in Riemannian manifolds, without any hypothesis as to the existence
of distance, or of a groundform. The usual formule for covariant differentiation
holds. We have a parallelism, and thence the equation of ¢ paths,” 4.e., curves
having autoparallel tangents:

(2.1) gi+ Ty, & & =0

&+ I‘j-k & = i’ . [Schouten]
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One operates with the I"s precisely as with Christoffel symbols of the second
kind in a Riemannian space, and thus obtains a mixed curvature tensor

h Lk h m h _ mn

Even more general results as the theorem of Fermi can be extended. The
principal difficulty arises in discussing the problems of mathematical physics.
There is no way of defining the magnitude of vectors, no way in which an index can
be raised or lowered, ie, covariant and contravariant tensors associated. Laplace’s
equation

(2.3) A V = div. grad V=0
cannot be expressed, as the divergence of a covariant vector cannot be defined
here, Similarly, the famous gravitational equations of the older Einsteinian
theory

1 —_

J
lack a basis of deduction, the g, having no meaning. The restricted case
h
Rijh, _—Rij =0

can still be treated, though on a purely formal basis. _

Thus, it is not immediately profitable to investigate space-time, and the
possibilities of a physical world based on a set of I”s that differ but little from
their Fuclidean or Galilean values, which are all null. A first step must therefore
investigate the possibilities of measuring distance,” of founding the affine
manifold on a Riemannian. If we assume or define the paths of our geometry
to be the actual paths of material particles, or of disturbances in space-time, the
geodesics of older speech, an added contact is established with material reality.

We take the path equations (2.1) as our starting point. Symmetry of
the I"s

(]

)
(2.6) I5,= Ty

may be assumed from the algebraic symmetry of (2.1) without loss of generality.
To discuss the existence of a Riemannian groundform,

(2.7) ds\" _ et il
' ac | TIuTe
is equivalent to discussing the solutions of
(2.8) 9; 9igi=0
.. e B h h
9ijk 9in ij+ ghj ij

The above system of partial differential equation being the familiar system of
Koenig, is completely integrable if the compatibility conditions

. h h
(2.9) 9in R + gin Ry =0
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are fulfilled. If identically, we have Rzk =0 and the totally uninteresting case of

a flat or Galilean space. If not, further conditions can be derived (Eisenhart,

(2.10 k

e =)
tkljim ’

h
9in Rjkl/m, + 9in R

by covariant differentiation of (2.9). The process must lead to the sets of solution§,
or to the absence of any. The method has been brought to a greater degree of
elegance by Graustein, for the case of Einstein spaces.

The contracted curvature is the only fundamiental covariant tensor of rank
two that enters into our theory. If it does not vanish identically, it is natural
to build another space using this as a ground-tensor.

(2.31) (%1;_)‘ = Ryj&' @l

In this associated space, the operations that we call physical are possible, if R= {R-ij‘l

does not vanish. A co-tensor of rank two can, by the process of finding the
normalized co-factors of its square array, be associated with a contravariant
tensor of the same rank. The further operations proceed as in any Riemannian
space. An Einstein space is one for which the first associate is identically null,
or conformal to the original space. One may find a second and further associate
spaces, by a continuation of the same process. The difficulty again lies here in
the meaninglessness of conformality for affine connections.

I, therefore, propose to approach the problem from another point of view, and
to see first the types of metric that can be deduced from a given set of paths.
In equations (2.8), the following various properties are expected of the solutions :

(@) ¢35 =gji- 1f this does not follow from the equations, we can at any rate
replace g;; in the groundform by 2 (g;; + gje)- It is seen that in general g;; + g;; =%0.
(b) g4 must be a covariant tensor of rank two.

~.m n
! — ca @x 7
i =9mn na (z~a)
cxt cxd

If the equations are taken as invariant under a point transformation, and we
assume
mn
i Imn

g'ij = ¢

a set of relations will be obtained involving =, the y’s, the Is; and ¢¢;§ as well

as .z::' o 1f it be further demanded that the ¢’s be purely functions of the trans-

formation, (2« —2'), not explicitly dependent on the g’s or the I’s, we have a set
of equations satisfied by
mn __ ex” Rz

b Lz x

v oa’? 2a?
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It does not transpire that these are the only solutions possible, but I do not intend
to develop this possible generalization of the tensor here.
(c) g:’gij]fgo. This is usually another condition added to the equations.

If however (2.8) has a solution, it follows that
9 . r
‘—a—;klog g=T .,

The value of g being other than null initially, it will not vanish.

(d) Continuity, differentiability, and other analytic properties of the g's depend
on tie corresponding properties of the I"s. Uniqueness of the solutions does not
in general hold, but the various groundforms must give spaces in geodesic
correspondence.

(¢) The distance s, represented by

P
st,
Po
must be stationary over the paths given by (2.1). This is usually written

as § f«/g.. % 54t with the extra condition g..i" &’ =const. along the extremals.
WL X 1]
We replace it by
5[ gaji* &? di=0
It is intuitively obvious that this will do as well. We can consider the geodesics
as the actual trajectories of a particle of unit mass sliding on a smooth hyper-
surface of the given groundform under a zero potential. The least action formula

is precisely the one that we have adopted, and the auxiliary condition is 111e1e1y
the conservation of energy. The Hulerian equations become

d J ) _ ko.g
These reduce to g,ij[ﬁi + T}k i wk] =0 if and only if (2.8) is fulfilled and if g is not

zero, these will be identical with (2.1,

1t is the main purpose of this paper to follow the last condition more closely,
and to investigate its full significance.

3. Given a single differential equation of the second order

(3.1) &+ alz, & t)=0
.1t is asked whether there exist any functions of «, &, ¢ such that
(3.2) : S jf(nl & ¢t )di=0

represents. by its extremals the curves that are solutions of (3.1).
equation is

(3.3)

The Eulerian

d ..
i fe = fa =0

x;fmw—\—xf +f —fs =0
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1f then. such an J exists, the equation (3.3} must be reducible to (3.1) with almost
a factor of proportionality, ¢l &, {50

. d
{ [fb+a,§ 2“'d—{fm ~fa;
This gives directly,
(3.4) ézfx'_’,}) Lo =ifpy + [zt — [z
-~ ofgy T&fg T it~ fa =0
And we may state

Theorem 1.— The equation ¥ =a (x&,f) gives the extremais of 3§ E‘fclt =0 if and

only if [ is a solution of

AV AR SN SRS
Cx Crau calt g.xr
cif
such that T =0

Since the partial differential equation always has a solution, we could have
stated that every second order differential equation can be deduced from a variational
principle. The solution is not unique, as the addition of any perfect differential
leaves the Euler equations unchanged. As a corollary, we have,

The linear differential equation

z+ P+ xQ =0
is equiralent to

- det ar )
B / e 1":,':;2 + 2zgP—a"(@— i —P“)]dt =0
., a

This could have been derived from inspection after the equation is put in the
normal form and the integrand transformed back again. It must be kept in mind

dv z) . .
that ¢f + Zti) gives the same equation as f.

The same derivation will now be attempted for systems of second order
differential equations.

4. We start with the system

(4.1) +o (@28 =0 i=1,...n
which is to be deduced from

(4.2) 5/ £, &, dt =0,
Here the single factor of proportionality will be replaced by o (a, &, t) since both
(4.1) and the expanded Euler equations

o . P -
(4.3) z fiz.’b’ + & f:bz.’b" +f¢z-¢ fmz
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are linear in # . 'This leads to

"

- _ id 0
pii =Ty i TE T Ty i T L

) . J _
{+4) o fiij — @ f;j,i"'é_tf;j"’f,a'_o ff;i;jl:\—\‘o-
We may then state the theorem

Theorem 2. The system of equattons (4.1) is deducidle from a variutional
principle if and only if there exists a solution of the partial system

a”~%—f— SN A 1 IR B
3d" 9a’ s 0s’  dalet  oa’
such that
aZ
A=z z]: j\ = 0.
cx Ca

The solutions of (4'4) exist in general, any perfect differential being one. But I
am unable to find directly the necessary and sufficient restrictions on the J's for
nontriviality represented by A =¢ 0.

It would seem evident, however, that the desired solutions exist much oftener
than a groundform exists for affine connections.

Taking the coefficients of affine connection as usual, we investigate the
possibility of a special type of metric f. This fis to be independent of the para-
meter ¢ and expansible as a sum of, or as an uniformly convergent series of poly-
nomials in &, whose coefficients are functions of # alone.

(+.5) F=A+ AS A F& A d

) ] et k
If f is to be an invariant, the coefficients must be tensors of rank k. If we substitute
in (4.4) and d.emand that the result be an identity in @, we get conditions on each
set of coefficients

(4.6) Ak =0 A=Const,
i_ i g
i i = Aj,im:AJ’lm,
i T A
i
and A, & = —&—t—#(oc).

The first two terms are trivial and can be neglected. For the rest

.ot .p.m _ h h
(4.7) & & z .. [Hk ){Aihp Pl7n+Aihl Prm T }

—H{Ailm...,p_‘_Ailp...,m + } Almp...,i} =0
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Substituting for the ordinary partial derivatives in termns of covariant derivatives,

and kf:eping' always in mind the complete symmetry of the A’s in all their
subscripts, we have

48) n[A + A 4+...—A

ilmr ... [p itmp ... [/r Hwrp ... [t ]

Changing the subscripts in turn with ¢ and adding, this reduces finally to

=0

(4.9/ (7“) A"ilmp o

=0

Theorem 3.—4 mnecessary and sufficient condition for the eristence of an in-
variant f of the type (4.5, is the vanishing of the covariant derivative of the tensor
coefficients of rank higher than two. The first two terins, moreover, must be irivial
and AN 30

The equations (4.9) again form a system of Koenig, whose conditions of integra-
bility are, on account of the symmetry of the A’s,

B A + R WA +—... =0

Ri,jk higis . . . i, jr i hi, ..

and of course any set that might be derived from these asin (2.10) by further
covariant differentiation. In a flat space, these conditions are identically fulfilled,
but the most general metric is any f in which only the & enter. The Galilean
metric is the simplest, containing only terms of the lowest degree admissible for
non-triviality. Similarly, in the general Riemannian case, we shall in general obtain
a wide choice of admissible f for the given paths; the ground-form is only the
non-trivial metric of lowest possible degree.

The parametric case, as also a solution for general a? by means of expansion
in series is too cumbersome. The next step to be discussed will be a reduction of
(4.4) to a system of partial differential equations of the first order.

5. At the end of the second section, under (e), we found the same extremals
for two integrands that had the form f and f*. If it be demanded that any function
¢ (f) be a solution of (4.4) with f itself, we have upon substitution in (+.4)

(5.1) ' flel = f - 1] =0
¢"'=0gives ¢ = af +b. f;j =0 gives f=f (x, t) both being trivial cases. If
(5.1) is to be true for all at least twice differentiable ¢, it follows that

(5.2) ot A _gi O S =Df =0

3t e’ et
This condition is necessary as well as sufficient, and scrutinised closely, is
seen to be precisely f=constant along the paths (+.1).
Theorem 4. A mecessary and sufficient condition that the integral of any at
least twice differentiable function ¢ (f) be stationary over the extremals of

5[ flwa8at =00 ~a

&~ @
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is that f be constant along those extremals. As a rule, the auxiliary condition
f=constant along the extremals is a restriction on the choice of parameter, and in
no case can it modify the form of the Eulerian differential equations.

The equation (5.2) will therefore be adjoined to the system (4.4) Differentiat-
ing (5.2) with respect to &, and substituting in (4.4), a first order system results

(5.3) - — — 2

oa’ o4’ da?

Theorem 5. The existence of solution of (5.2) and (5.3) is necessary and suffi-
cient for the deduction of (4.1) from a variational principle. Then any, at least twice
differentiable function of the integrand is also a solution, and the integrand will tn
all cases be a constant along the extremals.

da? of of —_ —
= Dj f=0.

A first condition of compatibility is seen by solving (5.3) for f,j and substitut-

ing in (5.2)

(5.4) (a 5 @ a;j) ———%i v 0.

If this is not identically satisfied, then it must be adjoined to the original system.
If the o's are homogeneous of degree two in #, the solution of the system, if any,
is independent of the parameter ¢ though this is not a necessary condition. We
might sum up several results in

Theorem 6. If the solution is independent of t and

o' (g0 &) =2"a’ (x 1)
then (5.2) and (4.4) are consequences of (5.3).
The existence theorems for first partial systems are quite well known, whereas

for (4 4, they have yet to be deduced. The conditions for our system (5.2) and (5.3)
are seen to be

(53) OD; —-D;pyr=qi L. _ 8t O _,
7 oz’ ox  Ja’
or, eliminating %, from (5.3), Pé. 2—2—7— =0

(D; D= Dy DY) F =R, et 0

where f,. is eliminated by virtue of (5.3) wherever it occurs and

(56) —2P° = o . _ o g i Y
7 srsd TP Ry TRA O 5}"*)/"‘20‘,1
4R, =4 R =0o o 24 U
Ik kj sk Tirydt kg +2ajkj a;jair;k.

The¥e new equations, when identically fulfilled, give us complete integrability of

the system under discussion, Otherwise, th .
and (5.4). wise, they must also be adjoined to (5.2), (5.3)
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The coefficient of (5.6) are connected with each other by means of the relation

oPt  ept ..
(5.7) —J - k=5 R
s oak  oad 2 9K

And the usual Riemann-Christoffel tensor is given by
i

oR%, ;
(5.8) ) - Rjk;e = Re;kj
fot)

The process of adducing further sets of equations can be farther continued.

.. 9 .
But as we ehmmatea—fj— at each step, and there are left only homogeneous equations
@

in not more than = of the equations can be independent. Even if equations are
found to be independent, there can be only the trivial solution =1 (z, %) inasmuch
as f;7 =0

Theorem 7. A necessary condition that there exist a nontrivial soluiion of the
system (5.2) and (5.3) is that the matriz of coeffirients of (3.5) and all other derived
equations containing only-f ;i be of rank less than n.

The condition will be seen to be sufficient when fis to be non-parametric, or
when the o’s are given homogeneous of degree two in z.

If an invariant and non-degenerate f is found to exist, we have a “ space”
very similar to the Riemann spaces, and, in fact, the condition of non-triviality
suggests a groundform

9;=1 i =14

tJ r «
This can always be justified, if / satisfies a relation of the form

z? d:Jf;i; i=¢(f)+ ?t¢ (x, t),
¢ (f) being any at least twice differentiable function of f itself. The invariance
of f will necessarily make f. ;. ;a tensor of rank two, covariant in the indices.
Physical problems can then be discussed, and conformality has a meaning. We
get the obvious generalizations of Einstein spaces and of the associate spaces as

well that need not be discussed here. The equations (5.3) as also (4.4) are genera-
lizations of the vanishing of the covariant derivatives of the fundamental tensor.

The coefficients R;.k and P;. are actually tensors, if the tensor-invariance of the

path equations is known.*
Developments and geometrical interpretations of the various fundamental

conditions in the calculus of variations such as the conditions of ILegendre, Jacobi,
Weierstrass, the equations of transversality, and the question of conjugate focy,

* All the differential invariants of the ““ space’  can be had by conmsidering the coeficients of our
- :

. . . . ot
successive derived equations that contain only e

F. 4
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all of which should be fundamental in our new geometry, will be left to a later
paper, or to abler analysts. Parallelism and covariant differentiation are funda-
mental concepts in recent differential geometry, which have received no considera-
tion here. I shall leave all of these aside, and conclude the paper with a series of
remarks, all compressed into one section :

6. (¢) ‘The general inverse variational problem can be stated as follows:

GIvEN : A set of differential equations in any number of wvariables of any
given order, partial or ordinary, and a set of auxiliary conditions not a consequence
of the differential equations,

To FixD : Whether or not the manifolds of the solutions of the given equa-
tions can be made to coincide for some region with the extremals of a variational
problem. - o o . : :
It would seem simpler to discuss the whole problem for ordinary differen-
tial equations by means of reduction to a system of ordinary first order
differential systems, and then consider the possibility of equating this system
to a Plaffian variational principle say, a generalized Hamiltonian principle.
This will also give us systems of first order partial differential equations, but
unfortunately in several unknowns, for which I have been unable to find any
clegant method of solution. When there is to be discussed the problem of
fractional differential equations also, no method at all is to be seen. For, the
generalized derivative cannot be uniquely defined, as a rule, and may not be real
for real variables. The direct problem of the calculus of variations does not seem
to have been solved when theé generalized derivative enters into the integrand.

() A space with trivial metric is not necessarily uninteresting. Take for
instance, f as a perfect differential. The distance of two points is independent of
the path, provided f is non-singular in regions with the proper counectivity, and
often, even then. Such a space will have the additive property of distance on a line

D(P, Pz) + D<Pz P%) = D(Pl Pfs)
direction has no significance, and the relativitist who attempts to locate his neigh-
bours by means of light-signals will be in some difficulty unless he has more than
one origin of observation. '

(¢) Consider. the. following differential equations that occur so often in
mathematical physics:

m—/\y—vw:O

(6.1) i}-!—)u’c—vy =0

They are the simplest example of “non-energic” forces in a dynamical system.
We see them in the :estrié‘%é"d problem of three bodies, the vibrations of an infinite
cylinder in a circulating fluid, an etectron in a magnetié field, the gyroscopic
pendulum, and so on, even to the Zeemann effect. By inspection, we deduce these
when X is a constant from

(6.2) 5 [T+ T)=0
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o
~J

T=3"+y") == @y—2y) U =T~ 2 (zy—ay)

And it is seen that there is still the energy integral in the from T'—U = con-
stant. For X not a constant but a function of position, and parameter, we may apply
the methods of the previous paragraph. But as the integrand itself is not constant
along the extremals, the general problem comes to that of finding the solutions
of two equations of the second order, and not our reducible case, This again calls
for a profounder study of the relation between the forms of the integrals and the
conditions of compatibility.

(d) The method of the paper is also extensible to partial differential equa-
tions, and as an example of the most general procedure for a partial differential
equation of the second order, we shall show that the equation of wave mechanics,
known as Schridinger’s equation, cannot be deduced from a variational principle.

Compare the equation

. o'u c’u cu
(6.3) et T oyt T T8 (pyg, 78 o, 4,2t u) =0
R P L SN L.
P E.’l‘ ’ q Ey b} EZ ) - of
to the Euler equation for
(6.4) 8 ff(sc, Y, 2,4, P, g, 1 s 1) dv =0,
bt

Using again, a factor of proportionality r (p, g,...%) we have the following
relationships:

f :f :f =p
PP zz rr
(6.5)
fss =fpz =fz7' =]"er :fps==0
pn:pj:pu +zfzu +Tfru +stu +f;::z: +fz_z/ +f')' +fst _—f'u

Differentiate the last of these partially with respect to p, ¢, r,s and using the
others, we have again a system of first partial differential equations, which is:

o = logp

(6.6) %%—}-p%’; -—sz% = q,
*% +q %;—-— g—;‘ Qg
9o Qs
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In the equation of Schrodinger. & has the form As+wu V (zy). The following are
the derived equations, easily seen to be incompatible with above :

(a): (5.7) (‘“QZI +ga,) ZE.% —(ag + pa,) -%g* =0
and two others by cyclic rotation of letters.
e 2
o 5§=a (ag +7 2,)

and two others hy cyclic rotation of the letters.
These are consistent among themselves, but further derived sets give the
contradiction.

Theorem 8. Schridinger’s wave equation in its general from is mnot derivable
from a variational principle. '

It is well to note here that the % in the wave equation is taken to be complex
as also that the classic derivation by Pauli and Heiseuberg is based on the physi-
cal assumption of Eigenwerte. :

(e) The analogy between the derivation of ordinary equations from a mini-
mum principle and that of differential equations from a variational principle is
easily worked out.

Given the equations

(6.8) @' et 2" )=0 i=1..n,

It is desired to equate the whole set to a single minimum principle

dF (x,' z*,..2" )=0.
Using again our integrating factors Py (x'...2™) -
J cF .
éfj o= cat
That gives the following partial differential equations for the p’s :
6.9) (4; 17 ) = Wej 17, =0

A simple solution is

p — EfJ .
iy ami
Theorem 9. The equations/: (z'y z* an )0=can be derived from dF = 0, if the
. aft | n
Jacobian ia(”j};j | does not vanish. One such Fiss ( fi )*,

i=1
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