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Abstract

Closed form analytical expressions for the displacement
and strain components due to five axially symmetric sources,
namely, a vertical force, a vertical dipole, a centre of dilatation,
a tensile dislocation on a horizontal fault and a compensated
linear vector dipole (CLVD) in an elastic half-space in welded
contact with another elastic half-space are obtained. The effect
of rigidity - contrast of the two half-spaces is investigated
‘numerically. The elastic field due to these axially symmetric
point sources in two welded half-spaces is compared with the

corresponding field in a half-space and in a homogeneous™

unbounded medium.

(Keywords centre of dilatation/displacement/half-
space/strain/tensile dislocation)

Introduction

Mogi' used a centre of dilatation in an elastic
half-space to interpret the ground deformation
produced in volcanic areas. This model is often called
Mogi’s model and has been used very extensively
since then. Bonafede et al.? obtained an analytical
solution for the displacement field due to a centre of
dilatation in a viscoelastic half-space. The results
obtained were applied to the volcanic area of Campi-
Flegrei. It was shown that the consideration of
viscoelasticity allows the; same deformation to take
place with pressure values in the magma chamber than
are required by purely elastic models. Singh et al?
used four additional axially symmetric sources,
namely, a vertical force, a vertical dipole, a tensile
dislocation on a horizontal fault and a CLVD in an
elastic half-space to model the ground deformation in
volcanic areas and made a comparison of displacement
and strain fields due to these forces with the
corresponding fields due to a centre of dilatation.
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Static deformation of an elastic half-space by
surface loads has been reviewed by Farrel’. The
corresponding review for shear and tensile faults has
been given by Okada’. Yang and Davis® obtained
closed-form  analytic  expressions  for  the
displacements, strains and stresses due to a tensile
rectangular crack in an elastic half-space. In volcanic
areas, centri-symmetric inflation of the summit is often
-accompanied by intrusion into the rift zones. The
intrusion gives surface displacements expected-as a
result of dike or sill emplacement. Other examples of
surface deformation resulting from tabular intrusion
include surface tilts which occur at the time of
artificially induced hydrofracture in boreholes in order
to simulate oil reservoirs. Inversion of measured
deformation can give an idea about the geometry and
position of the intrusion.

Though, at present, the half-space model is
considered adequate for modelling surface
deformation, the welded half-spaces model is useful
for considering the effect of internal boundaries. This
model brings into focus the effect of structural
discontinuity, but ignores the effect of free surface.
The main advantage of this model is that one can
derive a closed form analytical solution, which is not
possible for more complex models, e.g., a layer over a
half-space model.

Rongved’ derived closed form algebraic
expressions for the Papkovich-Neuber displacement
potentials for an arbitrary point force acting in an
infinite medium consisting of two elastic half-spaces
in. welded contact. Heaton and Heaton® used the

‘expressions for the Papkovich-Neuber potentials

derived by Rongved’ to obtain the displacements
produced by point forces and point force couples
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embedded in two welded half-spaces. However,
Heaton and Heaton® made the simplifying assumption
that the two half-spaces are Poissonian. Therefore,
their results cannot be used to determine the effect of
Poisson’s ratio on the deformation field. Kumari et al.’
generalized the results of Heaton and Heaton® to the
case in which Poisson’s ratios for the two half-spaces
are arbitrary.

Tinti and Armigliato'® obtained an analytical
solution for a single force in two welded half-spaces;
but their final results are rather cumbersome, involving
complicated functions of the elastic constants of the
two media. Singh et al.'' obtained the displacements
and stresses due to a single force acting at an arbitrary
point of a two phase medium consisting of two
homogeneous, isotropic and perfectly elastic half-
spaces in welded contact. The force may be acting
either parallel to or perpendicular to the interface. The
results obtained are valid for arbitrary values of the
Poisson’s ratio of the two media and for arbitrary
source and observer locations. Deformation of two
welded half-spaces due to inclined shear and tensile
point dislocations and a centre of dilatation has been
investigated by Singh ef al.'?

In the present study, we obtain the displacement
and strain fields caused by five axially symmetric
sources, namely, a vertical force, a vertical dipole, a
centre of dilatation, a tensile dislocation on a
horizontal fault and a compensated linear vector dipole
(CLVD) in an elastic half-space in welded contact with
another elastic half-space. The effect of the rigidity
contrast of the two half-spaces is investigated
numerically. The elastic field due to a source in two
welded  half-spaces is compared with the
corresponding field in a half-space and in a
homogeneous unbounded medium.

Theory

Consider.a homogeneous, isotropic and perfectly
elastic half-space (z > 0, medium 1) with Lame
constants A;, p, in welded contact with another
homogeneous, isotropic and perfectly elastic half-
space (z < 0, medium 2) with Lame constants A,, U2
(Fig. 1). A point source is located at the point (0, 0, ¢)
of medium 1. The expressions for the displacements
and strains for various axially symmetric point sources
have been obtained by using the results of Kumari et
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al’ and Singh et al.''"'2. The displacement components
are continuous at the horizontal interface z = 0 because
of the imposed boundary conditions that the two half-
spaces are in welded contact. It is found that the
horizontal strain e, is also continuous at z = 0.
However, the vertical strain e,, is not continuous at
z=0. 2

A
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(0,0, )

Fig. I - Geometry of a point source in two welded half-spaces.

We have used the following notation in these
expressions :

ky =3-40), khb=3-40;, m=plu,

_ 1-m - k2 -mk] q
l+mkl ’ k2 +m
R=(x2+y2 +c2)”2=(r2+c2)”2, a)

where o) (o0;) is the Poisson’s ratio of medium 1
(medium 2).

Vertical force : For a vertical point force of
magnitude F3, the radial and the vertical components
of the displacement and strain at the interface (z = 0)
are given by (Singh et al.'")

B LA
T 8nu, (k + 1)

2(1+ Ak))c Ak? - B
R3 R(R+o) |

(2a)
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F3
U, =——
* 8, (k + D)

Ak} +2k, + Bc .\
R R3

e =
rr 87\7}11 (kl + 1) R3 R2

Ak} - B r? r?
—L_—h-—_ - i
R(R+c) R R(R+c) (20)

—F3 c
8mp, (K, + 1)

_ —F3 [2(1'{' Akl)tc {1_ 3,,2} N

€ )z =

R3
. 6c* {A(k, -2) - 1}J

{Akl% B - 2(1+ 4) (k, -2)-24K;

P d)
F3 c

e = e ———————.
(2= 8mp, (k, +1)

(1—A))cl+ (1—19»)k2 +2(4+B-2)
R3

6c2{1- 4
_c_zs_}J o)

where u, is the displacement in the radial (horizon.tal')
" direction, u, is the displacement in the vertical (up)

direction, e,, is the horizontal strain and e, is vertical

strain in medium i (i = 1, 2).
[ Vertical dipole : For a vertical dipole of moment Fi;,
- we have (Singh et al. 12y
2
L = Fyr Ak - 24k, -B-2
T 8np (k + 1) R3

61+ Akl)ch
+____.____
R® ’

(3a)

~

e =
T 8au, (k+ D)
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—F33 c

u —_—
£ 8ap, (k+ )

2(1 + 4k, )c? Ak} + 2k, (1—2A)+B—4+6(1+Ak1)cz
. (2b) : ' (3b)

R3 RS

2
Fyy Ak? - 24k, - B-2
R3

32| 61+ ke [ 52
TN =221 Go

- Fyy
€=z =
8rp, (k, + 1)

[2(1+ A) (k; —2) - Ak? — B+2 Ak,
R3

3c2{2 (1+ 4) (5— k) + Akl + B+64 -84k}
+ -
RS

30{A(k, -2) - ljc* _
* ' 3d) -

R7

F33

e T e e e
@Dz 8, (k, + 1)

[(1—/0 (k, = 2)+(1-B) (k, -2) {1_3&}

R3 ) R2

6(1 - A)c? 5¢2
T {B—RZH’ Ge)

Centre of dilatation : A centre of dilatataion is
equivalent to three equal mutually orthogonal dipoles.
If the moment of each of these dipoles is Mo, we obtain

(Singh et al.'?)

_ Cor 1+ Ak1 .
Y TR (4a)
Gy 1+ Ak, c
S e B RS,
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o Colrdr) [ 32 o
" 4, R R? (4c)

€z =

Co 24— Ak, +1) [ 32
4y, R S R2 | (D)

- C()(l_A) 1_302
4y, R R? | (49

€2)zz

where
(k, -1
n(k1 + 1) 0

0

is the intensity of the centre of dilatation.

Compensated linear vector dipole : A compensated
linear vector dipole (Knopoff and Randall'®) consists
of three mutually orthogonal dipoles with moments in
the ratio (-1, -1, 2). If the principal dipole of moment
2M is vertical, we find

Lo My
T 8y, (k, + 1)

[4(1+Akl)+k, (2- 4k,)+3B

R3
18(1+ Ak,)c?
B R’ ’ (5a)
-Mc
u = ——————teeeeeer .
o 8nu (k+ 1)
ky (Ak, + 4) +3B — 10 (1 + Ak,)
R3
18(1+ Ak,)c?
—_
RS ’ (5b)

-M
e = ——
T 8mpu, (k + 1)

R3

18c2(1+ Ak,) 52 :
= =il (5¢)

[4 (1+ k) +k, (2- 4k,) +3B {1 3,2}
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M AK2+3B [ 32
e(l)zz = ' 3 1__2
8np, (ky + 1) R R

2 (S+4A4 -2k, —34k,)
+ - R3

12¢® (64k, +k, —114-7)
+ R5

(5d)

, 90c* (1= dk, +24) ]
R’ |

e = —M
@z g, (k, + 1)

18(1 — A)c? 5¢2
T =27 (| (5¢)

Tensile dislocation : A tensile dislocation Uy on a
horizontal planer element of areads is equivalent to a
vertical dipole of moment (A + 2u) U, ds plus two
mutually orthogonal horizontal dipoles of moment
AUyds each (Ben-Menahem and Singh”). The
corresponding deformation is found to be

[(A—I) (k, = 4)+(B-1) (3k, —6) {1 362}

Uydsr [(1—3)— (1- A) k,

u =
T Ak, + 1) R’
46(1+Akl)c2
—,
R’ (6a)
Uydsc [(1-B)- (1-A)k,
u =
* o Ank, + 1) R}

_6(1+ Akl)cz}

RS (6b)

_ [(I—B)— (1= 4) k,

e =
T dn(k, + 1) R}
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32| 601+ 4k)e? [ 52
I"Rz + RS 1"7(7 (6¢)

_ 1 [(Z—kl)(A—1)+(l—B)

fyz = dn(k, + 1) R}
32 {(2-k A
L {2-k) a+5 )+ B+5)}
RS
30c* {A(k, -2)- 1}
+ Iy (6d)
.- 1 (- A)+ (1-B)(k, -2)
@z 4am(k, + 1) R?

3¢2| 61— A) se? ||
{1—R2}+ RS 3—?2' “(6€)

Numerical Results

We define dimensionless epicentral distance D,
dimensionless radial displacement U, dimensionless
vertical displacement W and dimensionless radial
strain £ by the relations

P P

D= ,U=—gur,W=Cuz,E=Pe”

o |~

where P is a dimensionless constant for each source,
chosen in such a manner that W =1 atr=0.

Vertical force : From equations (2a) - (2¢), we find

-D
U= 2 NI
(Aky + 24k +2k, +B+2) (1+D )

Ak} - B
l+(1+DZ)”2 ’ (7a)

2(1+ Ak))
+ s+
1+D

W= 2 l 2,172
(Ak? + 24k, +2k +B+2) (1+D?)

k2 : 2(1+ Ak))
(Ak, +2k|+B)+m , (7b)

E= 2 ; - 2,172
(Ak; + 24k +2k +B+2) (1+D )

Ak? =B
1+(1+D*)"?

2(1+ dk,) (1-2D?)
+
(1+ D%)?

1 D?
(1+D%) {l+(1+D))"2ya+pH)2[| (9

_ 8nu, (k, + l)c2

po
Fy(Ak? + 24k, + B+2 +2k)) (7d)

Vertical dipole : From equations (3a) - (3c), we have
. -D
U= 2 2,372
(Ak; + 24k, +2k, +B+2)(1+ D)

' 6(1+ Ak,)
|:(Ak12—2Akl —B—2)+-(—1-:l)—21)—:|, (88)

I
W= 2 2.32
(Aky + 24k, +2k +B+2) (1+D )

(Ak? — 44k, +2k, +B-4) 60+ 4k,)
- + -4+ ——1,
i 1 1 1+ D2 (8b)

-1
E= 2 252
(Ak? + 24k, +2k, + B+2) (1+ D?)

[(Akf ~24k, - B~2) (1-2D?%)

6(1+ Ak,) (1-4D%)
+ £
1+ D?

(8c) -

_ ~8np, (k, +1)c’

P =
2 (8d)
Fyy(Ak? +24k, + 2k, + B +2)

Centre of dilatation : From'equations (4a) - (4¢c), we
find

-D v
U= (1+D)2 (9a)
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Wzﬁl__=_

(1 + D2)3/2

ol

(9b)

Ee D% -y
- (1+D?)52 ’ (%)
- Thme’ 9d
Co(1+ Ak, ©d)

Compensated linear vector dipole : From equations
(5a) - (5¢), we have

U= — D
(4k{ + 84k, +4k, +3B+8) (1+ D?)7?

18(1+ Ak
[(4AkI + Ak} + 2k, +3B + 4) -(——1)],

1+ D2
(10a)

I
(A} + 84k, +4k, +3B+8) (1+ D?)7?

18(1+ Ak
[(Ak,z - 104k, +4k, +3B—10)+—( I)J'

1+ D?
(10b)

W=

E= !
(4} + 84k, +4k, +3B+8) (1+ D?)>?

[(4Ak, - Ak} +2k, +3B +4) (1-2D?)

_ 181+ 4k) (1-4D?) J

(1+ D?) (10c)
-87p, (k, + 1)
P = ; , (10d)
M (Ak, +84k, +4k, +3B+38)

Tensile dislocation : From equations (6a) - (6¢), we
find

-D
(S4k, + k, + B+5) (1+ D?)3?

6(1+ dk,)
(Akl—k] —B+l)+'* R (lla)

U=

(1+ D?)
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W= =
(S4k, + k, +B+5) (1+ D?)>?
b o 80+ 4k))
(Ak, -k, - B+ )_“(1+D2) > (11b)
E= -1

(54k, + k, + B+5) (1+ D?)%?

[(Akl —k, - B+1) (1-2D?)

, 60+ 4k) (1-4D%) J

o D (11¢)
B ~4m (k, +1)c’
Uqds (54k, +k, +B+5) ’ (11d)

For numerical computations, we have assumed
that the two half-spaces are Poissonian so that
C1=06=14,ki =k, =2.

Fig. 2 shows the variation of the vertical
displacement (uplift) with the epicentral distance for
four values of the rigidity contrast m = 0, 1/2, 1,2. The
case m = 0 corresponds to a uniform half-space and the
case m = 1 that to a uniform whole space. For m = 0
[Fig, 2 (a)], the vertical displacement is positive (i.e.
uplift) for all epicentral distances for a vertical force, a
centre of dilatation and a tensile dislocation. However,
for a vertical dipole and a CLVD, the vertical
displacement vanishes at D = 2.24 and 1.61, respec-
tively. For m = 112 [Fig. 2(b)], the vertical
displacement is positive for all epicentral distances for
a vertical force, a centre of dilatation and a tensile
dislocation. However, for a vertical dipole and a
CLVD, the vertical displacement vanishes at D = 3.74
and 2.15, respectively. For m = | [Fig. 2 (¢)], the
vertical displacement is positive for all epicentral
distances for a vertical force, a centre of dilatation, a
vertical dipole and a tensile dislocation. However, for
a CLVD, the vertical displacement vanishes at D =
2.83. For m = 2 [Fig. 2(d)], the vertical displacement is
positive for all epicentral distances for a vertical force,
a centre of dilatation, a vertical dipole and a tensile
dislocation. However, for a CLVD, the vertical
displacement vanishes at D = 5.92 (not shown in the
figure).
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Fig. 2 (a; b, ¢ & d) - Variation of the dimensionless vertical displacement (uplift, W) with epicentral distance. (a) m = 0, corresponds
to a half-space. with traction-free boundary; (b) m = 1/2 (¢) m = 1; corresponds to a uniform infinite medium; (d) m = 2. For

each source, the source strength is so normalised as to make #'=1atr=0.

Fig. 3 shows the variation of the radial (hori-
zontal) displacement with epicentral distance for four
values of the rigidity contrast m = 0, 1/2, 1,2. For all

these values of m, the radial displacement does not
change sign for a vertical force, a centre of dilatation
and a tensile dislocation. However, it vanishes for a
vertical dipole and a CLVD at different values of D
(depending upon m) given in Table 1.

Table 1 - Dimensionless epicentral distance (D) at which the
horizontal displacement changes sign for a vertical
dipole and a CLVD for different values of m.

m

Vertical dipole ~ 2.24 1.41 1.18

CLVD 1.61 1.12 0.95
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Tensite dislocation
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Fig.3 (a, b, ¢ & d) - Variation of the dimensionless horizontal (radial) displacement (-U) with epicentral distance.

(a)m=0;(b)m=I/2;(c)m=l;(d)m=2.

We note that the value of the epicentral distance
at which the radial displacement vanishes decreases as
the value of the rigidity contrast m = M2/p increases.
Table 2 gives the maximum values of the radial

Table 2—- The maximum value of the radial displacement U and
the epicentral distance D = r/c at which it is attained
for the five sources (W,,,, = 1, o) = o = 1/4).

Source m=0 m=1/2 m=2

Tensile  0.286 0.50 0.293 0.51 0.297 0.52 0.301 0.53
dislocation
Vertical  0.273 047 0.207 0.45 0.170 043 0.132 041
dipole
CLVD 0262 0.45 0.189 0.42 0.150 0.40 0.110 0.38
Vertical  0.207 0.79 0.156 0.74 0.128 0.71 0.099 0.66

force

Uma.x D Umax D Umax D Umax D

Centre of 0.385 0.71 0.385 0.71 0.385 0.71 0.385 0.71

dilatation

(horizontal) displacement U for the five sources for
various values of m and the epicentral distances at
which it is attained.

Fig. 4 shows the variation of the radial
(horizontal) strain with the epicentral distance.
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ym=1;(dym=2.

Discussion and Conclusions

(a) Analytical expressions for the displacement and

strain components due to five axially symmetric
sources, namely, a vertical force, a vertical dipole,
a centre of dilatation, a tensile dislocation on a
horizontal fault and a compensated linear vector
dipole (CLVD) in an elastic half-space in welded
contact with another elastic half-space have been
obtained. Numerical results presented show the
variation of the uplift, horizontal displacement and
horizontal strain with epicentral distance. The
sources considered in the paper serve as useful

Fig.4 (a, b, ¢ & d) ~ Variation of the horizontal (radial) strain (-E) with epicentral distance, (a) m = 0; (b) m = 1/2;

models to describe various geophysical
phenomenon. A centre of dilatation has been used
very extensively to model spherical inflation of
magma (see, €.8., Mogi'). Yang and Davis® used a
tensile dislocation to represent the dyke model of a
volcanic source. Spall is a widely observed
phenomenon accompanying underground nuclear
explosioné. Day and McLaughlin'® have shown
that the spall can be represented either by a
vertical force or by a tensile dislocation on a
horizontal fault. An atmospheric nuclear explosion
can be modelled by a vertical force (see, e.g.,
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(b)

(©)

(d)

(e

N’

(H

(&

Carpenter'®). Tensile failure under high fluid
pressure can be modelled by a force system
consisting of a double couple and a CLVD
(Julian'?).

The elastic field due to these axially symmetric
point sources in two welded half-spaces is
compared with the corresponding field in a
uniform half-space and in a homogeneous
unbounded medium.

When the two half-spaces have identical elastic
properties (i.e., when the source is placed in a
homogeneous unbounded medium),

ki=kym=1,4=0,B=0,T=1.

Similarly, when the source is placed in a uniform
half-space with a traction-free boundary,

m=0,4=1,B=1,T=0.

It has been verified that in the particular case of a
uniform half-space our results coincide with the
expressions given by Singh et al.’.

Out of the five axially symmetric source models
considered, the centre of dilatation is the most
efficient and the vertical force is the least efficient
in generating the radial (horizontal) displacement.
In particular, the spherical inflation model is more
efficient in generating the radial displacement
than the dyke model.

The elastic field for a spherical inflation model is
independent of the rigidity contrast of the two
half-spaces. However, for a dyke model, the
elastic field does depend upon the rigidity
contrast.

Singh et al’ have shown that for the spherical
inflation model (centre of dilatation) and the dyke
model (tensile dislocation) in a half-space, the
vertical displacement is an uplift at all epicentral
distances. The present study reveals that the same
is true even for two half-spaces in welded contact.

The radial displacement is outwards for the
spherical inflation model as well as for the dyke
model both for a uniform half-space and for two
welded half-spaces.
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