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Abstract. The lattice gas automata (LGA) technique as an alternative to the partial
differential equation (PDE) approach for studying dynamical processes, including those int
reaction-diffusion systems, is reviewed. The LGA approach gained significance after the
simulation of Navier—-Stokes equation by Hardy et al (1976). In this approach, the dynamics
of a system are simulated by constructing a microlattice on each node of which Boolean
i A bits are associated with the presence or absence of particles in distinct velocity states. A
® complete description involves the composition of an elastic collision operator, a reactive
collision operator and a propagation operator. The Hardy, de Pazzis and Pomeau (HPP)
model does not have the desired isotropy, but its subsequent modification in 1986, known
as the Frisch, Hasselacher and Pomeau (FHP) model (Frisch et al 1986), has been applied
to a variety of nonequilibrium processes. Reaction—diffusion systems have been simulated
in a manner analogous to the master equation approach in a continuum framework. The
Boltzmann kinetic equation as well as the expected complex features at the macroscopic
level are obtained in LGA simulations. An increasing trend is to use real numbers instead
of Boolean bits for the velocity states. This gives the lattice Boltzmann (LB) model which
is not only less noisy than LGA but also . numerically superior to finite-difference
approximations (FDAs) to PDEs. The most significant applications of LGA appear to be
in the molecular-level understanding of reactive processes.
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1. Introduction

Complex macroscopic processes owe their genesis to nonlinear geometric relationships
in the laws of motion. Such nonlinearity enters either through interactions in space
between neighbouring particles or through the mixing of nearby initial conditions.
Both situations may arise in the dynamics of chemical systems. Usually one assumes
almost perfect knowledge of the laws of motion and the initial conditions as well as

_ the states of the system regarded as points evolving along trajectories in an appropriate
space. Properties on the macroscopic scale are then obtained by averaging over an
ensemble of such dynamical systems. The functional relations necessary for such
averaging depend on the dynamical coordinates (degrees of freedom). Recent
breakthroughs in the study of complex systems have arisen from a general class of
approaches where such a system is regarded as a conglomeration of small sets of
interactions which behave in a simple deterministic manner and yet generate complex
features when treated in cooperation (Stein 1989; Jen 1990; Stein and Nadel 1991,
Nadel and Stein 1992).

*For correspondence
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Conventionally, a dynamical system is formulated through a partial differential
equation (PDE). Nonlinear PDEs are extremely difficult to solve analytically and
even numerical methods for their solution have to reach a high level of sophistication.
Data-level parallelism (Ceperley and Alder 1986) and parallel processing machines
have now become essential tools for the numerical analysis of reasonably large
microscopic systems. Typically, phenomenological equations like the heat conduction
equation or the diffusion equation are simulated as finite difference approximations
(FDA) of PDEs, in which discretization of both space and time is utilized, but the
dependent variable is continuous. State-to-state transitions in molecular systems can
also be described in terms of discrete Boolean variables. This has the advantage of
an in-built parallelism. Thus, a lattice of points or sites, each with an associated
Boolean integer, is allowed to evolve from one dynamical state to another in such a
manner that the *bits’ change their values chosen from a defined field. If the interactions
describing the rules of evolution are local, then this approach is called the cellular
automaton (CA) approach (Wolfram 1983, 1986; Toffoli 1984; Margolus et al 1986;
Jen 1990). Over the last decade, this approach has emerged as a powerful technique
applied to dynamical systems of many different types, ranging from crystal growth
to oscillating processes in excitable media (Vichniac 1984; Winfree et al 1985; Gerhardt
et al 1990, 1991; Jen 1990; Weimar et al 1992; Singh et al 1994). While the applications
to excitable media are primarily addressed towards mimicking the complex features
in the phase space, the fundamental equations of nonequilibrium thermodynamics
are simulated through the lattice gas automata (LGA) which are constructed by using
a CA-based formulation of the interactions at the molecular level. These approaches
and applications have opened up enormous possibilities for realistic molecular-
dynamics simulations of large systems, with the promise of yielding deep insights
into the foundations of kinetic theory in particular and nonequilibrium statistical
mechanics in general.

The LGA technique is now accepted as an efficient and powerful alternative to the
PDE approach for describing evolving physical systems. It has been applied to
simulate fluid-dynamical equations like the Navier-Stokes equation, kinetic
Boltzmann equation and the associated transport relationships (Frisch er al 1986,
1987; Boghosian and Levermore 1987; d’Humieres and Lallemand 1987; Chen et al
1989; Kadanoff et al 1989; Boghosian 1990; Doolen 1990; Kometer et al 1992). Of
particular interest to chemists is the simulation of reaction—diffusion systems (Dab
et al 1990, 1991; Doolen 1990; Kapral et al 1991).

In this article we review the formulation and applications of LGA. First, we briefly
describe the basic concepts of CA and some of its applications in section 2. Then,
LGA and a floating-point limit called the lattice Boltzmann (LB) approach are
described in section 3. Some applications of the approach to reaction—diffusion
systems are next reviewed in section 4. Finally, section 5 makes a few concluding
remarks on the present status of and future directions in this field of research.

2. Cellular automata as an alternative to the PDE approach for studying dynamical
problems ‘

The ad}/ent of the CA approach has dramatically transformed the modelling and
simulation of physical systems (Toffoli 1984; Vichniac 1984; Winfree et al 1985;
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Margolus et al 1986; Gerhardt et al 1990, 1991; Jen 1990; Weimar et al 1992; Singh
et al 1994). Conventionally, the modelling of evolving systems is done by using the
notion of a continuous variable in an approximate space. This necessitates various
details, e.g. the concepts of continuity, locality, etc. for a physical system, that are not
always realizable in practice with systems exhibiting complex features. The
requirement of continuity also obstructs the fast processing of jobs and is thus
computationally expensive. In the CA approach, the problem is defined in terms of
a look-up table which provides the rules for the evolution of a lattice of points with
prescribed realization of Boolean variables. Collectively, the set of lattice points (or
the ‘universe’) evolve into complex dynamical features characteristic of nonlinear
systems. Since the operations in a computer are performed by using Boolean logic,
the CA approach offers the advantage of a natural or in-built parallelism. It is also
quite attractive because natural systems undergoing nonlinear, nonequilibrium
processes seem to follow logical networks. Furthermore, unlike the floating-point
description, the CA simulations do not involve any round-off errors. Although CA
may be regarded as a reduced or limiting case of a neural network, the former has
been applied to fairly complex phenomena such as reaction-diffusion systems
(Oono and Kohmoto 1985; Gerhardt et al 1990, 1991; Tadic et al 1992; Weimar et al
1992), artificial life (Langston 1988), etc. The LGA models to describe flow systems
have shown that the approach is remarkably powerful and far more efficient than
the FDAs to PDEs. '

For a one-dimensional problem involving only nearest-neighbour interactions, bits
chosen from a binary field give rise to 22 = 256 possible rules of evolution (the binary
set, {0, 1}, has two members, and for nearest-neighbour interactions we consider three
sites, namely the evolving site and its two nearest neighbours). Symmetry restrictions
and other considerations reduce this number to only 32. Thus, all meaningful
one-dimensional problems with nearest--neighbour interactions can be described
using one of these 32 rules. For higher dimensions, the possibilities are immense; still
truth tables can be designed to mimic a realistic evolution without much numerical
complexity.

Although early applications (Oono and Kohmoto 1985) involving CA were rather
simplistic in terms of numerical details, recent works have designed more realistic
and elaborate models. For instance, an excitable system is modelled (Gerhardt et al
1990, 1991; Weimar et al 1992) by using a rectilinear grid of cells with zero-flux
boundary conditions. The dynamics of the cells reflect the typical phase portrait. This
is achieved by introducing two distinct state variables. One of them is an excitation
variable (#) and the other a recovery variable (v). While u has a binary field, v
acquires values chosen from a higher logic, the maximum value corresponding to
the physical jump from an excited state to a recovery state typical of bistable reactive
systems. .

The requirement of local rules does not prohibit the modelling of global phenomena.
Thus, collective oscillatory, solitary wave-like or turbulent behaviour is seen to result
from a purely local set of interactions (Oono and Kohmoto 1985; Gerhardt et al
1990, 1991). Similarly, for a distribution of electrons around a nucleus, evolving from
a nonequilibrium initial density to an equilibrium density, two of us have observed
complex features like oscillations of the electron density around the nucleus (Singh
et al 1994). This is an example of a physical problem where the interactions are global
and yet locality is maintained in designing the truth table. The flow of the electron
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density was determined by using the criterion of flow from higher to lower chemical
potential in the Thomas-Fermi framework (Parr and Yang 1989).
In the next section, we discuss lattice gases as a special case of CA.

3. Lattice gas automata (LGA)

The LGA model is a special type of CA involving a set of particles which move about
on a lattice of points. The term LG refers to the particles on the, lattice behaving like
gas molecules as far as dynamical properties are concerned. The importance of these
models was realized widely since the discovery by Frisch et al (1986) that the Navier—
Stokes equation can be simulated by using such an approach. Essentially, LGA
provides an efficient alternative to the conventional PDE formalism with special
reference to flow systems. ’

Since they are specialized CA, LGA have the property of being represented by a
number of bits at every site. Usually, it is a finite number of bits (for example a
binary, ternary, quaternary or a special higher-order logic like {0,1M(>1)}. In
principle, the number of bits can also be infinite, but then there will be no essential
difference between a floating-point description and a CA. Thus, it is sensible to focus
one’s attention on mostly those types of LG problems where the number of bits from
which a value is chosen for a variable at a site is finite. The rules of evolution are
local and are based on interactions with neighbours. The interactions generate
dynamics with an inherent time dependence.

LG represents a typical example of excitable media where some sites may be forever
at rest while some are continually excited and, after reaching a threshold excitation,
are driven into a refractory stage. Unlike a usual CA description for, e.g., a diffusion
system where the interactions between neighbouring sites change the ‘bit’ at a
particular site, in the LGA approach a bit is conventionally thought of as a particle
undergoing collisions while being subjected to a flow dynamics (say like a Hamiltonian
fluid). ‘

The evolution of LGA in a single time step is analogous to the formulation of
classical kinetic theory describing the dynamics in the phase space. It can be seen as
a combination of steps the first of which is an advection or streaming phase and the
second a collision phase. In the flow or streaming process, the value moves to the
neighbour to which it is associated (through interactions); all bits other than those
corresponding to the ‘rest’ will move. The analogue of streaming in the conventional
kinetic theory is the Hamiltonian phase flow which may evolve into complex features

if the interactions are nonlinear in nature (Chirikov 1979). In the collision phase, the

newly arrived bits change their values.

Usually, such a formulation is deterministic. However, stochasticity is introduced
in the rules of evolution if the bits are changing randomly.

It is worth noting that corresponding to the conservation principles (balance
equations) in continuum mechanics, analogous relationships exist in the CA
framework. For instance, in some LG the total number of particles is a conserved
quantity. This can be obviously maintained in the flow phase. The collision rules can
be chosen in ways that conserve appropriate quantities. In fact, the LG method can
be applied only to such PDEs that are consistent with the assumed conservation
principles. The number and type of conserved quantities differ for the LGA equivalents

‘,;
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of the Navier—Stokes equation, Burgers’ equation and diffusion equation (Boghosian
1990). For the Navier-Stokes equation, only mass balance and momentum balance
are required; in the corresponding LG the quantities conserved are obviously mass
and momentum. Likewise, the Fourier heat conduction requires an energy balance
and the corresponding LGA model has only one scalar quantity conserved. These
constraints do pose a problem in formulating the rules of evolution of the LGA, but
it can be solved by skillfully designing the rules.

In a binary logic if ‘0’ indicates particles at rest, then the transformation at every
time step involves only the bits with value ‘1”. Thus, a map from the initial number
of bits to the final number of bits conserves particles as long as the number of bits
with value ‘1’ is unchanged by the collision. Similar considerations are also valid for
higher levels of logic. Reactive collisions require further modifications because the
number of bits of a particular value changes in such cases.

3.1 LGA and lattice Boltzmann (LB) techniques

The rules of interaction determining the evolution of the set {b;} of bits b;(x,t) for
i=1,...,n are chosen such that (a) the Liouville equation (LE) giving b;(x,¢ + 1) in
terms of b at time ¢ and (b) the Boltzmann equation are satisfied. While the first
requirement implies that one is considering dissipative processes with conserved
quantities, the second implies that the stosszahl (chaos at the molecular level)
assumption of Boltzmann with no prior correlations between colliding molecules is
incorporated. As long as the density of particles is small, the latter assumption -is
known to be valid in the continuum framework. To develop a discrete analogue of
the Boltzmann H-theorem, one requires to establish equilibria by using the collision
rules. An exclusion principle is established to this effect by allowing one particle per
velocity state. This corresponds to a Fermi-Dirac distribution. This becomes clear
if we consider the directions towards which a particle points, somewhat akin to the
spin of an electron. J

In the last five years, there has been an increasing trend of using a real-number
description for the particle distribution and ignoring particle—particle correlations
completely. This procedure, known as the lattice Boltzmann (LB) method, reduces
the noise considerably compared to the LGA approach (McNamara and "Zanetti
1988; Higuera et al 1989; Alexander et al 1992; Chen et al 1992). This is, in a sense,
a coupled-lattice-map version of the LGA method; here the discretization of time
and space are retained, but the state variable is allowed to take on continuous values
(Kaneko 1989; Moon 1992). In the LGA approach, there is an inherent statistical
noise due to the fact that the dependent variable is retrieved from the microlattice
dynamics by an ensemble averaging (round-off errors. are not present in the evolution
of a particular system). The dynamic range of floating-point methods is also higher
than discrete methods at the cost of reduced speed and enhanced redundancy.
However, it should be realized that using floating-point numbers as opposed to
Boolean variables destroys the CA nature of the method, although the lattice structure
is retained as a numerical advantage. Being more accurately a discretized Boltzmann
equation-type description (microscopic) rather than a discretized Navier—Stokes
(macroscopic) équation-type picture, the LB methods are much better than FDAs of
PDEs. LB methods may be regarded as combining the best features of both LGA
and floating-point methods.
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It is well known that microscopic conservation laws give rise to macroscopic
hydrodynamic equations. We now elaborate on this point by first discussing the
discrete analogue of the Chapman-Enskog method for lattice gases.

3.2 The Chapman—Enskog method

3.2.1 The derivation of the Boltzmann equation. In continuum mechanics, the
balance equations are derived from fundamental laws of motion of the particles. The
relationships between the forces and the evolution of dynamical variables, as specified
by classical laws of mechanics, comprise the laws of motion. The analogous
formulation in the LGA approach is to write an expression for the bit at time t + At
in terms of that at time ¢ at a particular site x having undergone a displacement
described by a lattice vector r;:

bi(x + It + At) = by(x, £) + A[{b(x, 1)} ]. 1)

There are different ways to define [ {b(x,)}]. If there were no collisions and the
particles arriving at a site moved along without any interactions, then the dynamics
are described by A =0. This would be called propagation and an operator describing
this dynamics, called the propagation operator P, is designed.

The presence of collisions defines other operators. The collisions may be elastic or
inelastic. Elastic collisions have the effect of changing the orientations of the velocities
of the particles. Such changes are incorporated by a rotational operator R, while the
inelastic (reactive) collisions are described using an operator C (Dab et al 1990).

Thus the complete updating or description of the rule of evolution of the LGA is
given by the composition ROCOP, of the propagation, inelastic (e.g. reactive)
transformations and the rotation operators (the symbol © denotes the composition
of operators).

The earliest significant model proposed for the elastic collisions is known as the
Hardy, de Pazzis and Pomeau (HPP) model (Hardy et al 1976). In this model exactly
two particles are assumed to arrive at a node from opposite directions and they
experience a head-on collision (figure 1). They leave the node immediately in the two
other, perpendicular, previously unoccupied directions. These are deterministic
collision laws obviously conserving mass (number of particles) as well as momentum
locally and are the only nontrivial ones with these properties.

Thus, each of the cells (lattice points or sites) connected by the unit vector r; to

its four nearest neighbours has two states (codes) described by the values of a Boolean
variable.

1 ‘if occupied’

bi(x)= { (2)

0 ‘ifunoccupied.’

Equation (1) for this system (no reactive or inelastic collisions) can be described
in two steps: -

(1) Effect of the operator R: At each node, the four state bits are exchanged,
R(1,0,1,0)(0, l,O, 1), all other states being left unchanged.

(1) Propagation: Pb;(x)=b;(x —r,).

5 s
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Figure 1. Schematic depiction of collision rules in the HPP model.

The propagation operator conserves mass globally. Thus, the HPP model yields
dynamics invariant under all discrete transformations as well as under duality (i.e.
exchange of 1s and Os).

When the dynamical variables are varied slowly (effectively varying density and
momentum in space and time) and an ensemble averaging is performed, the
macroscopic equations obtained differ from the Navier—Stokes equation. However,
Galilean invariance is not preserved because of the lattice structure. The symmetry
of invariance under rotations by 7/2 leaves an undesired anisotropy in the tensor
relating the momentum flux with the quadratic terms in velocity.

In the Frisch, Hasselacher and Pomeau (FHP) model (Frisch et al 1986), a larger
invariance group is utilized. Instead of a rectangular (Cartesian) 2-D grid, one has a
triangular residing lattice with unit lattice constant (figure 2a). Each node is now
connected with six neighbours by the vector r; which thus brings in a six-bit state
(figure 2b). As before, the rules of evolution are detcrmmed by the collision and
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Figure 2. (a) Schematic depiction of collision rules in the FHP model. (b) Schematic
representation of a lattice with a few particles.
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propagation steps. There are now many more collision rules involving binary, ternary
~and quaternary collisions. There may also be some binary colhslons with a third
particle at rest.

The rules of evolution may also involve non-deterministic components. For
instance, for every head-on collision, there are two output channels for the particles
to move out and either of the two can be used; this could be done deterministically
or by using a probabilistic description.

The 2-D models give rise to a crossover dimension problem. The effect of this is
seen in the viscosity developing a logarithmic scale dependence. This problem
disappears in higher dimensions. The extension of the FHP model to 3-D, hypercentric
4-D and pseudo-4-D models has been discussed by Rivet (1987).

Once the collision rules are finalized, one can write down [{b;}] explicitly. The
conservation constants can then be verified. Finally, an ensemble of such lattice gas
simulations, on grids of the same size, is constructed. The macroscopic initial
conditions are identical for each LGA, but the molecular-level configurations are
distinct. An ensemble averaging is performed in this ensemble.

Unlike a typical ensemble averaging, the LG is simulated on a very fine microlattice.
A local spatial averaging is done and the dependent variables are defined on a
macrolattice. These are the quantities subjected to the ensemble averagmg It can be
shown that the averaged quantities

ni(x, 1) = (b, 8>, - 3)
when subjected to the Stosszahl ansatz of Boltzmann, satisfy a relation

m(x + 3110, £ + Al = ny(x, ) + c({ri}), @
where ¢; is the collision operatdr (here it includes rotations) with the property

Leulbil}) ~ei{<bid} = ci{n}. (5

Equation (4) is the LB equation corresponding to the integro-differential Boltzmann
equation in the kinetic theory. It is fundamentally different from (1) in that it involves
macro-averaged quantities and hence real numbers as opposed to bits. It is developed
from a Boolean master equation at the microscopic level and yet, as a macroscopic
equation, it does not have any Boolean variables.

322 Solution of the Boltzmann equation. In the continuum framework, the
Chapman-Enskog procedure utilizes a Taylor expansion of a reduced distribution
function in the phase space. This function has implicit spatial and temporal
dependence described through the local density, flow density and temperature
(McQuarrie 1984). The zeroth order solution for the distribution and the higher-order
terms describe various stages of relaxation of a dilute gas to its equilibrium state.

Since (4) involves real numbers, one can use Taylor expansion here also and a
formal perturbation expansion can be written as

{n} ={n}O+e{n}V+2{n}P+. ... . : (6)
Perturbation analysis then provides us with the solutions

{n}® = {n}O@y,...,T,), . | (7

¢
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where the I';s are the conserved densities (mass, momentum, etc.). For instance, for
: the HPP gas (N = 3), the zeroth-order distribution turns out to represent a local
e Fermi-Dirac equilibrium, as expected from the assumed exclusion principle for the
velocities.
One can likewise obtain the higher-order terms in {n} and express conservation
equations by retaining these terms.
Once the distribution of bits is obtained, any other relevant property. can now be
obtained by summing-over the distribution function. This is analogous to molecular-
dynamics calculations. We will briefly discuss examples of these in the next section.

4. Applications

Once the fundamental equation of kinetic theory, namely the Boltzmann equation,

is obtained and the solution for the reduced distribution function to a desired order

is achieved, the method can be applied to a large number of dynamical problems,

= including reaction—diffusion systems. All the hydrodynamical equations can be

obtained by using the distribution function. In particular, the mass balance

(conservation of number of particles), momentum balance and the composite Navier—

Stokes equation can be obtained. The solution of these equations with appropriate

boundary conditions provides the dynamics of transport phenomena, e.g. that for a

diffusion system, heat conduction, Poiseuille flow, Couette flow, etc. The LGA

approach has been used by various workers to simulate fluid flow (Frisch et al 1986,

1987; Boghosian and Levermore 1987; d’'Humieres and Lallemand 1987; McNamara

and Zanetti 1988; Chen et al 1989, 1992; Higuera et al 1989; Kadanoff et al 1989;

Boghosian 1990; Doolen 1990; Alexander et al 1992; Kometer et al 1992). Kadanoff

et al (1989) have simulated a forced two-dimensional channel flow and shown that

the LGA is a very efficient tool for simulative verification of a linear growth for

kinematic viscosity with the linear size of the system; only with a significant reduced

e ds density this growth rate is reduced to a low value. They also showed that the noisy

¥ behaviour of the LGA is an advantage in the simulation of fluid flow, as long as the

fluid is compressible and the actual equations obtained are far more complex than

the Navier-Stokes equation. From a knowledge of the kinematic shear viscosity in

terms of the density, one can calculate the Reynolds number associated with a large-

scale flow (Frisch et al 1987). Kometer et al (1992) applied an LGA algorithm to an

efficient treatment of complex scattering kernels and geometries. They showed that

the technique is robust and works well even with coarse discretization. They used it
for simulating the semiclassical Boltzmann equation for transport in semiconductors.

Perhaps the most significant applications of LGA are in the molecular-level

understanding of reactive processes and simulation of phenomenological results starting

from dynamical expressions at the molecular level. The statistical-mechanical treatment

of chemical processes is done by investigating the reaction—diffusion system at the

microscopic level and then by ensemble averaging the relevant dynamical properties.

The PDE appropriate for such systems is the class of Ginzberg-Landau equations:

L

8,x = $(x) + V2x, - | 8)

where x is a real number, a concentration (or number of particles). When ¢(x) =0,
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we obtain the ordinary Fickian diffusion. Nonzero values of ¢(x) correspond to
contributions from changes in chemical potentials arising from factors other than
diffusion, namely reactive terms. In the automata analogue, ¢(x) appears as a
polynomial whose highest degree is set by the lattice symmetry.

The automata approach to reaction—diffusion systems has been applied to purely
temporal situations as well as for situations where ¢(x) is nonzero. Dab et al applied
the LGA approach to the Schlogl model (Dab et al 1990, 1991; Lawniczak et al 1991):

A+2X=3X,
X=A.

This set of reactions is known to exhibit complex features like bistability, domain
formation, etc. (Schldgl et al 1983). It was shown that the LGA approach to this
typical reactive scheme produces all expected phenomenological features. More
remarkably, it provides a microscopic approach which indicates the limits of validity
of the phenomenological results. In Dab et al’s formulation, the particle number at
a node may change in a local reaction of the type «X — X (¢, f=0,...,4), each
reaction being assigned a probability P,; regardless of the velocity state of the X
species. The off-diagonal elements of this matrix P carry the information about the
reactive processes.

Considering the kinetic regime, where the Knudsen number is of the order of unity,
and decoupling the random fields for every « and f at all times, it can be shown that
with standard projection operator techniques, the LB equation can be converted to
a reaction—diffusion equation. Thus, in simulations starting with an LGA in a
homogeneous unstable steady state, after 100 time steps, significant domain formation
was seen for the Schlogl model and after an even larger number of time steps (300),
the domain formation is the prominent feature of the automata lattice.

In a later work Dab et al (1991) have used the LGA approach to a two-species
reaction—diffusion system: .

0,x =y(x,y) + D, Ax,
0,y = ¢(x,y)+ D,Ay.

Such systems are known to exhibit interesting features like oscillations and Turing
bifurcations in space, and are thus useful for explaining various biological pattern
formations such as morphogenesis (Prigogine 1980). With the variations now
occurring due to diffusive transport and reactive processes, the macroscopic behaviour
of the automata is described by a set of coupled PDEs.

The coupled-lattice formalism was used to deal with a set of reaction—diffusion
equations known as the Maginu model:

‘p(xay)::x—‘x:’/?’a ' )

blx,y) ==X,

c

This problem is known to exhibit oscillatory behaviour and Turing structures
(patterns in space) (Maginu 1975, 1978). The LGA simulation of the Maginu model

st T

T
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on a lattice of 64 x 64 nodes produced limit cycles. It is seen that the cycle is smaller
in size (in the X-Y concentration phase space) as the ratio of reactive to elastic
collisions is increased. A linear stability analysis performed on this system shows that
the homogeneous steady state becomes unstable by spatial destabilization when

VD./D,<(1 = /1 — k)\/E/k, for 0 < ¢ <k (Li 1990). In these limits, worm-like spatial
structures are formed with characteristics of Turing bifurcations.

The method has been extended to » reactive species and illustrated with the Selkov
model (Kapral et al 1991),

A=X
X +2Y=3Y
Y=B8,

for which oscillations and spiral waves of diverse nature are generated. The speed
with which LGA generates these complex features is in contrast to the enormous
computations required due to the long distance and time scales that need to be
explored even in approximate molecular-dynamics simulations of macroscopic
reaction—diffusion phenomena.

These few applications of LGA make it abundantly clear that for the statistical
mechanics of far-from-equilibrium systems, the former does have the promise of an
efficient and powerful alternative to the PDE-based approaches.

5. Conclusions

We have presented here a summary of developments in one of the most exciting
areas of frontier chemical physics, namely lattice gas automata approach to explore
dynamical processes. Based on the general principles of CA modelling, LGA offers
a far more efficient method of simulating phenomenological observations numerically
than the conventional PDE approach. In particular, using the LGA approach one
can obtain the Boltzmann kinetic equation and, at the macroscopic level, the Navier—
Stokes and related balance equations. The method can be applied to reaction-
diffusion systems and, for special classes of reactions like the Schlogl model, the
remarkable agreement between the features obtained separately by using the PDE
and the LGA master equations represents a great success of the method. The floating-

point limit of LGA known as the LB model is gaining popularity in recent years. It

has the best characteristics of the LGA and FDA to PDE approaches.

The statistical mechanics of fluids, flow systems and nonequilibrium systems has
reached a revolutionary threshold with the advent of the LGA methods. While on
the one hand computational ease has reduced the numerical difficulties, a much
deeper insight about the microscopic dynamics leading to the complex macroscopic
features is also achieved. At the same time, LGA methods are inherently noisier
because the ensemble averaging is performed over a reasonably large microlattice to
obtain the local functions. The fluid equations simulated by using the LGA are more
complicated than the hydrodynamical equations.

In future, much greater activity is anticipated in the area of lattice gas automata
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and their applications to far-from-equilibrium processes. Especially in areas such as
investigations of biological processes, €.g. intercellular communication, etc,,
nonlinearity is known to play a dominant role, and LGAs offer a natural model for
the evolution of these phenomena. Likewise, many other well-known problems of
nonlinear dynamics are still understood in the PDE-based continuum framework
and investigations of these by using LGAs are expected in the near future.
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