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Abstract

We extract a paradigm for derandomizing tests for poly-
nomial identities from the recent AKS primality testing al-
gorithm. We then discuss its possible application to other
tests.

1 Intr oduction

Polynomialidentity testing has beenin news recently
dueto two majorresultsprovedlastyear: Kabanetandim-
pagliazzd3] provedthatany derandomizationf arandom-
ized algorithmfor the problemresultsin alower boundon
arithmeticcircuits, while Agrawal, Kayal, and Sa>ena|[2]
gave a completederandomizatiorof the testfor a specific
identity resultingin a deterministicpolynomial-timealgo-
rithm for primality testing. Viewed optimistically, thesere-
sultssuggesthatlower boundson arithmeticcircuits might
be easierto obtainthanwe believe. In this paper we try
to identify a possibleway of doing this. We first castthe
primality testingalgorithmof [2] asconstructinga pseudo-
randomgeneratoragainstthe randomizedestfor aniden-
tity. Fromthatwe extracta paradigmfor derandomization
of arandomizedestfor polynomialidentities.We thendis-
cussan applicationof this paradigmto testingexistenceof
perfectmatchingsn abipartitegraph.We alsolist somein-
terestingconsequencesf our view of the primality testing
algorithm,includinga computationallyefficient characteri-
zationof primenumbersandanextremelyshortandsimple
(thoughnotsoefficient) algorithmfor primality testing.

2 Definitions

We useZ,, to denotethe ring of numbersmodulon, F,
to denotethe field of numbersmodulop. For aring R,
R[X] is thering of polynomialswith coeficientsin R. For
Z,, polynomialequationP(X) = P'(X) (modQ(X),n)
meanghat P(X) — P'(X) leaveszeroremaindemwhenco-
efficients are reducedmodulon and powersof X arere-
ducedmodulo@(X).

For ary two numbers: andr suchthat(r,n) =1 (i.e.,
thenumbersarerelatively prime),o..(n) equalsheorderof
n modulor. This numberalwaysdivides¢(r), the Euler’s
totientfunction.

3 A Characterization of Prime Numbers

The primality testingalgorithm of [2] is basedon the
following partialcharacterizatiolof prime numbers:

Lemma3.1 [2]
e If n isprime then for every a and r:

Prime(X,a) = (X4a)"-X"—a =0 (modX"—1,n).

o Iffor somer suchthat o,(n) > 4log” n, and for every

a,1<a<2y/¢(r)logn:
Prime(X,a) =0 (mod X" — 1,n),

then either every prime divisor of n islessthenr, or n
isa prime power.

To turn it into a completecharacterizationywe needto
remove the possibilitiesthatn hassmalldivisorsandthatn
is anon-trivial power of a prime. Thefirst oneof thesecan
be eliminatedby testingif

PrimgX,1) =0 (mod X", n).
This follows from the following lemma:

Lemma3.2 If Prime(X,1) = 0 (mod X", n) then either
n isprimeor every prime divisor of n isat least r.

Proof. If n < r thenwe have

PrimgX,1) (modX",n) =

And we know thatPrimg X, 1) = 0 (modn) iff n is prime.

(X+1)"—-X"-1(modX",n)
= (X+1)"-X"—-1(modn).



Now supposehatn > r.
p < r.Then,

Let prime p divide n with

PrimgX,1) (mod X", n)

(X+1)"—X"-1(modX",n)
= (X+1)"=1(modX", n)

r—1 n ;
= ]; (j)X (modmn).

Sincep < r, thecoeficientof X? is (7) in theabove equa-
tion. It is easyto seethat (7) = £2 # 0 (modn).  m

To eliminatethepossibilityof n beinganon-trivial prime
power, we now simply needto testfor afew morea’s:

Lemma 3.3 If Prime(X,a) = 0 (mod X — 1,n) for every
a,1 < a < log* n, and every prime divisor of n is greater
than 4 log® n, then n is square free.

Proof. WehavePrimg X, a) =0 (modX —1,n) for every
a,1 < a <log*n. Thisgives:

(I1+a)® =1+4+a" (modn)

for 1 < a < log* n. Expandinghe RHS of theequationwe
get:
(1+a)® =1+ a (modn)
for1 < a < log* n.
Now supposéhatn is not square-freeLet p? divide n
for someprimep. Then:

k™ = k (modp?)

for 1 < k < log*n. Sincep > 4log*n, (k,p) = 1 for
k < log* n. Therefore,

k"1 =1 (modp?)

for 1 < k < log*n. As the orderof multiplicative group
7% is ¢(p®) = p(p — 1), we get:

k(”*lal’(l’*l)) =1 (modp2)
for 1 < k < log* n. As p cannotdividen — 1, we get:
kP~ =1 (modp?)

for1 <k < log4 n.

Notice that there exist at most p roots of the equation
a? = z (modp?) in Z%: if u is aroot, then(u + kp)? =
uP? (modp?) = u (modp?) andsowu + kp cannotbearoot
for k # 0 (modp); thisimpliesthatevery root mustlie in a
differentresidueclassmodulop.

Finally, we obsere thatif k» = k (modp?) for 1 <
k < log*n, thenthereexist morethanyp rootsof the equa-
tion z? = x (modp?) thusarriving ata contradiction.Let
., g; beall primeslessthanlog® p < log* n. By

q1, 42, - -

Chebyshe's estimate we know thatt > ﬁgi”—. The
glogp

productof acollectionof upto £ = 51%62_ of thesgorimes

2loglogp
islessthan(log® p)¢ = p?. Thereforeall suchproductswill
bedistinctmodulop?. Letm,, ma, ..., mr bethenumbers
formedby suchproducts We have:
mY =m; (modp?),
for1 < j < T, sinceall the primefactorsof m; satisfythe
equation.ThenumberT is atleast

() - ()
(log p)

3 log 12
e 2 2loglogp |

v

Sincen > p? > 161log® n, p is greateithan2'6. Therefore,
T>p. [ |

Puttingtogethertheabove lemmaswe getthefollowing
characterizatioof primes.

Corollary 3.4 nisprimeif and onlyif for any r > 4log* n
such that o, (n) > 4log® n: Prime(X,1) = 0 (mod X", n)
and for every a, 1 < a < 4log*n: Prime(X,a) =
0 (modX" —1,n).

Proof. It wasshawvn in [2] that therealways exists an
r < 16log® n suchthato,(n) > 4log”>n. Their proof
also yields that there exists such an r with 4log*n <
r < 16log® n. Lemma3.1 shows thatif PrimgX,a) =
0 (modX™ — 1,n) for suchanr andfor every1 < a <
2,/6(r)logn < 4log* n, thenn is eithera prime power
or hasdivisorslessthanr. Lemma3.2 rulesout divisors
lessthanr andLemma3.3rulesoutn beingaprime power.
Hencen mustbeprimewhenall theconditionsaresatisfied.
[ |

4 Converting to a Singleldentity

Although Corollary 3.4 provides a characterizatiorof
prime numbers,it is a bit unwieldy due to presenceof
multiple identities. Notice that all the identitiesare very
similar—the only differencebeingthe valueof a used.We
caneasilytransformtheminto a singleidentity.



Lemma4.1l Fixanyr > 0 and any £ > 0. Then,

Prime(X,1)=0(mod(X —a)" —1,n)for0<a<{-1 (1)
if and only if

Prime(X,a) =0 (modX"™ —1,n)for1<a<{. (2)
Proof.  The proofis by inductionon ¢. When{ = 1,

equation(l) is:
PrimgX,1) =0 (mod X" — 1,n).

Thisis identicalto equation(2) for a = 1.
Now supposethe equivalenceholdsfor £ — 1. Sowe
have:

PrimgX,1) = 0 (mod(X —

PrimgX,a) = 0(modX"—1,n)for1 <a</{-1.

To provetheforwarddirection,assumehat
PrimgX,1) =0 (mod(X —a)"—1,n)for0<a <£-1.
Then,fora = ¢ — 1, we have:
(X+1)"=X"+1(mod(X —£+1)" —1,n).
SubstitutingX + £ — 1 for X, we get:
(X+0" =

(X+£—-1)"4+1(modX" —1,n).

Usingthe equialencefor £ — 1, we canreplacethe RHS of
thelastequatiorby X™ 4 ¢ — 1. Thus,we getequation(2)
fora = ¢.

To provetheotherdirection,assumehat

PrimgX,a) =0 (mod X" — 1,n) for1 < a < £.
Then,for a = ¢:
(X+0)" = X"+£L(modX" —1,n)
= (X+£4-1)"+1(modX" —1,n).

Now substitutingX — £ + 1 for X, we getequation(1) for
a=/{¢-1. [ ]

Corollary 4.2 n is prime if and only if for any » >
4log*n such that o,(n) > 4log>n: Prime(X,1) =
0 (modQ(X),n) for every Q(X) € {X", (X —a)" — 1|
1<a<4log? n}.

Proof.  Follows directly from Corollary 3.4 and above
lemma. [ |

We can simplify it further by using the fact (proved
in [2]) thattherealways exists anr, » < 16log® n such
thato,(n) > 4log® n.

a)"—1n)for0<a</t—-2

Corollary 4.3 n is prime if and only if Prime(X,1) =
0 (modQ(X),n) where

16log® n4log* n

— X16log®n H H X —a) —1).

Proof. Follows from the factabove andthe (trivial) obser
vationthat f (X) is divisible by g(X) impliesit is divisible
by all factorsof g(X). [

Q(X)

Corollary4.3givesriseto atwo line algorithmfor testing
primality:

Input: integer n>1.
1. Conpute
. 1610g5n410g4n
Q(X) — x16log”n, H H (X—a
r=1 a=1
2. CQutput PRIME iff
(X+1)"=X"+1(modQ(X),n).

Of course thetime compleity of this algorithmis very
high: O(log'" n)!

5 A Paradigm for Derandomization

Corollary 4.2 fits exactly in the framework of the ran-
domizedalgorithmfor identity testinggivenin [1]. Their
algorithmfor testinga polynomialidentity is asfollows:

Let P(Zy,Z2,...,Zn) be a polyno-
mial over field F, of degree d; in Z;
specified by an arithmetic circuit. Let
P(X) = P(XPo XD XDm-1) where

Dy = Hle(d,- +1)forl < k < m, and
Dy = 1. For ary r suchthato,(p) > log D,
and for a randomly chosen polynomial
T(X) of degree logD,,, output ZERO iff
P(X) =0 (mod(T(X))" — 1,p).

It is showvn therethatthe above algorithmsucceedsvith
probability at leastl — D whenthe input polynomial
is not identically zero. Corollary4 2 hasexactly the same
form exceptfor someminor differenceg(lik e identity be-
ing testedover ring Z,, insteadof field F},). The reason
why it yields a deterministicalgorithmis that the sample
spacefor randompolynomialT'(X') hasbeenreducedo a




polynomialsizedsubset:T'(X) takesthevalue X — a for
a smallnumberis a’s. (Again, thereis a minor difference
in that Corollary 4.2 alsorequiresto testmodulo X".) So
theprimality testof [2] canbeviewedasderandomizinghe
randomizedprimality testingof [1] in a preciseway.

Thisalsosuggestshefollowing paradignfor derandom-
izing identity tests.

Let P(Zy,Z2,...,Zyn) be a polyno-
mial over ring R of degree d; in Z;
specified by an arithmetic circuit. Let
P(X) = P(XPo XP: . . XDPm-1) where
Dy = Hle(dﬁl) forl <k <m,andDy = 1.
Constructa small sample spacefor Q(X)—a
polynomial of degreeboundedby a polynomial
in log D,, andm. Show that P is zeroiff it is
zeromoduloQ(X) for everyQ(X) in thesample
space.

It is easyto obsere (see,e.g.,[1]) that P(Z1, ..., Z,)
is zero iff P(X) is zero. And since there are only a
few low degreepolynomialsin the samplespace identity
P(Z,,...,Z,) canbeefficiently deterministicallytested.

Canthisparadigmbeusedto derandomizéestsfor some
otheridentities?We examineonesuchidentity: for testing
bipartitematching.Let G = (U, V, E) bea bipartitegraph
with |U| = |V| = n. Definen x n matrix M = [m;;] as:
mi; = €;-X;; With €;; = 1if edge(s, j) € E, 0 otherwise.
It wasshawn by Lovasz[5] thatG hasa perfectmatching
iff det(M) # 0. Usingthis characterizationa simpleran-
domizedNC algorithm for matchingcanbe derived since
det(M) is ann?-variatemulti-linear polynomial.

Let ustry to apply our paradignto this algorithm. First,
we corvertthisto aunivariateidentity by makingthesubsti-
tution Xij = X2n31+
Let M betheresultingmatrix. Now, insteadof choosinga
randomsmall degreepolynomial Q (X)), we chooseQ (X)
from the setof polynomials{X” — 1 | 1 < r < n%}. No-
tice thatwith this choiceof Q(X), M (modQ(X)) canbe
evaluatedin NC: if Q(X) = X" — 1, thenfirst compute
uij = 2n*i+i (modr) for 1 < 4,j < n (this canbe done
by anNC! circuit), thenconstructmatrix M = [ri;;] with
1mij = X%i, andevaluatedet(11) (thiscannow bedonein
NC sincethe determinants a univariatedegree< n” poly-
nomial),andfinally reducetheresultingpolynomialmodulo
X" — 1. Therefore,the entire computation,modulo each
Q(X) in thesamplespacecanbe donein NC.

Now we conjecturghefollowing:

Conjecture.  Graph G has a perfect matching iff for
some Q(X) € {X" -1 |1 < r < nb}, det(M) #
0 (modQ(X)).

’ This preseresthecharacterization.

In anongoingwork (with S. Biswas, V. Pandg, andR.
Verma)we are ableto shav the following. Let IT be the
setof all matchingsof graphG expressedas permutations
of [1,n]. Let sgr(-) bethesignfunctionof permutation®f
[1, n]. DefinepolynomialsSy (Y, Z) as:

n k
Sk(Y,2) =) sgr(r) - (Z Y"Z’f“)) .

well

We canprovethat:

Lemmab5.1 If det(M) = 0 (modX™ — 1) for every r,
1 <r <nf then Sp(Y,Z) = 0forevery k, 0 < k < (3).

Soif it canbeshown that,G hasa perfectmatchingim-
plies Sk (Y, Z) # 0 for somek < (%), thenwe aredone.
Our experiments(thoughnot very extensve) suggesthat
this is indeedthe case. We can also prove this for ses-
eral specialclasseof graphs.For example,if G is acom-
plete bipartitegraph,then S, (Y, Z) = 0 for k < () and
S(g)(Y, Z) # 0. For non-completegraphs,the smallest
valueof & for which S, (Y, Z) # 0 is obsenedto beless
than(3).

The paradigmcan similarly be appliedto otherspecial
identities,e.g.,identity for testingequivalenceof read-once

branchingprograms.

6 Future Work

Improving the time compleity of the primality testing
algorithmremainsa major problem. Recently Lenstraand
Pomerancg4] have broughtdown the time compleity to
O~ (log®n). A conjecturegiven at the end of [2] im-
provesthis to O~ (log® n). However, asrecentlyobsened
by LenstraandPomerancethis conjecturds unlikely to be
true.

For theparadignmfor derandomizatiothatwe haveiden-
tified, much work needsto be doneto clarify its utility.
Ourway of derandomizatiors differentfrom theonegiven
in [3] where derandomizationis done making use of a
hardfunctionfor arithmeticcircuits—thisfollows theusual
methodologyof deriving pseudo-randongeneratordrom
hardfunctionsinitiated by NisanandWigderson[6]. One
interestingquestionhereis to seeif our paradigmcanalso
beputin thisway. Specifically canoneshaow thatthesmall
samplespacefor Q(X) canbe derived usinga hardfunc-
tion? And corverselyif asmallsamplespaceor Q(X) de-
randomizesll the identities,thencanoneconstructa hard
functionfrom sucha samplespace?
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