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Abstract. The idea of initial form is refined into the concept of polyform.
This can be used to streamline desingularization.

Section 1: Introduction

We shall refine the idea of the initial form of an element in a regular local ring by
introducing the concept of its polyform. The existence of polyform will be proved
relative to any finite sequence in any (commutative unitary nonnull) ring satisfying
some mild separation conditions. For uniqueness, the sequence will be assumed
to be regular. The concept of polyform is expected to simplify desingularization
proofs and related matters. In effect, many desingularization processes amount to
finding a regular system of parameters relative to which the polyform of a given el-
ement in a regular local ring has a tight shape. We shall illustrate this by revisiting
desingularization of plane curves in any characteristic including mixed characteris-
tic. What we shall reprove is that, given any curve on any nonsingular algebraic
or arithmetic surface, by applying a finite sequence of quadratic transformations
to the surface it can be achieved that the total transform of the curve has only
normal crossings. This will be a simplified version of the canonical desingulariza-
tion of curves described in [AbhD]. Similarly, in a later communication, we hope
to use polyforms to give a simplified version of the higher dimensional canonical
desingularization processes discussed in [AbhG] and [AbhW].

Section 2: Polyexpansion and polyform

Let I be the ideal generated by a finite sequence x = (x1, . . . , xm) in a ring R. As
usual, let N be the set of all nonnegative integers, and let Nm be the set of all
m-tuples a = (a1, . . . , am) of nonnegative integers; the set Nm is partially ordered:
a ≤ a′ means ai ≤ a′i for 1 ≤ i ≤ m. Let X = (X1, . . . , Xm) be a sequence of
indeterminates; for every a ∈ Nm we put |a| = a1+· · ·+am and Xa = Xa1

1 . . . Xam
m ,

and we note that then Xa is a monomial of (total) degree |a|. For all a ∈ Nm and
b ∈ Nm we put a+ b = (a1 + b1, . . . , am + bm) ∈ Nm. Given any f(X) ∈ R[X ] we
can uniquely write f(X) =

∑
a∈S raX

a with 0 6= ra ∈ R for all a ∈ S, where S (=
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the support of f(X)) is a finite subset of Nm. If ra ∈ R\J for all a ∈ S, where J is
an ideal in R, then we shall say that f(X) is a polynomial in X over (R, J). If also
a 6≤ a′ for all a 6= a′ in S, then we shall say that f(X) is a strict polynomial in X
over (R, J). Note that every f(X) ∈ R[X ] is always a polynomial in X over (R, 0).
For any f(X) ∈ R[X ], let f(X) ∈ (R/I)[X ] be obtained by applying the canonical
epimorphism R→ R/I to the coefficients of f(X). Given j ∈ N , we shall say that
the sequence x is (j)-separated if for every subset V of Nm, upon letting G to be
the ideal in R generated by {xb : b ∈ V }, we have

⋂∞
d=0(I

jG+ Id) = IjG; if this is
so for every finite subset V of Nm then we shall say that the sequence x is finitely
(j)-separated. We shall say that the sequence x is monomially separated if it
is (0)-separated. We shall say that the sequence x is quasiseparated if it is finitely
(j)-separated for some j ∈ N . Note that if x is (resp: finitely) (j)-separated then
it is (resp: finitely) (j + j′)-separated for every j′ ≥ j; this follows by noting that
with V and G as above, upon letting G′ be the ideal in R generated by the (resp:

finite) set V ′ = {b+ b′ : b ∈ V and b′ ∈ Nm with |b′| = j′}, we have Ij+j
′
G = IjG′.

It follows that
(2.0). x is monomially separated ⇒ x is quasiseparated ⇒ given any j∗ ∈ N there
exists j∗ ≤ j∗∗ ∈ N such that x is finitely (j)-separated whenever j∗∗ ≤ j ∈ N .

Using the notion of quasiseparated, we shall now prove the following:

Existence Lemma (2.1). Assume that x is quasiseparated. Then, given any u ∈
R, there exists a strict polynomial f(X) in X over (R, I) with u = f(x); the
polynomial f(X) may be called a polyexpansion of u relative to (R, x), and the
polynomial f(X) may be called a polyform of u relative to (R, x).

Actually we shall prove the following:

Strong Existence Lemma (2.2). Assume that x is quasiseparated. Given any
W ⊂ Nm, let H be the ideal in R generated by {xb : b ∈W}, and let u ∈ H. Then
there exists a strict polynomial f(X) in X over (R, I) with u = f(x) such that for
every a in the support of f(X) we have b ≤ a for some b ∈ W (with b depending
on a).

Note that (2.1) follows by taking W = {(0, . . . , 0)} in (2.2), because then H = R.
To prove (2.2), for e = 0, 1, 2, . . . letWe = {a ∈ Nm : |a| = e and b ≤ a for some

b ∈ W} and He = the ideal in R generated by {xa : a ∈ We}, and for d = 0, 1,
2, . . . let H(d) = the ideal in R generated by {xa : a ∈ ⋃d≤e<∞We}. Since u ∈ H ,

we can find Se ⊂We for e = 0, 1, 2, . . . together with ta ∈ R \ I for all a ∈ Se, such

that upon letting S(d) =
⋃d−1
e=0 Se and ud =

∑
a∈S(d) tax

a we have u − ud ∈ H(d)

for d = 0, 1, 2, . . . . For d = 0 this is obvious, because S(0) = ∅, and hence u0 = 0
and u− u0 = u ∈ H = H(0). Having done it thru a nonnegative integer d, and so
having found S0, . . . , Sd−1, we have u − ud ∈ H(d) = H(d + 1) + Hd, and hence
u − ud = h +

∑
a∈Wd

vax
a with h ∈ H(d + 1) and va ∈ R for all a ∈ Wd, and

therefore, upon letting Sd = {a ∈ Wd : va 6∈ I} and ta = va for all a ∈ Sd, we get
u− ud+1 = h+

∑
a∈Wd\Sd vax

a ∈ H(d+ 1).

Let K be any field. Let Gd be the ideal in K[X ] generated by {Xa : a ∈ S(d)}.
Then G0 ⊂ G1 ⊂ G2 ⊂ . . . is a sequence of ideals in the noetherian ring K[X ], and
hence, by the chain condition, for some nonnegative integer c we have Gd = Gc
for all integers d ≥ c. It follows that for every d ≥ c and every a∗ ∈ S(d) \ S(c)
we have a < a∗ for some a ∈ S(c). In view of (2.0) we can take 0 < j ∈ N such
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that x is finitely (j)-separated. Let u′ =
∑

a∈S(c+j)\S tax
a, where S = {a ∈ S(c) :

â 6≤ a whenever a 6= â ∈ S(c)}. Then S is a finite subset of Nm such that for all
a 6= a′ in S we have a 6≤ a′, and such that for every a∗ ∈ S(c) \ S we have a < a∗

for some a ∈ S. It follows that for every d ≥ c + j and every a∗ ∈ S(d) \ S we
have a∗ = a+ ã for some a ∈ S and ã ∈ Nm with |ã| = j. Therefore, upon letting
G be the ideal in R generated by {xa : a ∈ S}, we have ud − u′ ∈ IjG for every
d ≥ c+ j. Since u− u′ = (u− ud) + (ud − u′) and u− ud ∈ H(d) ⊂ Id, we see that
u− u′ ∈ IjG+ Id for every d ≥ c+ j. Now

⋂∞
d=0(I

jG+ Id) = IjG, and hence we
get u − u′ ∈ IjG ⊂ IG. Therefore we can write u − u′ =

∑
a∈S t

′
ax
a with t′a ∈ I

for all a ∈ S. Since, for every a∗ ∈ S(c) \ S we have a < a∗ for some a ∈ S, we can
also write u′ =

∑
a∈S t

∗
ax
a, where t∗a ∈ R \ I for all a ∈ S. Let f(X) =

∑
a∈S raX

a,
with ra = t∗a + t′a for all a ∈ S. Then ra ∈ R \ I for all a ∈ S, and hence f(X) is
a strict polynomial in X over (R, I) with u = f(x). Clearly the support of f(X)

is S; since S ⊂ S(c) ⊂ ⋃c−1
e=0We, it follows that for every a ∈ S we have b ≤ a for

some b ∈ W .
In a moment we shall prove the following:

Uniqueness Lemma (2.3). If x is quasiseparated and quasiregular, then any u ∈
R has a unique polyform relative to (R, x), which may hence be called the polyform
of u relative to (R, x).

Recall that the sequence x being quasiregular means I 6= R and the graded
ring grI(R) =

∑∞
d=0(I

d/Id+1) is a polynomial ring over R/I in the images of
x1, . . . , xm in I/I2. Also recall that the sequence x being regular means I 6= R
and xi is a nonzerodivisor in R/Ii for 1 ≤ i ≤ m where Ii is the ideal in R
generated by (x1, . . . , xi−1). We shall say that the sequence x is pseudoseparated
if
⋂∞
d=0(Ii+ Id) = Ii for 1 ≤ i ≤ m. Note that if x is regular then it is quasiregular,

and if x is pseudoseparated and quasiregular then it is regular; cf. Theorem 27
on page 98 of [Mats]; clearly monomially separated ⇒ pseudoseparated, and as
we have already noted monomially separated ⇒ quasiseparated, but we do not
know whether there is an implication between pseudoseparated and quasiseparated;
however, in (2.7) we shall show that quasiseparated + quasiregular ⇒ monomially
separated. Also note that if R is a regular local ring and x is part of a regular
system of parameters, i.e., part of a minimal set of generators of the maximal ideal
of R, then x is monomially separated and quasiregular; cf. pages 301-304 of [ZarS].
The polynomial ring property of the graded ring is sharpened in the following:

Independence Lemma (2.4). If x is quasiseparated and quasiregular, and f(X)
and g(X) are strict polynomials in X over (R, I) such that f(x) = g(x), then

f(X) = g(X).

Actually we shall prove the following:

Strong Independence Lemma (2.5). Assume that x is quasiseparated and
quasiregular. Let f(X) and g(X) be strict polynomials in X over (R, I), let S and
T be their respective supports, let J be the ideal in R generated by {xa : a ∈ S ∪T },
and let d be a nonnegative integer such that |a| ≤ d for all a ∈ S ∪ T . Assume that

f(x)− g(x) ∈ IJ + Id+1. Then f(X) = g(X).

Note that (2.4) follows from (2.5), whereas (2.3) follows from (2.1) and (2.4).
Also note that the polynomial ring property of grI(R) corresponds to the special
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case of (2.5) when |a| = d for all a ∈ S ∪ T ; observe that in this case we have
IJ + Id+1 = Id+1.

To prove (2.5), suppose if possible that f(X) 6= g(X). Then we can find a′ in

the support of f(X)− g(X) together with a nonnegative integer D ≤ d such that
|a′| = D ≤ |a| for all a in the support of f(X) − g(X). Now a′ ∈ S ∪ T , and
upon letting S(D) = {a ∈ S : |a| < D} and T (D) = {a ∈ T : |a| < D} and
P (D) = {a ∈ Nm : |a| = D}, we must have S(D) = T (D), and we can write
f(x) − g(x) =

∑
a∈S(D)∪P (D) tax

a with ta ∈ I for all a ∈ S(D), and ta ∈ R for

all a ∈ P (D), and ta′ 6∈ I. Since by assumption f(x) − g(x) ∈ IJ + Id+1, we can
also write f(x) − g(x) =

∑
a∈S(D)∪P (D) t

′
ax

a with t′a ∈ I for all a ∈ S(D) ∪ P (D).

Let ra = ta − t′a for all a ∈ S ∪ T . Then
∑

a∈S(D)∪P (D) rax
a = 0 with ra ∈ I

for all a ∈ S(D), and ra ∈ R for all a ∈ P (D), and ra′ 6∈ I. Let W = {b ∈
Nm : b = (a1, . . . , ai−1, 1 + ai, ai+1, . . . , am) for some a ∈ S(D) and some i ∈
{1, . . . ,m} (with a and i depending on b)}, and let H be the ideal in R gener-
ated by {xb : b ∈ W}. Then

∑
a∈S(D) rax

a ∈ H , and hence by (2.2) we get∑
a∈S(D) rax

a =
∑

j∈S′ sjx
j with sj ∈ R \ I for all j ∈ S′, where S′ is a finite

subset of Nm such that: (′) for every j ∈ S′ we have a < j for some a ∈ S(D). In
view of the facts that S(D) = T (D) ⊂ S ∩ T and a′ ∈ S ∪ T , where S and T are
the respective supports of f(X) and g(X) which are strict polynomials in X over
(R, I), property (′) tells us that a′ 6∈ S′.

Note that now
∑

a∈P (D) rax
a = −∑j∈S′ sjx

j with ra ∈ R for all a ∈ P (D), and

ra′ 6∈ I for some a′ ∈ P (D), and sj ∈ R for all j ∈ S′. If |j| < D for some j ∈ S′,
then we could take a nonnegative integer E < D such that |j| ≥ E for all j ∈ S′, and
such that upon letting S∗ = {j ∈ S′ : |j| = E} we have S∗ 6= ∅, and then we would
get
∑

j∈S∗ sjx
j ∈ IE+1, which would contradict the polynomial ring property of

grI(R). If |j| ≥ D for all j ∈ S′, then upon letting P ′(D) = {j ∈ S′ : |j| = D}
we would get

∑
a∈P (D) rax

a = −s∗ −∑j∈P ′(D) sjx
j with s∗ =

∑
j∈S′\P ′(D) sjx

j ∈
ID+1; since a′ ∈ P (D) \ P ′(D), this would again contradict the polynomial ring
property of grI(R). Therefore we must have f(X) = g(X).

As an immediate consequence of Lemmas (2.2) and (2.3) we have the following:

Corollary (2.6). Assume that x is quasiseparated and quasiregular. Given any
W (l) ⊂ Nm, with l varying in any indexing set L, let H(l) be the ideal in R generated

by {xb : b ∈ W (l)}, let Ŵ (l) = {a ∈ Nm : b ≤ a for some b ∈ W (l)}, let Ŵ =⋂
l∈L Ŵ

(l), let Ĥ be the ideal in R generated by {xa : a ∈ Ŵ}, and let H be the set
of all u ∈ R such that the support of the polyform of u relative to (R, x) is contained

in Ŵ . Then H = Ĥ =
⋂
l∈LH

(l).

Given any ideal G in R generated by {xb : b ∈ V }, where V is any subset of
Nm, upon letting L = N and W (d) = V ∪ {b ∈ Nm : |b| = d} for all d ∈ N , by
(2.6) we see that if x is quasiseparated and quasiregular then

⋂∞
d=0(G + Id) = G;

consequently, in view of Theorem 27 on page 98 of [Mats] we get the following:

Corollary (2.7). Assume that x is quasiseparated and quasiregular. Then x is
monomially separated and regular.

Section 3: Concavity

Again let I be the ideal generated by a finite sequence x = (x1, . . . , xm) in a ring
R. Recall that the support of a strict polynomial f(X) in X over (R, I) is a subset
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S of Nm such that for all a 6= a′ in S we have a 6≤ a′. Let us call a subset of Nm

(or any poset) concave if it has this property.
By induction on m, we can see that a concave subset of Nm is necessarily finite.

For m ≤ 1, this is obvious because then a concave subset has at most 1 element.
So let m > 1 and assume it for m − 1. Let if possible S be an infinite concave
subset of Nm. Fix a ∈ S. For 1 ≤ i ≤ m and any nonnegative integer j let
Sij = {b ∈ S : bi = j}. Also let S′ =

⋃
1≤i≤m

⋃
0≤j≤ai Sij . Now a subset of a

concave set is concave, and the projection in Nm−1 of a concave set in Nm with
constant i-th coordinate is concave. Therefore, by the induction hypothesis, each
Sij is finite, and hence so is S′. Therefore there exists a′ ∈ S \ S′. This is a
contradiction, because then a < a′.

For every concave S ⊂ Nm, let R[X ](I,S) ⊂ R[X ] be the set of all polynomials in

X over (R, I) with support S. Then R[X ](I,S) can be identified with (R\I)S = the

set of all maps of S into R \ I. Likewise, upon letting R = R/I, the set R[X ](0,S)

can be identified with the set (R \ 0)S . Let R[X ](I) ⊂ R[X ] be the set of all strict
polynomials in X over (R, I), and let (Nm)∗ be the set of all concave subsets of Nm.
Then we have the disjoint partition representations R[X ](I) = qS∈(Nm)∗R[X ](I,S)

and R[X ](0) = qS∈(Nm)∗R[X ](0,S). The canonical epimorphism φ : R→ R induces

an epimorphism Φ : R[X ] → R[X ]. Note that Φ(R[X ](I)) = R[X ](0), and for every

S ∈ (Nm)∗ we have Φ(R[X ](I,S)) = R[X ](0,S). By sending X to x we get an R-
homomorphism σ : R[X ] → R. Lemma (2.1) says that if x is monomially separated,
then σ(R[X ](I)) = R. Lemma (2.3) says that if x is monomially separated and
quasiregular, then by sending every u ∈ R to its polyform relative to (R, x) we get
a map ρ : R → R[X ] such that for every F ∈ R[X ](I) we have ρ(σ((F )) = Φ(F ),

and hence in particular ρ(R) = R[X ](0); note that in this case, upon letting S be
the support of the polyform of u ∈ R relative to (R, x), we have that: (i) S is also
the support of every polyexpansion of u relative to (R, x); (ii) u = 0 ⇔ S = ∅; and
(iii) u 6= 0 ⇒ u ∈ Id \ Id+1, where d = min{|a| : a ∈ S}, and the sum of the terms
of degree d in the polyform of u relative to (R, x) is the initial form of u relative
to (R, x), i.e., the image of u in Id/Id+1 as a homogeneous polynomial over R/I
in the images of x1, . . . , xm in I/I2 (the initial form of 0 is taken to be 0).

At any rate, the combinatorics of concave sets should be quite significant for
desingularization.

Section 4: Order and coefficient set

The maximal ideal of a (noetherian) local ring R is denoted by M(R). For
any 0 6= u ∈ R we define ordRu to be the unique nonnegative integer such that
u ∈ M(R)d \ M(R)d+1; also we put ordR0 = ∞. For any H ⊂ R we define
ordRH = min{ordRu : u ∈ HR}, with the convention ordRH = ∞ ⇔ HR = 0.
Given any L ∈ R or L ⊂ M(R), upon letting ψ : R → R/LR be the canonical
epimorphism, for any H ∈ R or H ⊂ R we define ordR/LH = ordψ(R)ψ(H). By
a coefficient set for R we mean a subset of R which contains 0 and 1 and which
is mapped bijectively onto R/M(R) by the canonical epimorphism R → R/M(R).
Note that if R is complete and has the same characteristic as R/M(R), then, by
Cohen’s theorem, R has a coefficient field, i.e., a coefficient set which is a subfield
of R. But obviously we can always find a coefficient set for any local ring R.
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Section 5: Magnitude and Shreedharacharya expansion

Let R be a 2 dimensional regular local ring, and let J = uR be a nonzero
principal ideal in R with 0 6= u ∈ R. Let φ : R → R = R/M(R) be the canonical
epimorphism, let k be a coefficient set for R, and let (x, y) be a basis of M(R).
Let d = ordRJ and D = ordR/xJ . Note that then d is a nonnegative integer with
d ≤ D, and D is either a nonnegative integer or ∞.

Let f(X,Y ) be a polyexpansion of u relative to (R, (x, y)). Then f(X,Y ) =∑
(i,j)∈S rijX

iY j with rij ∈ R \M(R) for all (i, j) ∈ S, where the nonempty finite

(concave) set S ⊂ N×N is the support of f(X,Y ). Let f(X,Y ) be the polyform of u

relative to (R, (x, y)). Note that then the support of f(X,Y ) is also S, and we have
f(X,Y ) =

∑
(i,j)∈S φ(rij)X

iY j . Also note that D = ∞⇔ i > 0 for all (i, j) ∈ S.

If D 6= ∞, then we can uniquely write

f(X,Y ) = u0Y
D +

∑
j∈T

ujX
s(j)Y D−j

with u0 ∈ R \M(R), and 0 < s(j) ∈ N and uj ∈ R \M(R) for all j ∈ T , where
T ⊂ {1, 2, . . . , D} is such that S = {(0, D)} ∪ {(s(j), D − j) : j ∈ T }, and upon
letting U0 = φ(u0) and Uj = φ(uj) for all j ∈ T we have

f(X,Y ) = U0Y
D +

∑
j∈T

UjX
s(j)Y D−j

with 0 6= U0 ∈ R and 0 6= Uj ∈ R for all j ∈ T . Note that

(•). If J = u•R with 0 6= u• ∈ R and f
•
(X,Y ) is the polyform of u• relative to

(R, (x, y)), then obviously 0 6= f
•
(X,Y )/f(X,Y ) ∈ R and hence, in particular, the

support of f
•
(X,Y ) coincides with the support S of f(X,Y ).

Let

e =


0 if D = ∞,

∞ if D 6= ∞ and T = ∅,
min{s(j)/j : j ∈ T } if D 6= ∞ and T 6= ∅,

and note that then e is a nonnegative rational or ∞, and we have e = 0 ⇔ D = ∞,
and also e = ∞⇔ D 6= ∞ and T = ∅.

If 0 < e <∞, then upon letting T ] = {j ∈ T : s(j)/j = e} and

f ](X,Y ) = u0Y
D +

∑
j∈T ]

ujX
s(j)Y D−j and f [(X,Y ) =

∑
j∈T\T ]

ujX
s(j)Y D−j

we see that

f(X,Y ) = f ](X,Y ) + f [(X,Y ) with f ](X,Y ) 6= 0,

and upon letting

F ](X,Y ) = U0Y
D +

∑
j∈T ]

UjX
s(j)Y D−j and F [(X,Y ) =

∑
j∈T\T ]

UjX
s(j)Y D−j

we see that

f(X,Y ) = F ](X,Y ) + F [(X,Y ) with F ](X,Y ) 6= 0
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and, giving weights (1, e) to (X,Y ), every term in F ](X,Y ) has weight De
whereas every term in F [(X,Y ) has weight > De and so, by definition, F ](X,Y )
is the weighted initial form of f(X,Y ).

Note that if 0 < e < ∞ and we give weights (1, π) to (X,Y ) with nonnegative
rational π < e, then the weighted initial form of f(X,Y ) equals U0Y

D. Likewise,
if 0 < e < ∞ and we give weights (1, π) to (X,Y ) with rational π > e, then the
weighted initial form of f(X,Y ) does not contain U0Y

D. Finally, as we have already
noted, if 0 < e <∞ and we give weights (1, e) to (X,Y ), then the weighted initial
form of f(X,Y ) contains U0Y

D but is not equal to it. This gives an alternative
characterization of e.

If 0 < e ∈ N , then obviously either F ](X,Y ) 6= U0(Y +C̃Xe)D for all 0 6= C̃ ∈ R,

or F ](X,Y ) = U0(Y + C̃Xe)D for a unique 0 6= C̃ ∈ R; cf. Lemma (5.3) on page
14 of [AbhD]. Let

C =


0 if either e = 0 or 0 < e 6∈ N,
0 if 0 < e ∈ N and F ](X,Y ) 6= U0(Y + C̃Xe)D for all 0 6= C̃ ∈ R,
C̃ if 0 < e ∈ N and F ](X,Y ) = U0(Y + C̃Xe)D with 0 6= C̃ ∈ R,

and let c be the unique element in k such that

φ(c) = C.

We define the magnitude mag(R, J, x, y) by putting

mag(R, J, x, y) = e,

and the Shreedharacharya coefficients sic(R, J, x, y) and sic(R, J, x, y, k) by
putting

sic(R, J, x, y) = C and sic(R, J, x, y, k) = c.

Shreedharacharya was the fifth century Indian mathematician whose completing the
square method of solving quadratic equations is given in verse 116 of Bhaskarachar-
ya’s Beejaganita of 1150 A.D. [Bhas]. Our definition of C is inspired by the anal-
ogous completing the D-th power procedure. However, our C does NOT involve
any division by D, because we take a nonzero C only if we can complete the D-th
power without doing any work!

By (•) we see that the quantities e and C depend only on J and the basis (x, y)
but not on the particular generator u of J . For the quantities d,D, e, C, here are
some:

Obvious Properties (5.1). (5.1.1) d ∈ N and d ≤ D ∈ N ∪ {∞}. (5.1.2)
e ∈ {nonnegative rationals} ∪ {∞} and C ∈ R. (5.1.3) e = 0 ⇔ D = ∞. (5.1.4)
e = ∞ ⇔ D 6= ∞ and J = yDR. (5.1.6) d = 0 ⇒ e = ∞. (5.1.7) 0 < e < ∞ ⇒
1 ≤ D < ∞ and 0 < D!e ∈ N . (5.1.8) e ≥ 1 ⇔ D = d. (5.1.9) e > 1 ⇔ J ⊂
ydR+M(R)d+1. (5.1.10) C 6= 0 ⇔ 0 < e ∈ N and F ](X,Y ) = U0(Y +C̃Xe)D with

0 6= C̃ ∈ R. (5.1.11) mag(R, J, x∗, y∗) > 1 for some basis (x∗, y∗) of M(R) ⇔ J ⊂
y∗d +M(R)d+1 for some y∗ ∈M(R) \M(R)2. (5.1.12) e = 1 and C 6= 0 ⇔ e = 1
and J ⊂ y∗d +M(R)d+1 for some y∗ ∈M(R) \M(R)2.

The only items in this which may not be obvious are (5.1.11) and (5.1.12). The
former follows from (5.1.9) by noting that, given any y∗ ∈ M(R) \M(R)2, we can
always take x∗ ∈M(R) \M(R)2 with (x∗, y∗)R = M(R). Likewise (5.1.12) follows
from (5.1.10) by taking into account (5.1.6) and (5.1.8).
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In the next three propositions we shall investigate change of magnitude with
change of basis; cf. Proposition (8.1) and Lemmas (8.4)–(8.7) on pages 26–33 of
[AbhD].

Proposition (5.2). Let (x∗, y∗) be a basis of M(R) such that x = gx∗ + g̃y∗

and y = hy∗ + h̃x∗E with g ∈ R \ M(R), g̃ ∈ R, h ∈ R \ M(R), h̃ ∈ R, and

0 < E ∈ N . Let G = φ(g), G̃ = φ(g̃), H = φ(h), H̃ = φ(h̃), D∗ = ordR/x∗J ,
e∗ = mag(R, J, x∗, y∗), and C∗ = sic(R, J, x∗, y∗). Assume that e ≥ 1. Then
D = d, and we have the following. (5.2.1) If E > e 6∈ N , then D∗ = D and
e∗ = e and C∗ = C = 0. (5.2.2) If E > e ∈ N , then D∗ = D and e∗ = e and

C∗ = CGe/H. (5.2.3) If E < e and D 6= 0 6= H̃, then D∗ = D and e∗ = E

and C∗ = H̃/H. (5.2.4) If E = e > 1 and C = 0, then D∗ = D and e∗ = e and

C∗ = 0. (5.2.5) If E = e > 1 and C 6= 0 6= H̃ +CGe, then D∗ = D and e∗ = e and

C∗ = (H̃ + CGe)/H. (5.2.6) If E = e > 1 and C 6= 0 = H̃ + CGe, then D∗ = D

and e∗ > e. (5.2.7) If E = e = 1 and C 6= 0 = G̃ = 0 = H̃ + CG, then D∗ = D
and e∗ > 1.

To see this, upon letting f \(X,Y ) = f(gX + g̃Y, hY + h̃XE) we have u =
f \(x∗, y∗). Let f∗(X,Y ) be a polyexpansion of u relative to (R, (x∗, y∗)), and

let f
∗
(X,Y ) be obtained by applying φ to the coefficients of f∗(X,Y ), i.e., let

f
∗
(X,Y ) be the polyform of u relative to (R, (x∗, y∗)). Since by assumption e ≥ 1,

we must have D = d. For any nonnegative rational number π let
∑(π)

denote
finite summation over (i, j) in N × N with i + jπ > Dπ, where the specific finite
indexing set is allowed to vary from formula to formula. If E > e then f \(X,Y ) =

f ](gX, hY )+
∑(e)

tijX
iY j with tij ∈ R, and hence by (2.6) we see that f

∗
(X,Y ) =

F ](GX,HY ) +
∑(e)

WijX
iY j with 0 6= Wij ∈ R, and therefore D∗ = D and

e∗ = e, and if e 6∈ N then C∗ = C = 0 whereas if e ∈ N then C∗ = CGe/H . If E <

e and D 6= 0 6= H̃ , then f \(X,Y ) = u0(hY + h̃XE)D +
∑(E)

tijX
iY j with tij ∈ R,

and hence by (2.6) we see that f
∗
(X,Y ) = U0(HY +H̃XE)D+

∑(E)WijX
iY j with

0 6= Wij ∈ R, and therefore D∗ = D and e∗ = E and C∗ = H̃/H . If E = e and

either e− 1 > 0 or e− 1 = 0 = G̃, then f \(x∗, y∗) = f \\(x∗, y∗), where f \\(X,Y ) =

f ](gX, hY + h̃Xe) +
∑(e)

tijX
iY j with tij ∈ R, and hence by (2.6) we see that

f
∗
(X,Y ) = F ](GX,HY + H̃Xe)+

∑(e)
WijX

iY j with 0 6= Wij ∈ R, and therefore

D∗ = D, and if C = 0, then e∗ = e and C∗ = 0, whereas if C 6= 0 6= H̃+CGe, then

e∗ = e and C∗ = (H̃ + CGe)/H , and likewise if C 6= 0 = H̃ + CGe then e∗ > e.

Proposition (5.3). If e ≥ 1 and C = 0, then for any basis (x∗, y∗) of M(R), upon
letting e∗ = mag(R, J, x∗, y∗), we have e∗ ≤ e, and if e∗ ≥ 1, then, upon letting
C∗ = sic(R, J, x∗, y∗), we have e∗ = e⇔ C∗ = 0.

To see this, we may assume that e ≥ 1 ≤ e∗ and C = 0. The case of d = 0
follows from (5.1.6) and (5.1.10). So we may also assume that d ≥ 1. Now the
case when either e = 1 or e∗ = 1 follows from (5.1.12). So we may also assume
that e > 1 < e∗. Now upon letting s = ordR/y∗y, in view of (5.1.9), we see that
s > 1. If e = ∞ = s then we are done by (5.1.4) and (5.1.10). So also assume that
either e 6= ∞ or s 6= ∞. If s 6= ∞ then let E = s, and if s = ∞ then let E be

an integer > e. Now y = hy∗ + h̃x∗E with h and h̃ in R such that if s 6= ∞ then

h̃ 6∈M(R). Since E > 1, we must have h 6∈M(R). Since E > 1, we must also have
x = gx∗ + g̃y∗ with g ∈ R \M(R) and g̃ ∈ R. Now we are done by (5.2.1)–(5.2.4).
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Proposition (5.4). If c 6= 0 then D and e are positive integers, and upon letting
y∗ = y + cxe we have M(R) = (x, y∗)R and mag(R, J, x, y∗) > e.

This is simply a special case of (5.2.6) and (5.2.7).
Now if (c0, e0) = (c, e) and c0 6= 0, then, upon letting y1 = y + c0x

e0 and
e1 = mag(R, J, x, y1), by (5.4) we have e1 > e0. If also c1 6= 0, where c1 =
sic(R, J, x, y1, k), then, upon letting y2 = y+c0x

e0+c1x
e1 and e2 = mag(R, J, x, y2),

by (5.4) we have e2 > e1. And so on. Now either this process stops after a finite
number of steps, or it continues for an infinite number of steps. In the finite case we
get a nonnegative integer ω together with ci ∈ k and ei ∈ {nonnegative rationals}∪
{∞} for 0 ≤ i ≤ ω such that (c0, e0) = (c, e) and ci 6= 0 < ei ∈ N and ei+1 > ei
for 0 ≤ i < ω, and such that upon letting yi = y +

∑
0≤j<i cjx

ej for 0 < i ≤ ω

we have (x, yi)R = M(R) and ei = mag(R, J, x, yi) and ci = sic(R, J, x, yi, k) for
0 < i ≤ ω, and such that cω = 0. In the infinite case, by letting ω = ∞, we
have ci ∈ k and ei ∈ {nonnegative rationals} ∪ {∞} for 0 ≤ i ≤ ω such that
(c0, e0) = (c, e) and ci 6= 0 < ei ∈ N and ei+1 > ei for 0 ≤ i < ω, and such that
upon letting yi = y +

∑
0≤j<i cjx

ej for 0 < i ≤ ω we have (x, yi)R = M(R) and

ei = mag(R, J, x, yi) and ci = sic(R, J, x, yi, k) for 0 < i < ω, and such that cω = 0

and eω = ∞; note that now (x, yω)R̂ = M(R̂), where R̂ is the completion of R,

and we have JR̂ ⊂ ⋂0≤i<∞(yDi R̂ + M(R̂)i) ⊂ ⋂0≤i<∞(yDω R̂ + M(R̂)i) = yDω R̂,

and hence JR̂ = yDω R̂ = ydωR̂, and therefore eω = mag(R̂, JR̂, x, yω) and cω =

sic(R̂, JR̂, x, yω, k).
Thus we have proved the following theorem; cf. Theorem (9.8) on page 36 of

[AbhD].

Shreedharacharya Expansion Theorem (5.5). There exists a unique ω ∈ N ∪
{∞} together with unique ci ∈ k and ei ∈ {nonnegative rationals}∪{∞} for 0 ≤ i ≤
ω such that (c0, e0) = (c, e) and ci 6= 0 < ei ∈ N and ei+1 > ei for 0 ≤ i < ω, and
such that upon letting yi = y+

∑
0≤j<i cjx

ej for 0 < i ≤ ω we have (x, yi)R = M(R)

and ei = mag(R, J, x, yi) and ci = sic(R, J, x, yi, k) for 0 < i < ω, and such that
if ω 6= ∞ then we have (x, yω)R = M(R) and eω = mag(R, J, x, yω) and cω =

sic(R, J, x, yω, k) = 0, whereas if ω = ∞ then upon letting R̂ to be the completion

of R we have (x, yω)R̂ = M(R̂) and JR̂ = ydωR̂ and eω = mag(R̂, JR̂, x, yω) = ∞
and cω = sic(R̂, JR̂, x, yω, k) = 0.

In effect, (5.5) amounts to solving f(X,Y ) = 0 to express Y as a function of
X , as far as we can, without getting into fractional exponents. At any rate, Y =
−∑0≤j<ω cjX

j is the best possible such expression; note that this is a complete

solution of f(X,Y ) = 0 ⇔ eω = ∞. In case of characteristic zero, our solution
gives the initial part of the Newton expansion before fractional exponents come
into play. One advantage of the above Shreedharacharya method is that it works
in any characteristic, including mixed characteristic.

Recall that a ring A is said to be pseudogeometric if A is noetherian and,
for any prime ideal P in A, the integral closure of A/P in any finite algebraic
field extension of the quotient of A/P is a finite (A/P )-module. Note that ev-
ery field is pseudogeometric, and every Dedekind domain of characteristic zero is
pseudogeometric, and every homomorphic image of a pseudogeometric ring is pseu-
dogeometric. Also note that every complete local ring is pseudogeometric, every
finitely generated ring extension of a pseudogeometric ring is pseudogeometric, and
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the localization of a pseudogeometric ring with respect to any multiplicative set in
it is pseudogeometric; cf. (17.9), (32.1) and (36.1) of [Naga]. In connection with the
w = ∞ case of (5.5) we note the following additional fact about pseudogeometric
local rings; cf. Proposition (9.10) on page 38 of [AbhD].

Proposition (5.6). If R is pseudogeometric and JR̂ = y∗dR̂ for some y∗ ∈M(R̂)\
M(R̂)2 where R̂ is the completion of R, then J = y∗dR for some y∗ ∈ M(R) \
M(R)2.

Let

B(R, J) = {(x∗, y∗) : (x∗, y∗)R = M(R) and ordR/x∗ = d}
and

ê =

{
max{mag(R, J, x∗, y∗) : (x∗, y∗) ∈ B(R, J)} if B(R, J) 6= ∅,
1 if B(R, J) = ∅,

where max denotes least upper bound. We define the magnitude mag[R](J) by
putting

mag[R](J) = ê.

In view of (5.1), by (5.3)–(5.6) we get the following proposition, giving alternative
characterizations of ê.

Proposition (5.7). (5.7.1) ê ∈ {rationals ≥ 1}∪{∞}. (5.7.2) ê > 1 ⇔ J ⊂ y∗d+
M(R)d+1 for some y∗ ∈M(R) \M(R)2. (5.7.3) ê 6= ∞⇒ d ≥ 1 and 0 < d!ê ∈ N .
(5.7.4) (x∗, y∗) is a basis of M(R) ⇒ mag(R, J, x∗, y∗) ≤ ê. (5.7.5) (x∗, y∗) is
a basis of M(R) with 1 ≤ mag(R, J, x∗, y∗) < ê ⇒ mag(R, J, x∗, y∗) ∈ N and
sic(R, J, x∗, y∗) 6= 0. (5.7.6) (x∗, y∗) is a basis of M(R) with mag(R, J, x∗, y∗) =
ê ⇒ sic(R, J, x∗, y∗) = 0. (5.7.7) 1 < ê < ∞ ⇒ M(R) has a basis (x̂, ŷ) with

mag(R, J, x̂, ŷ) = ê. (5.7.8) If R̂ is the completion of R then: ê = ∞⇔ JR̂ = y∗dR̂
for some y∗ ∈ M(R̂) \M(R̂)2 ⇔ M(R̂) has a basis (x̂, ŷ) with mag(R̂, JR̂, x̂, ŷ) =
∞. (5.7.9) If R is pseudogeometric then: ê = ∞ ⇔ J = y∗dR for some y∗ ∈
M(R) \M(R)2 ⇔M(R) has a basis (x̂, ŷ) with mag(R, J, x̂, ŷ) = ∞.

By a quadratic transform of R we mean a local domain R′, having the same
quotient field as R, which is of the form R[M(R)z−1]P for some 0 6= z ∈ M(R)
and some prime ideal P in R[M(R)z−1] with M(R) ⊂ P ; it is easy to see that
then R′ is a regular local ring of dimension 1 or 2 and it contains a unique nonzero
principal ideal J ′ such that J ′(M(R)R′)d = JR′; we call (R′, J ′) a quadratic
transform of (R, J); note that if dim R′ = 1 then J ′ = R′; cf. pages 16–36
of [AbhR]. Inspired by (5.1), (5.6) and (5.7), we say that (R, J) is unitangent if
J ⊂ y∗dR+M(R)d+1 for some y∗M(R)\M(R)2, and we say that (R, J) is resolved
if J = y∗dR for some y∗ ∈M(R)\M(R)2. Note that if (R, J) is resolved and (R′, J ′)
is any quadratic transform of (R, J), then obviously (R′, J ′) is also resolved. Also
note that if R′ is any quadratic transform of R, then the canonical epimorphism
R′ → R′/M(R′) induces an isomorphism of R onto a subfield of R′/M(R′); we say
that R′ is residually rational over R if the said subfield coincides with R′/M(R′).
In an obvious manner, we extend the definitions of “quadratic transform” and

“resolved” to a 1 dimensional regular local ring R̃ and a nonzero principal ideal J̃

in it, and we note that then R̃ is the only quadratic transform of itself, and (R̃, J̃)
is always resolved.
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In the next proposition we shall investigate change of order and magnitude in a
quadratic transform.

Proposition (5.8). If d = 0 then for every quadratic transform (R′, J ′) of (R, J)
we have J ′ = R′. If d 6= 0 then there is at least one and at most d quadratic trans-
forms (R′, J ′) with J ′ 6= R′, and for each of them we have dim R′ = 2 and ordR′J ′ ≤
d. If (R′, J ′) is nonunitangent, then for every quadratic transform (R′, J ′) of (R, J)
we have ordR′J ′ < d. If d 6= 0 and (R, J) is unitangent, then there is a unique qua-
dratic transform (R′, J ′) of (R, J) with J ′ 6= R′; moreover, if also e > 1, then for
this (R′, J ′), upon letting y′ = y/x, u′ = u/xd, and f ′(X,Y ) = f(X,XY )/Xd, we
have: y′ ∈ R′, (x, y′)R′ = M(R′), f ′(X,Y ) ∈ R′[X,Y ], u′ = f ′(x, y′), u′R′ = J ′,
R′ is residually rational over R, f ′(X,Y ) is a polyform of u′ relative to (R, (x, y′)),
ordR′/xJ

′ = D = d, mag(R′, J ′, x, y′) = e− 1, and sic(R′, J ′, x, y′) = C. [Note that
in the equation about mag we are using the convention that ∞− 1 = ∞, and in
view of (5.1.4) this amounts to saying that if (R, J) is resolved then so is (R′, J ′);
also note that if 1 < e < 2 then, in view of (5.1.8), the equations about ord and
mag tell us that ordR′J ′ < d.]

All the assertions except the equations about ord, mag and sic are straightfor-
ward; cf. Lemma (3.1) on page 12 of [AbhD] and the material on pages 16–36 of
[AbhR]. Now, assuming e > 1, as we have observed, J ′ = u′R′ with u′ = f ′(x, y′),
and clearly

f ′(X,Y ) = u0Y
D +

∑
j∈T

ujX
s(j)−jY D−j

with u0 ∈ R′ \M(R′) and uj ∈ R′ \M(R′) for all j ∈ T , and hence ordR′/xJ
′ =

D = d, mag(R′, J ′, x, y′) = e− 1, and sic(R′, J ′, x, y′) = C.
In view of (5.1), as an immediate consequence of (5.7) and (5.8) we get

Corollary (5.9). Assume that R is pseudogeometric, and (R, J) is unresolved.
Then ê < ∞, and, upon letting µ = [ê] (= the largest integer which is ≤ ê),
there exists a unique sequence (Ri, Ji)0≤i<µ with (R0, J0) = (R, J) such that, for
1 ≤ i < µ, (Ri, Ji) is the unique quadratic transform of (Ri−1, Ji−1) with Ji 6= Ri.
Moreover, for this sequence we have dim Ri = 2 and Ri is residually rational over
R and ordRiJi = d for 1 ≤ i < µ. Finally, there is at least one and at most d
quadratic transforms (Rµ, Jµ) of (Rµ−1, Jµ−1) with Jµ 6= Rµ, and for each of them
we have dim Rµ = 2 and ordRµJµ < d.

As an immediate consequence of (5.9) we have the following:

Proper Local Desingularization Theorem (5.10). If R is pseudogeometric,
then there exists a positive integer µ′ having the property which says that if µ is any
integer with µ ≥ µ′ and (Ri, Ji)0≤i≤µ is any sequence with (R0, J0) = (R, J) such
that (Ri, Ji) is a quadratic transform of (Ri−1, Ji−1) for 1 ≤ i ≤ µ, then (Rµ, Jµ)
is resolved.

In connection with the above corollary, our next step is to take care of the entire
extended ideal JRµ.

So let I be another nonzero principal ideal in R.
Given any quadratic transform (R′, J ′) of (R, J), clearly there is a unique nonzero

principal ideal I ′ in R′ such that J ′I ′ = JIR′, and we call (R′, J ′, I ′) a quadratic
transform of (R, J, I).
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The ideals J and I are said to be coprime in R if the ideal J+I is not contained
in any nonzero principal prime ideal in R. The ideal I is said to have a normal
crossing at R if I = x∗ay∗bR for some basis (x∗, y∗) of M(R) and some (a, b) ∈ N×
N . We shall say that (R, J, I) is resolved if (R, J) is resolved and JI has a normal
crossing at R. Note that if (R, J, I) is resolved and (R′, J ′, I ′) is any quadratic
transform of (R, J, I), then obviously (R′, J ′, I ′) is also resolved. In an obvious
manner, we extend the definitions of “quadratic transform,” “coprime,” “normal

crossing” and “resolved” to nonzero principal ideals Ĩ and J̃ in a 1 dimensional

regular local ring R̃, and we note that then Ĩ always has a normal crossing at R̃,

and (R̃, J̃ , Ĩ) is always resolved.
Let

δ =


d if (R, J) is not resolved,

1 if (R, J) is resolved but (R, J, I) is not resolved,

0 if (R, J, I) is resolved.

We define the adjusted order ado[R](J, I) by putting

ado[R](J, I) = δ.

Henceforth assume that J and I are coprime in R, and I has a normal
crossing at R. Note that now for any quadratic transform (R′, J ′, I ′) of (R, J, I)
we have that J ′ and I ′ are coprime in R′, and I ′ has a normal crossing at R′.

If δ = 1 then I = I
†r(1)
1 . . . I

†r(q)
q , where 1 ≤ q ≤ 2 and r(1), . . . , r(q) are positive

integers and I†1 , . . . , I
†
q are pairwise distinct nonzero principal prime ideals in R

with ordRI
†
i = 1 for 1 ≤ i ≤ q, and J = J†d, where J† is a nonzero principal prime

ideal in R with ordRJ
† = 1, and we let

ν = max{ordR/J†I
†
i : 1 ≤ i ≤ q}.

Let

ε =


ê if 0 6= δ 6= 1,

∞ if δ = 0,

ν if δ = 1.

We define the magnitude mag[R](J, I) by putting

mag[R](J, I) = ε.

The following lemma is easy to prove; cf. Lemma (10.3) of [AbhD].

Lemma (5.11). Assume that δ = 1. Then ν is a positive integer and there exists
a unique sequence (Ri, Ji, Ii)0≤i<∞ with (R0, J0, I0) = (R, J, I) such that, for 0 <
i < ∞, (Ri, Ji, Ii) is the only quadratic transform of (Ri−1, Ji−1, Ii−1) for which
Ji 6= Ri. Moreover, for this sequence we have

ado[Ri](Ji, Ii) =

{
1 if 0 < i < ν,

0 if ν ≤ i <∞,

and

mag[Ri](Ji, Ii) =

{
ν − i if 0 < i < ν,

∞ if ν ≤ i <∞,
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and for 0 < i < ∞ and every quadratic transform (R′i, J
′
i , I

′
i) of (Ri−1, Ji−1, Ii−1)

with J ′i 6= R′i we have ado[R′i](J
′
i , I

′
i) = 0.

As an immediate consequence of (5.10) and (5.11) we get the following:

Total Local Desingularization Theorem (5.12). If R is pseudogeometric then
there exists a positive integer µ′ having the property which says that: if µ is any
integer with µ ≥ µ′ and (Ri, Ji, Ii−1)0≤i≤µ is any sequence with (R0, J0, I0) =
(R, J, I) such that (Ri, Ji, Ii) is a quadratic transform of (Ri−1, Ji−1, Ii−1) for 1 ≤
i ≤ µ, then (Rµ, Jµ, Iµ) is resolved. [Note that we can take I = R and then
JµIµ = JRµ.]

Section 6: Curve desingularization

Let E be a nonsingular algebraic or arithmetic surface, and let J be a nonzero
(locally) principal ideal on E. Then by the above Theorem (5.12), there exists a
nonsingular surface E∗, obtained by applying a finite sequence of quadratic trans-
formations to E, such that the ideal JE∗ has only normal crossings. In other words,
the ideal J defines a curve on E, and the total transform (= the total inverse image)
of this curve on E∗ has only normal crossings.

We can make this precise by using the language of models as explained on pages
155–192 of [AbhR]. Briefly, let A be a field or a pseudogeometric Dedekind domain
which is not a field (for example the ring of ordinary integers). Let K be a finitely
generated field extension of the quotient field of A such that the transcendence
degree of K over the quotient field of A is 2 or 1 according as A is a field or a
pseudogeometric Dedekind domain which is not a field. For any subring B of K,
let V (B) be the set of all localizations BP of B at the various prime ideals P in
B; we regard BP as a subring of K. A set E of local rings with quotient field K is
said to be a projective model of K/A if there exists a finite number of nonzero
elements x1, . . . , xn in K such that E =

⋃
1≤i≤n V (A[x1/xi, . . . , xn/xi]); E is said

to be nonsingular if every local ring in E is regular.
Henceforth let E be a nonsingular projective model of K/A (this is what

we meant by a nonsingular algebraic or arithmetic surface).
By a preideal I on E we mean an assignment which to every R in E assigns

an ideal I(R) in R; I is nonzero means I(R) is nonzero for every R in E; I is
principal means I(R) is principal for every R in E; I is said to be an ideal on E
if, for every subring B of K which is a finitely generated ring extension of A with
V (B) ⊂ E, we have (

⋂
R∈V (B) I(R))R = I(R) for all R ∈ V (B). Given preideals J

and I on E, by JI we denote the preideal on E such that (JI)(R) = J(R)I(R) for
all R in E. It follows that if J and I are nonzero principal ideals on E then so is
JI.

A nonzero principal ideal I on E is said to have only normal crossings if I(R)
has a normal crossing at R for every R in E [the unit ideal K is declared to have a
normal crossing at K]. A nonzero principal ideal J on E is said to be resolved if
(R, J(R)) is resolved for every R in E [(K,K) is declared to be resolved]. Nonzero
principal ideals J and I on E are said to be coprime if J(R) and I(R) are coprime
in R for every R in E [K and K are declared to be coprime in K]. Given nonzero
principal ideals J and I on E, we say that that (E, J, I) is resolved if J is resolved
and JI has only normal crossings.

By a quadratic transform of E we mean a set of the form E′ = (E \ {R}) ∪
Ω(R), where R is a 2 dimensional local ring in E and Ω(R) is the set of all quadratic
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transforms of R; it can be seen that then E′ is a nonsingular projective model of
K/A; if J is a nonzero principal ideal on E then we say that (E′, J ′) is a quadratic
transform of (E, J), where J ′ is the preideal on E′ such that J ′(R′) = J(R′) for
all R′ ∈ E \ {R} and such that (R′, J ′(R′)) is a quadratic transform of (R, J)
for all R′ ∈ Ω(R), and we note that then J ′ is a nonzero principal ideal on E′;
if J and I are nonzero principal ideals on E then we say that (E′, J ′, I ′) is a
quadratic transform of (E, J, I), where J ′ and I ′ are the preideals on E′ such
that J ′(R′) = J(R′) and I ′(R′) = I(R′) for all R′ ∈ E \ {R} and such that
(R′, J ′(R′), I ′(R′)) is a quadratic transform of (R, J, I) for all R′ ∈ Ω(R), and we
note that then J ′ and I ′ are nonzero principal ideals on E′ and (E′, J ′) is a quadratic
transform of (E, J). If µ is a nonnegative integer and E0≤i≤µ is a sequence with
E0 = E such that, for 0 < i ≤ µ, Ei is a quadratic transform of Ei−1, then we
say that Eµ is an iterated quadratic transform of E, and we note that then
Eµ is a nonsingular projective model of K/A; if moreover Ji is a nonzero principal
ideal on Ei with J0 = J such that, for 0 < i ≤ µ, (Ei, Ji) is a quadratic transform
of (Ei−1, Ji−1), then we say that (Eµ, Jµ) is an iterated quadratic transform
of (E, J); if also Ii is a nonzero principal ideal on Ei with I0 = I such that, for
0 < i ≤ µ, (Ei, Ji, Ii) is a quadratic transform of (Ei−1, Ji−1, Ii−1), then we say
that (Eµ, Jµ, Iµ) is an iterated quadratic transform of (E, J, I), and we note
that if J and I are coprime then so are Jµ and Iµ.

Henceforth let J and I be nonzero principal ideals on E such that J
and I are coprime and I has only normal crossings.

It is easy to see that then (R, J(R), I(R)) is resolved for all except a finite number
of 2 dimensional local rings R in E. Therefore by (5.12) we get the following:

Theorem (6.1). There exist nonzero principal ideals J∗ and I∗ on a nonsingular
projective model E∗ of K/A such that (E∗, J∗, I∗) is resolved and (E∗, J∗, I∗) is an
iterated quadratic transform of (E, J, I). [Note that we can take I(R) = R for all
R ∈ E; then we have J∗I∗ = JE∗, and hence JE∗ has only normal crossings].
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