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The importance of nano-sized smart materials in stru-
ctural engineering, biomedical engineering, and in
military applications is discussed. It is shown that the
solidification of poorly conducting alloys involved in
the manufacture of these materials gives rise to surface
and convective instabilities. Different types of surface
and convective instabilities are briefly discussed. These
instabilities produce a mushy zone regarded as dendri-
tes of nano-sized crystals. These dendrites arising from
instabilities are regarded as impurities. To manufac-
ture nano-sized smart materials free from impurities,
it is essential to control both surface and convective
instabilities. We discuss here briefly, different types of
convective and surface instabilities in a poorly conduct-
ing fluid. We also discuss different mechanisms of
control of these instabilities. Different analytical and
numerical techniques used to investigate these insta-
bilities under different boundary conditions are dis-
cussed. In this review the moment method is explained
to find the condition for the onset of convection, and
porous lining is used to suppress the growth rate of
surface instability. This is useful in the manufacture
of nano-sized smart materials free from impurities.
Different methods to obtain the required basic equa-
tions and the corresponding boundary conditions are
briefly discussed.

AN important challenge in nanotechnology, which at pre-
sent is the most energized discipline in science and tech-
nology is to manufacture new materials involving sensing
and actuating properties, like smart materials, shape
memory alloys (SMA), etc. because of their applications
in quantum computers, civil (biomechanical, structural
engineering, etc.) and in military applications. The impor-
tant process in the manufacture of these nano-materials is
the solidification of alloys like nickel-titanium, alumin-
ium oxide, etc. by cooling from below and heating from
above. At present, ferroelectric alloys have been widely
used in making smart devices"” of ferroelectrics. A poorly
conducting alloy, where the electrical conductivity © is a
strong function of temperature 7, can also be used to
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manufacture smart materials. However, little is known
about the use of poorly conducting alloys to manufacture
smart materials. In this review, we concentrate on nano-
materials made of alloys having poor electrical conduc-
tivity. The physical mechanism here is as follows.

The difference in ¢ due to difference in T induces free
charges, p., in the bulk of the fluid as well as at the inter-
face. These free charges interacting with either induced,
applied or both induced and applied electrical field, E,
produce a force peff. This force, like buoyancy force, pro-
duces the following two types of instabilities: (i) Con-
vective instability known as electroconvective instability
and (ii) surface instabilities, called electrosurface instabi-
lity.

Different types of convective and surface instabilities
and causes for these instabilities are discussed below.

Convective instability

The following kinds of convective instabilities, also known
as convection, have been extensively investigated.

Rayleigh—Benard convection

Convection in a horizontal layer of a Boussinesq fluid
heated from below and cooled from above in the presence
of gravity is called Rayleigh-Bernard convection. The
cause for this convection is the buoyancy force arising
due to the variation of density of fluid with temperature
in the presence of gravity.

Oberbeck convection

Convection in a vertical layer of Boussinesq fluid heated
and cooled from sides, maintaining temperature difference
perpendicular to gravity is called Oberbeck convection’.
The cause for this convection is also buoyancy force.

Magnetoconvection

Convection in a horizontal layer of Boussinesq electri-
cally conducting fluid in the presence of a magnetic field,
transverse or horizontal, and gravity is called magneto-
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convection (MTC). The cause for MTC is the combined
effects of buoyancy force and Lorentz force in the pres-
ence of a magnetic field. The effect of magnetic field is to
set up overstable motion, i.e. principle of exchange instabi-
lity is valid*® for certain values of Chandrasekhar num-
ber and suppresses convection. However, in the case of
two components of an electrically conducting fluid, like
temperature and concentration, Rudraiah and Shivaku-
mara’ have shown that for a certain frequency range, the
magnetic field augments convection instead of suppress-
ing it.

Marangoniconvection

Convection in a horizontal layer of Boussinesq fluid,
where at least one of the bounding surfaces of the fluid is
free with surface tension, heated from below and cooled
from above is called marangoniconvection (MC). The
cause for MC is the variation of surface tension with
temperature, which produces the surface tension-driven
convection or MC™* !,

Magneto-Marangoniconvection

Convection in a horizontal layer of an electrically con-
ducting Boussinesq fluid bounded at least on one side by
a free surface subjected to surface tension, heated from
below and cooled from above in the presence of a magnetic
field and surface tension is called Magneto-Marangoni-
convection (MMC). The cause for MMC is the combined
effect of variation of surface tension with temperature and
magnetic field. Here also, the effect of magnetic field is
to suppress MC and it facilitates the principle of exchange
of stability to be valid under certain conditions'*"”.

Magnetic fluid convection

Magnetic fluids are electrically non-conducting colloidal
suspension of tiny particles of solid ferromagnetic mate-
rial in a non-electrically conducting carrier fluid like water,
kerosene, hydrocarbon, etc. These behave as homogeneous
continuous fluids and are not found in nature, but are arti-
ficially synthesized. Like dielectric polarization in electric
materials, there exists magnetic polarization in magnetic
materials. The magnetic polarization per unit volume is
called magnetic moment. This magnetic moment is a
strong function of magnetic field and temperature.

Convection in a horizontal layer of Boussinesq magne-
tic fluid in the presence of buoyancy force and magnetic
field, heated from below and cooled from above is called
magnetic fluid convection (MFC) or ferroconvection (FC).
The cause for MFC is the variation of magnetization with
magnetic field and temperature, in addition to variation of
density with temperature'®.
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Marangoni magnetic fluid convection

Convection in a horizontal layer of Boussinesq magnetic
fluid bounded at least on one side by a free surface with
surface tension in the presence of a magnetic field, heated
from below and cooled from above is called Marangoni
magnetic fluid convection (MMFC). The cause for MMFC
is due to the combined effect of variation of surface ten-
sion with temperature and variation of magnetic moment
with magnetic field and temperature. This is of vital im-
portance in space research because it facilitates cooling
of machineries'™'°.

Electroconvection

Convection in a horizontal layer of a poorly conducting
fluid, in the presence of an applied electric field and
buoyancy force, cooling from below and heating from
above produces electroconvection (EC).

Here, the physical mechanism is the variation of elec-
trical conductivity of fluid, &, with temperature produc-
ing free charges in the bulk of the fluid as well as at the
surface. These free charges interacting with the applied or
self-generating electric field produce a force. This force
generates a convection called electroconvection (see refs
17-20 and references therein).

Oberbeck electroconvection

Convection in a vertical layer of a poorly conducting
fluid in the presence of electric field and buoyancy force,
where the temperature difference is maintained normal to
gravity produces Oberbeck electroconvection.

Marangoni electroconvection

Convection in a horizontal layer of a poorly conducting
Boussinesq fluid bounded at least on one side by a free
surface with surface tension, cooled from below and
heated from above in the presence of an electric field is
called Marangoni electroconvection (MEC). The physical
mechanism here is the variation of both surface tension
and electrical conductivity with temperature in the pre-
sence of an electric field which produces convection as
explained above. This convection is called Marangoni
electroconvection®"**,

Different analytical and numerical techniques*** have
been extensively used to study the onset of convection
and the corresponding heat and mass transfer.

Surface instabilities

Surface instabilities play a significant role in solidifica-
tion processes, inertial fusion energy (IFE), cooling of
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machineries, etc. Therefore, in this section we briefly dis-
cuss different types of surface instabilities.

Rayleigh—Taylor instability

Rayleigh—Taylor instability (RTI) occurs due to superpo-
sition of two fluids of different densities. For example,
instability of the interface of a heavy fluid that rests
above a lighter fluid is known to overturn under the ac-
tion of gravity. This surface instability arising not only
when a heavy fluid is supported by a lighter fluid, but
also when a dense material is accelerated by a less dense
material is called RTI**>%

Kelvin—Helmholiz instability

The second kind of instability arises when different layers
of homogeneous or stratified heterogeneous fluid are in
relative horizontal motion. A speciality here is when two
superposed fluids flow one over the other with a relative
horizontal velocity, the instability of the plane interface
between the two fluids when it occurs in this situation, is
called Kelvin—-Helmholtz instability (KHI). The cause for
KHI is the shear that develops at the interface due to dif-
ferent velocities of two superposed fluids™ .

Richtmyer—Meshkov instability

The third type of surface instability arises due to the ef-
fect of shock accelerating a perturbed interface between
two fluids of different densities. In some cases, part or all
of the acceleration is impulsive, that is, g(¢) is very large
during a very short time interval and zero or small out-
side the interval. The limiting case of impulsive accelera-
tion is accelerated by a shock where the compressibility
of the fluid cannot be neglected. The surface instability
when a shock sweeps across a corrugated interface from a
less dense to a more dense fluid is called Richtmyer—
Meshkov instability>>>*,

Saffman—Taylor interface instability

Saffman and Taylor constructed a Hele-Shaw cell model
for a porous media filled with oil. By suitable means,
they applied water under pressure. At one end of the cell,
oil was driven out ahead of water. While some of the oil
was squeezed out in this fashion, the water also pene-
trated the cell as a finger having rounded advancing tip
along sides parallel to the edges of the channel, where the
shape of the meniscus profile between the oil and the wa-
ter has narrow thickness of the shell. In that case, Saff-
man and Taylor found that the asymptotic width of the
finger far from the advancing tip was never less than half
the width of the channel for slow rates of advance, almost
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all the cell contents were swept out and as the speed of
the finger was increased due to the increasing pressure
applied to the penetrating fluid, the width steadily ap-
proached the limiting value of one of the channel widths.
Here the oil drives the water out of a long, straight chan-
nel of small thickness formed between two parallel sheets
scaled at the edges. The penetrating fluid forms a long
finger whose sides are parallel to the edge of the channel
and which has a rounded tip that advances with unaltered
shape at a constant speed U. The long finger of penetrat-
ing fluid is called Saffman-Taylor surface instability”*.

Motivation of this review

Solidification process in the manufacture of new materi-
als like smart materials involves a mushy layer. A pheno-
menon commonly associated with the evolution of the
mushy layer is the occurrence of chimneys which are cylin-
drical holes free of solids that have formed spontane-
ously'”. These are also called dendrites or freckles. These
dendrites can be regarded as a porous layer with perfect
spacing between the mushy streaks. This mushy zone, a
region of mixed solid and liquid phase, is separated by a
thin film having an interface between them.

The study of instability of the interfaces is of funda-
mental importance in recent years in view of its signifi-
cant role in understanding the control and exploitation of
many of the basic physical, chemical and biological proc-
esses. The interfaces in some of these instances occur due
to the following physical phenomena.

The solidification process produces dendrites or freck-
les as explained above, which are regarded as impurities.
Therefore, to manufacture these strong materials free
from impurities in microgravity environment, we have to
study both surface instabilities and electroconvection in a
poorly conducting fluid-saturated porous layer. Such a
study is important in the manufacture of SMA free from
impurities because of its applications in civil and military
fields, as explained below.

Civil applications

Smart structures: Engineers are constructing smart build-
ings with self-adjusting windows and self-cleaning mate-
rials. These smart materials have also become attractive
for other structural applications. These smart materials
develop mechanical response under non-mechanical
stimuli, such as electric fields and can be embedded or at-
tached to the composite materials to create a facility to
sense the current stress state in composite materials, like
laminate, and to introduce modifications to the stress
state to mitigate the possibility of failure. Such structures
which have in-built sensing, actuation and control fea-
tures are known as smart structures. With such features
inherent in the structures, it is possible to design them to

CURRENT SCIENCE, VOL. 86, NO. 8, 25 APRIL 2004



REVIEW ARTICLES

achieve several performance advantages such as high
level of safety, reduced vibration, reduced noise, high
shape control with accompanying pay-offs in relation to
durability and economic gains. It is important to keep in
mind that mechanics of structural failures do occur and
this issue is of paramount concern in structural engineer-
ing. Here, smart structures are of significant importance
because, with the help of smart materials, it is possible to
monitor stress situation and the possibility of failure,
which are revealed on-line so that corrective actions can
be initiated to avoid the risk of failure. These structures
will have an in-built control system which, in case of
need, introduces a corrective stress system to automati-
cally mitigate the effect of damage due to specially built-
in smart patches. Thus we will have structures manufac-
tured by smart materials with smart patches that may pre-
vent failures.

Another important application of smart structures is
automatic reduction of vibration levels in structural com-
ponents. With the help of appropriate actuation strains
through smart patches, the vibrating environment can be
significantly reduced if not eliminated all together. With
the help of these smart materials with appropriate smart
patches it would be possible to build platforms that do
not vibrate, antenna that do not deviate from the chosen
target or airplane wings that do not experience vibration.

Biomechanical and biomedical engineering
applications

(i) Smart materials are useful for diabetics to sense
sugar levels and deliver insulin.

(ii) SMA smart materials are successful in the use of or-
thodontic arch wires in dentistry. These wires will
make the misaligned teeth gradually return to their
original shape, exerting a small and nearly constant
force on the misaligned teeth. The use of these
smart wires reduces patient discomfort and helps in
efficient and faster tooth movement.
SMA smart materials are also used as blood-clot fil-
ters. These SMA smart materials involve the use of
titanium-nickel wires that are first trained to clot
blood trapping coiled configuration prior to the in-
sertion of the cooled straightened wire. The wire is
inserted into the vena cava, where due to the heat
caused by blood flow, the original blood-clot filter-
ing configuration is reverted to.

(iv) The constriction of arteries due to the plaque, called
stenosis, restricts blood flow so that cardiologists
have to often resort to bypass surgery and this can
be avoided by the smart implants.

(v) A concept of smart healing is being evolved by im-
plementing piezo poly-vinylidiene fluoride (PVDF)
based sensor in the jaw. This would generate an
electric field every time the patient bites on it and

(iii)
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this electric field would promote the healing proc-
ess. We note that PVDF is used in transportation,
for sensing traffic either by registering vibrations or
by measuring the heat generated by automobiles.

Military applications

The Air Force requires smart planes for the following pur-
poses: (i) Minimizing the weight and maximizing strength
of the planes. (ii) Planes that can continuously change their
wing shape to achieve supersonic speed and evade radar
screen.

The two types of instabilities discussed in the begin-
ning of this section produce impurities known as plumes,
streaks or freckles made of nano-particles. These impuri-
ties produced as end-products are inevitable in nanotech-
nology in the manufacture of strong materials. Therefore,
to manufacture these strong materials with nano-sized po-
rous layer free from impurities, we have to understand: (i)
surface instability of RT-type involving a composite layer
made of partly a nano-sized porous layer and partly a thin
layer of fluid and (ii) convection in a nano-sized porous
layer.

Controls of these two types of instabilities are essential
in the manufacture of nano-sized smart materials. Before
illustrating these problems, we briefly discuss the requi-
red basic equations.

Basic equations

Liquid-to-solid transformation, in particular, the effect of
mass transport on growth, behaviour and morphological
evolution gives rise to dendrites, regarded as nano-sized
porous media having uniform spacing. The question is
how to model this liquid alloy flow in the nano-sized po-
rous media. The best thing, because of microspacing, is to
formulate the problem considering a molecular picture
involving force of attraction and repulsion using one of
the following statistical averages: (i) volume averaging
procedure or (ii) ensemble averaging procedure.

These averages are needed because, in general, it is
impossible to know what is happening in each of the many
nano-pores, hereafter called pores, between many nano-
particles. Here, the best one can expect is knowledge of
the above statistical averages of the physical quantities
over certain representatives of the system.

Volume averaging procedure

Following the work of Rudraiah'’, we briefly explain
here the basic concepts of the averaging procedure. For
details, one can also refer to the books of Kaviany35 and
Nield and Bejan’®.

Consider a representative volume AV that is large com-
pared with the pore size of the material consisting of
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nano-particles but small compared with the characteristic
length.
Let

e volume of void space of nano-particles

total volume

be the effective porosity of AV.

Let f(x;) be some properties of the fluid alloy, which by
definition are zero in the case of solid nano-particles.
Then the pore volume average of fis defined as

1
(fyr=——0 j av.
f €AV f
eAV
The bulk volume average of fis defined as

1 *
N=ry | rav=emns

eAV

These averages can be viewed as point macroscopic
quantities associated with the centroid of AV, which may
lie either in a pore or on a solid portion of nano-sized po-
rous medium. In other words; { /) and { f)* are defined at
each point in a fictitious continuum representing the
fluid-saturated void of the medium consisting of nano-
particles, and their values may thus change from point to
point within a given AV. The general Reynolds transport
theorem relates the average of the gradient equal to gra-
dient of the average according to

o\ o 1 N
<g>—g<f>+ﬁ_!-f n; ds,

where s is the solid—fluid interface in AV and rAzl- are the
components of unit normal vector pointing in the direc-
tion of the nano-solids.

Using these volume averages, we can derive the requi-
red basic equations incorporating the forces of attraction
and repulsion.

Ensemble averaging procedure
We can assume nano-particles in a fluid medium to be in

the form of spheres and define the ensemble average of a
dynamical system, say ¢, as

@)= [ POL o (L rdy dr,

.. Xy (N is large) are positions of the
, ry are the radii of these

where X = %1, X2 --
nano-particles, »=ry, ra, ...
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nano-particles, P is the probability of finding the system
in the known state. Assuming random distributions of
nano-particles, the density distribution can be written as

n(x, o) = NPy, ©),

where n(y, 6)dc is the fraction of number density of
nano-particles with radii between » and r + dr in the
neighbourhood of ¥.

In addition to this, to derive the required basic equa-
tions for flow through the voids, we have to use the point
force approximations:

(i) The disturbance produced by a nano-particle is to be
approximated by that of a point-force located at the
centre of the nano-particle. This force may be equal
in magnitude but opposite in direction to the drag on
the particle.

(i1) The drag experienced by a nano-particle is approxi-
mately directly proportional to the undisturbed veloc-
ity of the fluid at the centre of the particle. This
includes the fluid velocity in the absence of all nano-
particles and the perturbed fluid velocities due to all
other nano-particles. This approximation implies that

Drag = D(r)g,(x),

where ¢; is the unperturbed fluid velocity at the centre of
the nano-particle and D(r) is a coefficient which depends
on the size of the nano-particle and statistical properties
of the N nano-particles. The crux of the problem here is
to find the dependence of D on r. This can be found using
the point force approximation (i) given above. In these
approximations, the velocity and pressure at a point ) can
be written as

N
3 (X) = a0 =Y Gl G X0y (Ko X

n=l

N
POO=p (0= Y Gl (s ) PO )

n=l

where i and j denote the vectors, g3(y) and p°(y) are the
fluid velocity and pressure in the absence of nano-parti-
cles, G is the drag on the nano-particle n in the ith direc-
tion and g;; is the velocity of fluid in the ith direction at ¥,
due to the point-force of unit strength in the jth direction
at ). To derive the required equations we assume

G = D(r)q(x),
n 1 m
g () =a0 (0= Y G gy (xx,),
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where Zl means the term m = n is excluded from the
summation. That is, ¢7(¥,) is the unperturbed fluid velocity
as seen by the particle n.

Taking the ensemble average of these over the configu-
ration space, we can derive the basic equations™

Basic equations for composite media

Following one of the above procedures, we can obtain the
required basic equations.
The conservation of momentum

_ _ 0 _ e
pix, 1-—1>+1]—E§+p[xp<e 2 D+11GV) g

o - Cypiay| =
=-Vp+u |:Xp(%—1]+l:| ViG- xp|:%+p—Jf|Q|:| q

6]
where
1 for porous media
X =
P |0 for fluid region.

and C, is drag coefficient.

The conservation of mass for Boussinesq fluid:

V.g=0, (2)

where

P =pe|l+ X%, Pe_ = density,
Pr

= e[ 14 x| 2o —1 || = viscosity,
Mg

Mg is viscosity of fluid, U, is effective or Brinkman visco-
sity and suffixes p and f denote quantities in porous lining
and in the fluid film, respectively. These equations have
to be supplemented with suitable boundary and interface
conditions given below.

Boundary conditions

The boundary conditions on velocity will depend on the
following configurations.

Rigid boundaries: 1If (u,v, w) are the components of
velocity of the fluid, then in the case of fluid bounded by
rigid boundaries, using the conservation of mass, the no-
slip conditions at the rigid boundaries are

_aw
dz

w 0. 3)
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Stress-free boundaries: 1In this case in the absence of
surface tension, the boundary conditions are

d’w

W =
dz?

=0. 4

Free-surface with surface tension: In this case the sur-
face tension y is a function of temperature. Following
Pearson® one usually observes that y varies linearly with
temperature and the boundary conditions are:

d*w

W=—7

—Mp =0, (5)
dz

where M, is the Marangoni number given by

Yr ATh

a s

Mk

k is the thermal diffusivity, AT is the temperature differ-
ence between the lower heated surface and the cooled up-
per surface and 7y is the gradient of surface tension with
temperature.

Bounded by densely packed porous layer: In this case,
Beavers and Joseph®’ postulated a slip-boundary condition

du _ o (u5—Q)

dy N

where u is the horizontal velocity in the x-direction, u is
the slip at the nominal surface, ¢ is the Darcy velocity, y
is the vertical coordinate, k is the permeability of the
porous medium and o is the slip parameter. The condition
(eq. (6)) is called Beavers and Joseph (BJ)-slip condition.

The BJ-slip condition (eq. (6)) is independent of the
depth, say h, of fluid. Later Rudraiah®® derived the slip-
boundary condition in the form

il2
d_”:(ﬁj {ak”m +(u—u, ) cthdh | ™
dy |k shd h

(6)

This condition depends on the depth of fluid /& and hence
is valid in many industrial and biochemical problems.
Here A is a viscosity parameter, & = (Ak) > and uy, is the
slip velocity at the nominal surface.

We note that the BJ-condition (eq. (6)) can be obtained
as a particular case from the Rudraiah condition (eq. (7))
as h — o and hence the condition (eq. (7)) is called BJR-
condition.

Bounded by sparsely packed porous layer: Here, the fluid
flow is governed by the Brinkman equation analogous to
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the Navier—Stokes equation. In that case, the condition
will depend on the assumption of (i) nominal surface or
(i1) the usual surface. The nominal surface is derived as a
smooth geometrical surface drawn in the fluid such that
the outermost perimeters of all surface pores of the per-
meable material are on this surface.

In the case of nominal surface, even in the case of
sparsely packed porous layer BJR-slip condition (eq. (7))
is valid.

If the interface between the fluid-saturated porous layer
and the thin film is a usual surface instead of a nominal
surface, then we have to impose the residual shear condi-
tion

aI/l au_(x

Moy —2— — uu (8)

dy dy

where o, is the residual slip coefficient and ¢ is the effec-
tive (i.e. Brinkman) viscosity.

Rough rigid surface condition:
the condition®:

In this case we specity

d
A, )
dy

where @ is the roughness parameter.

Isothermal condition: In the case of boundaries maintai-
ned at constant temperature 7; (i = L, lower boundary and
i = U, upper boundary), we specify the boundary condi-
tion on temperature as

T=0, (10)

where T is the difference in temperature.

Adiabatic condition: In the case of boundaries maintai-
ned at constant heat flux called adiabatic boundaries, we
specify

DT =0. (11

Radiation condition: In the case of general radiation

case, we specify

DT + AT =0, (12)

at the boundaries. The condition (eq. (12)) is called radia-
tion boundary condition, and Ay, will be connected to the
Biot number.

In addition to the above boundary conditions, we have
to impose the following dynamical and kinematical con-
ditions in the study of surface instabilities.

Dynamic condition: 1In the case of two-dimensional flow
of velocity components (¢, v) in x and y directions, we
impose the following dynamic condition:
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p=-sn-y 1,
ox

(13)
where p is the pressure, &= g(p,—py) is the normal
stress, Y is the surface tension and 1 is the elevation of
the interface.

Kinematics condition:

L LY (14)
ot ox

Mechanisms to control convective instabilities

As explained earlier, the layers of dendrites of nano-size
(Figure 1) resulting from solidification of alloys in mate-
rials processing are regarded as impurities. To control
these impurities, it is essential to control convective insta-
bilities in the presence of dendrites regarded as porous
layers because of uniform spacing between nano-sized
dendrites. Microgravity environment, Coriolis force, Lor-
entz force, electric force, concentration flux, non-uniform
temperature gradient and time-variant electric field are
used in the literature to control convective instabilities.
For details see the work of Rudraiah ez al.”.

Mechanism to control surface instabilities

As stated earlier, solidification process in the manufac-
ture of nano and smart materials and also the laser beam
in the case of IFE target produce surface instabilities of
the types discussed above. These surface instabilities give
rise to impurities due to manufacturing processes in-
volved in nano and smart materials and cause asymmetry
in the IFE target. Therefore, to manufacture nano and
smart materials free from impurities and to maintain
symmetry in IFE target, it is important to control these
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Figure 1.
alloy.

Transverse microstructure of Al-Ni (Al-Al; Ni) eutectic
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instabilities. Heterogeneous or compressible in viscid
fluid, foam material, nano-structured lining, external con-
straint of transverse magnetic field, external constraint of
transverse electric field, surface tension effect, rough and
coated interface are effective in controlling these insta-
bilities. For details see the work of Rudraiah®®.

In the remaining part of this review we briefly discuss
the effect of oscillatory electric field on the control of EC
in a mushy layer made up of nano-sized dendrites. Next we
discuss the effect of porous lining on the control of RTL.

Effect of oscillatory electric field on the control of
EC in mushy layer made up of nano-sized
dendrities

The study of electro-thermal convection (ETC) in a mushy
layer saturated with a poorly conducting ohmic fluid in
the presence of steady or unsteady and uniform or spatial
variation of electric field is sparse, in spite of its applica-
tion in the solidification process involved in the manufac-
ture of nano, smart and other materials. The ETC of a
plane, horizontal, poorly conducting ohmic liquid in a
steady electric field, has been investigated experimen-
tally***' and theoretically****. Turnbull*’ and Lee et al.*'
have shown that under several assumptions on the physi-
cal properties of a poorly conducting liquid, oscillatory
instability of the layer heated from above is possible.
Lee™ has also studied the influence of the time relaxation
of electric charges on ETC. These works on ETC were
mainly concerned with charge creation due to the time-
dependent electrical conductivity of the liquid, neglecting
non-uniform polarization of the liquid and charge injec-
tion. This is justified in view of the physical properties of
the liquid and materials of the electrodes used in their ex-
perimental and theoretical work. Recently, Smorodin and
Velarde® have studied ETC in the presence of a vertical
time-varying electric field in a horizontal layer of a poorly
conducting liquid. They have shown the existence of un-
stable disturbances due to the frequency of applied elec-
tric field as well as due to the intrinsic frequency of
neutral disturbances of steady electric field in a poorly
conducting ohmic liquid. In particular, they have shown
that this behaviour is opposite to the results of finite fre-
quency vibrations or time-varying electric fields, when
the response time period of the liquid system coincides or
is twice the external modulation period. Smorodin and
Velarade® have also shown that depending on the ampli-
tude and frequency of modulation, the electric field can
stabilize an unstable base state or destabilize the equilib-
rium of the liquid.

The works mentioned above are concerned with poorly
conducting ohmic liquid in a pure liquid layer, i.e. in the
absence of a mushy layer regarded as the liquid-saturated
porous layer. The study of ETC in such a mushy layer,
i.e. porous layer, is important in the manufacture of nano
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and smart materials®. In spite of this, the ETC in a porous
layer has not been given much attention. It is known®
that under certain conditions on electric Rayleigh number,
oscillatory ETC are possible modes. In particular, it has
been shown that the effect of electric field stabilizes mar-
ginal state (i.e. neutral state) and destabilizes oscillatory
(i.e. over stable) state®. It is of importance, as in the case
of non-uniform temperature gradient, to know whether a
nonuniform electric field controls ETC in a porous layer,
which is of importance in the manufacture of nano and
smart materials.

Mathematical formulation

We consider an infinite horizontal fluid-saturated porous
layer bounded by rigid, thermal and electroconducting
plates embedded with electrodes located at z==* h (Fig-
ure 2). Constant but different temperatures 7=+ 6; and
different electric potentials ¢(+ ) — ¢(-h) = -2V(n; +
M, cosQf) are maintained on these boundaries. Here V is
the characteristic voltage applied between the embedded
electrodes; M, and 1, are respectively, the amplitudes of
steady and modulated components of potential, and Q is
the modulation frequency. The modulation amplitude 1,
varies continuously, whereas 1, takes only two values,
namely m; =0 for alternating potential difference and
M, = 1 for the steady modulations of the background®. In
this review, we use the electro hydrodynamic (EHD) ap-
proximations, namely the electric conductivity. G, of the
liquid is negligibly small (because we consider a poorly
conducting liquid), so that the induced magnetic field is
negligible. This approximation makes the electric field E,
to be conservative, i.e. E= —Vo. Further, it limits the fre-
quency of the electric field and electrical conductivity of
the liquid, that is

1/2
Q ¢ 1(¢g,
—<—, O &—|—| ,
2 h hipn,

where ¢ is the phase velocity of the electromagnetic waves
in the liquid, & is the half width of the channel, €, is the

0=-VM +Mycos Q1) T=+80
z=+h
- — .
\Lg y K x
electrodes
| e e |
z=—h

O =4V +M,cos Q1) T=-6

Figure 2. Physical configuration.
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dielectric constant and W, is the magnetic permeability.
For typical values®,

€ ~88.5x 10 F/m, W, ~4nx 10" G/m,
h~10"mand ¢ ~ 10* m/s,

and we have

6. < 0.1 (ohmm)™”, Q< 10’ rad/s.

Here we deal with a poorly conducting liquid, where
6. ~ 10" =107 (ohm-m)™" and Q < 10° rad/s, so that we
can easily neglect the induced magnetic field. In addition,
we also neglect the Joule heat in the energy equation, the
nonuniform polarization of the poorly conducting liquid
and all electric charge injection. Under these approxima-
tions, the basic equations after making them dimension-
less, using the scales & for length, Y for time, k/h for
velocity, p;kv/h* for pressure, 8, for temperature, €. V/h,
for density of charge, V for potential, V/h for electric
field, o, for conductivity, ¥ = (Ji/p), [ is effective visco-
sity, are

V=0, (15)
aq 1 _._. . - . ~ -
KN (GNYG=-Vp+V>G+R,Te+G.p.E—a’q,
ot p,

(16)
or .
P.—+(GV)T=V"T, a7
ot
ap. 1 -1
+—V- (6 E)+—(g-V =0, 18
Y D@ Ve, (18)
V-E=p., (19)
E=-Vo, ¢=(0,0,1), o=1+sT, (20)
ow
=—=0atz==%1,
o atz
T=tlatz==%1, 20
e=F(M+Mcos®) atz== 1,
where
3 2 .o
Razigﬁelh R Gzzh_’ PI‘ZR’
AU k K
2 - 2
Gezsv . P=A Py= 8201)’ :Qh ’
(UL h“c, O
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where R, is the Rayleigh number, G, is the electric analo-
gue of Galileo number, P, is the Prandtl number, P, is the
electric Prandtl number, ® is the dimensionless modula-
tion frequency and s (<« 1) is the nonuniformity of the
electrical conductivity.

Basic state: We analyse the basic state of the system
(eqs (15-21)) given by

§=0,Ty=Ty2), E = Es(z, Dk, pes = (5,1,
The boundary conditions are
Tho=x1,0=F (N +Mscosmr) atz== 1.

From eqs (17) and (18), we get

T, = +z, (22)
SZ
Eb :T]l(l_SZ) +n2[[1_m]
P
cosr —— = sinr |+ 0 (s2). (23)
I+w" P
_ S
Pep =M1 M2 m
(cos@? + wP, sinm®?)+O0(s?). (24)

Perturbed state: To study the stability of the basic state
(egs (22)—(24)), we superimpose infinitesimal disturba-
nces of the form

G=q¢,T=Ty+T', Pe=Per + Pés (25)

where prime denotes perturbed quantities.

Introducing perturbed quantities (eq (25)) into eqs
(16)—(21), linearizing, eliminating pressure and assuming
normal mode solutions of the form

g, ) [wz0n
T |= 0(z,1) eiéx, (26)
pe ) (P, (z0)

we get the following of linearized eqs (27)-(29), where
w, 0, p. are the amplitudes and ¢ is the horizontal wave-
number in the x-direction. We note that since E; g and
VT are directed normal to the boundaries and hence the
problem considered here is isotropic in the plane of the
layer. The assumption s <1 allows us to consider the
electric field associated with charge redistribution due to
electroconvection in the liquid to be much smaller than
the externally applied electric field*.
The linearized governing equations are:
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oDw

5 = Dzw—Ra *w—B1*p m; +n, cosr)—a’ Dw,
t €
(27)
P2 = Do, (28)
ot
2
P, AR +V2% =, +M, cosmt)a—e, (29)
ot 0z

where ¢ is the wavenumber, D = 9/07° — (*, B= G.s, Pe =
-V%.

Boundary conditions for amplitudes on rigid isothermal
plates are

w=0, 0=0, z==1 (30)

To study the stability of this system, first we have to ob-
tain compatibility conditions. This is done in the next
section using single-term Galerkin expansion procedure.

Galerkin method: In the single-term Galerkin expansion
procedure, we assume

w(z, ) = AD(@)(2); 6(z, N = C(06,(2);

Oz, 1) = E(0):1(2). (3D

Substituting these in eqs (27)-(29) and eliminating A, C
and E, we get

1
Pr2E2<91W1m><W191m>

a

2 my _
(P.OO")—PA(DOOM)) {wa iy ]

{(Dwyw") — Ra2<Dw1w1m>

BP,P.0*(n, +1, cosmr)*

<v2¢1w?><wlelm><%9;¢lm ><Dw1wf“><elef“>

PAD*w,w™ X0 0™ +(D06 6} Dw,w™)
_Pr2<9191m><DW1W1m>

(32)

Criterion for the onset of EC: In this section we deter-
mine the conditions for the onset of EC using moment
and energy methods.
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Moment method: For the moment method, we set m =0
in (32), and obtain

1
P2, (w)

a

2 —
<a<el>—a<Del>>{R<D " ]
{(Dw)—P.a{Dwy)

BP,P.0*(M, +7, cosmt)2<V2¢1><W1><aaezl><DW1 X6,)

- <v2¢1>[R<D2W1><91> +<D91><DW1> _Pra2<91><DW1>] '

(33)
The boundary conditions are

w=0, 6,=0, ¢=F1 at z==I. 34

Following the Galerkin technique®™, we choose the trail
functions:

1 | coshiz cos(yl, —a*—Hz

(Dl = — ’
\/E cosh ¢ cos ,ul—az—ﬁz
2
T S 87
0, =cos—z;¢; =——z7———, 35
1 > ¢, > 5 (35)
where
I = Uy
200 —p, +a*)
(¢% + ftanh £ — % tanh?® 7 —u, +a?).
The critical wavenumbers are determined from
2 2 2 24
Y —a> =2 an [y, —a®—21=—C@nhl.  (36)

We note that this method is silent about the effect of elec-
tric Rayleigh number B on R, because when 0, is even,
{D®,) vanishes and when DO, is odd, {0,) itself vanishes
in eq. (33). To predict the effect of electric Rayleigh
number B on R,, we use the energy method in the next
section.

Energy method: For the energy method m = 1, then eq.
(33) becomes

1
P20, w Xwd,)

a
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R(Dzw W) —
(R<9191>_R<D9191>) H 5
Dwyw, ) — P.a™{Dwywy)

BPePrf2 m; +M» cos®t)*(V 2¢1w1) (w0,

<ael¢1><DW1W1><9191>
V20,00 P.AD*w,w; X0,0,) + (D08, X Dw,w,)
_Prz<9191><DW1W1>]

(37

We can integrate the integrals in eq. (37) using the trial
functions (eq. (35)). Since the expression is lengthy it is
omitted here, but it is numerically evaluated and the re-
sults are given below. The critical wavenumber is compu-
ted numerically by solving the transcendental eq. (36) for
different values of B, P,, P.,, ® and G. Using this critical
wavenumber, critical Rayleigh number R,. is computed
from eq. (37) and the results are given below.

The effect of unsteady electric field on EC in a poorly
conducting, saturated, mushy layer made of dendrites of
nano-size crystals is investigated using linear stability
analysis within the EHD realm. Eigenvalue equations are
derived using the calculus of variation. The compatibility
condition is obtained from the eigenvalue equations using
a single-term Galerkin expansion. The condition for the
onset of EC is obtained using moment and energy meth-
ods. It is shown that the Rayleigh number R, is independ-
ent of electric Rayleigh number B in the moment method.
From this we conclude that moment method is inadequate
in the present problem and hence eq. (37) for Rayleigh

a 25000 1 - - -+B=1500
20000 | » — - -B=1600
. — B=1700
15000 .\
R \\
10000 1 *y

\s,

5000 - \\ . »
1 °

N '

Ly

-5000

number is obtained using the energy method. The critical
wavenumber ¢, is obtained numerically by solving the
transcendental eq. (36) for P.=1, P.=0.04, s=0.01,
w=4 and r=0, 0.02, 0.01, 0.1, for different values of G
and B. Using these critical wavenumbers /., the critical
Rayleigh number R,. is computed for the values of pa-
rameters given above and the results are predicted in Fig-
ures 3 a and b.

Figure 3 a pertains to the case heated from below as in
Rayleigh—Benard convection for different values of ele-
ctric Rayleigh number B and for fixed values of P, P., ,
s and ©. From Figure 3 a, it is clear that an increase in B
decreases R, and hence we conclude that the effect of in-
crease in B is to augment convection. This instability
physically results from interaction of electroconvective
and thermo-gravity mechanisms as expected. Figure 30
pertains to the case heated from below for various values
of the porous parameter ¢ and for fixed values of B, P,
P., ® and s. From Figure 3 b it is clear that an increase in
G increases R, and hence the effect of increase in G is to
suppress convection. The Rayleigh number R, is com-
puted from eq. (37) for cooling from below and heating
from above for different values of B and for fixed values
of other parameters. The results are depicted in Figure 4.

From Figure 4, it is clear that an increase in B increases
— R, for given values of the other parameters. From this
we conclude that the effect of increase in B is to suppress
EC. From Figures 3 a and 4, we conclude that the effect
of electric field is to augment convection for heating from
below, and suppressing convection for heating from
above and cooling from below.

The electric Rayleigh number B is computed for differ-
ent values of ®, and ¢ for R, =0 (i.e. absence of gravity)
and for fixed values of other parameters. The results are
given in Table 1.

Table 1 shows the behaviour of electroconvective thres-
holds in the absence of gravity, i.e. buoyancy-free case
when R, = 0. Only the electroconductive instability exists

Figure 3. Rayleigh number R,, for different values of (@) electric Rayleigh number B and (b) porous parameter G.
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Figure 4. Rayleigh number — R, for different values of electric
Rayleigh number B.

Table 1. Values of B for different values of ® and /
B
l o=1 ®w=2 ®=3 0w=4 Ow=35
0.1 605.01 621.87 651.35 695.82 759.09
0.3 592.61 609.12 638.00 681.55 743.53
0.6 574.96 590.97 618.99 661.25 721.37
0.9 563.19 578.88 606.33 647.72 706.62
1.2 569.67 585.54 613.30 655.17 714.74
1.5 602.07 618.84 648.18 692.43 755.39

and we see that the increase in the frequency ® increases
the values of B, resulting in a destabilizing influence of
modulation. Finally, we conclude that at finite modula-
tion frequencies both stabilization and destabilization of
the basic state are possible depending on the amplitude
and frequency of the electric field.

Rayleigh-Taylor instability with porous lining

At present, only the linear RTI of the ablating plasma is
extensively investigated, assuming the plasma to be ini-
tially at quiescent state and the following mechanisms are
used to reduce the RTI growth rate.

(i) Gradual variation of density assuming plasma as an
incompressible heterogeneous fluid without surface
tension.

(i) Assuming plasma as a compressible fluid without
surface tension.

(ii1) IFE target shell with porous foam layer.

Numerous experiments and numerical simulations of the
above mechanisms except the foam, fit the following
simple approximate formula for RTI growth rate at the
ablation surface:

n=A —ﬁg —Bﬁva,
I+¢ (L
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(38)

where n is the growth rate, ¢ is the wavenumber of the
perturbation, g is the acceleration due to gravity at the in-
terface, €, is a constant multiplying the density gradient
correction term, L is the density scale length at the abla-
tion surface, A is the Atwood number, [ is a constant
multiplying the ablation stabilization, and v, is the flow
velocity across the ablation front, The first term on the
right-hand-side of eq. (38) is the growth rate, N, for the
classical RTI, i.e. incompressible inviscid fluid in the ab-
sence of porous lining, and the second term is the effect
of compressibility. Choosing suitable values for the con-
stants A, € and 3, one can fit the available data, as depic-
ted in Table 2.

At present, the available work on the use of foam, to
reduce the RTI growth rate, pertains to experimental
work and no simple theoretical formula similar to eq. (38)
is available. Therefore, Rudraiah et al.”? found an analy-
tical expression like eq. (38) using porous lining (i.e.
non-deformable foam) on the ablative slab, where the
porous material is made of foametal, aloxite or Invar al-
loys. When most materials are heated, they expand. But
sometimes it is advantageous to have materials that ig-
nore changes in temperature. In general, thermal expan-
sion can have serious consequences. To overcome this
problem, usually a material called Invar, an alloy of about
one-third nickel and two-thirds iron, is used. This mate-
rial has very low thermal expansion and ambient tempera-
ture, and it rarely swells. It was invented in 1920 by Invar,
a French physicist, who got the Nobel Prize for this work.

Using Stokes and lubrication approximations valid when
the wavelength of the instability is large compared to
thickness of the layer, Rudraiah®™ derived an analytical
formula for the RTI growth rate, considering dissipative
incompressible plasma bounded on one side by a porous
lining in the presence of surface tension 7y at the interface:

2
n=lelit —Blo,,
3 B

(39
where B = 8h’/y is the Bond number, 3= g(p, - pp), 7 is
the surface tension, B =300/(4+ a0), v,= (4 + ac)/
12(1 + o) 4(1 - EZ/B) is the velocity across the ablation
front, n is the growth rate and ¢ is the wavenumber. We
can see the similarities between eqs (38) and (39). The
first term on the right-hand-side of eq. (39) is the growth
rate ny in the absence of porous layer, and for conven-
ience we call it as the classical value for viscous incom-
pressible fluid in the presence of surface tension, given
by Babchin et al.’’.

From eq. (39) we get the maximum wavenumber,
£, =+ B/2 obtained by setting on/df = 0 and the corres-
ponding maximum growth rate, n,, is given by

_ B(4+ao)

= 2T 4
m 48(1+00) (“40)
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Table 2. Values of A, & and p

Reference A £ B

44 0.90 0.0 3.00
45 1.00 1.0 3.00
46 0.98 1.0 1.70
47 0.90 1.0 3.00
48 0.90 1.0 3.02

In the absence of porous lining the maximum wavenumber
is ¢, =4/B/2 and the corresponding maximum growth
rate is nyy, = B/12. Then we have

n, (4+00)
C4(l+oo)

n,

(41)

m

From eq. (38), with p =3 and A = 0.9, Takabe et al.* have
obtained

()1, = 0.45(mm)r,s (42)
where suffix T, refers to the results of Takabe et al. ™,
From eq. (42), Takabe er al.** concluded that the growth
rate of RTI is reduced to 45% of the classical value
(ym)r,. From our eq. (41) with oo = 0.1 (aloxite material)
and ¢ = 4, we get

Am = 0.7857(nm)v. (43)
From this we conclude that the mechanism of porous lin-
ing (non-deformable porous foam) reduces the growth
rate of RTI to 78.57% of the classical value.

Our objective here is to know whether a suitable strength
of magnetic field can reduce the RTI growth rate without
considering the mechanism of porous lining. Also to derive
a simple analytical formula analogous to the one given in
eq. (38) oreq. (39).

Next the relevant boundary and surface conditions and
approximations are given. The dispersion relation is then
obtained using linear stability analysis. The formula for
growth rate in the presence of magnetic field and absence
of porous lining, analogous to eq. (39) is also derived.
Some important conclusions are drawn.

Formulation of the problem

We consider a thin target shell in the form of a film of
unperturbed thickness & filled with light, incompressible,
viscous, electrically conducting plasma of constant den-
sity p; bounded on one side by a rigid surface and on the
other side by an incompressible, heavy, viscous, electri-
cally conducting plasma of density p, of an infinite ex-
tent, with an interface between the two plasma layers
subject to a transverse magnetic field and surface tension
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Figure 5. Physical configuration.

(Figure 5). This assumption on density is needed for RTI.
The fluid within the shell sets in motion due to laser-
accelerated ablative surface. At time ¢, the fluctuations of
the interface are amplified and the local thickness be-
comes a function of the position and time #, and we have
y=h+mn(x, r) where n(x, #) is the surface displacement.
We consider a rectangular coordinate system (x, y) as
shown in the Figure 5, with x-axis parallel to the shell
and y-axis normal to it and with n(x, 7) as the perturbed
interface.

The basic equations for conducting, incompressible,
viscous and electrically conducting plasma in the film are
the conservation of momentum

v L
P[a_3+(q-v)q}:_vp+uvzq+uhJXH’ (44)

and the conservation of mass for an incompressible
plasma.
V.g=0, (45)
where ¢ = (u,v) is theqvelocity,ﬁf =G[E +_L,Lh§><ljl]qis the
current density, VXE=-u,0H/dt, V-E=0,V-H =0,
E is the electric field, H is the magnetic field, U is the
viscosity, My, is the magnetic permeability and ¢ is the
electrical conductivity of fluid. These equations have to
be supplemented with suitable boundary and surface con-
ditions. These equations are sufficient for our purpose
since we deal with electrically conducting fluid of small
conductivity G, so that the induced magnetic field can be
neglected in comparison with the applied magnetic field.
Here we deal only with linear two-dimensional RTI in
continuum plasma, considering infinitesimally small dis-
turbances superposed on the basic state. The basic state is
quiescent and the interface is flat. Further, the following
Stokes and lubrication approximations’””' will greatly
simplify the analysis: (i) | < &. This assumption helps to
neglect the variation of horizontal velocity « with respect
to x. (ii) The Bond number B = 8h*/y < 1, which implies
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the gravitational effect is small compared to the surface
tension effect, where 7y is the surface tension and & = (p, —
p;) is the normal stress. (iii) The Reynolds number
R=UhIv < 1, where v is the kinematic viscosity,
which enables us to neglect inertial force because of very
viscous fluid. (iv) The magnetic Reynolds number
R, = WwoU, < 1, because of small electrical conductivity.
This enables us to neglect induced magnetic field com-
pared to the applied magnetic and electric fields. (v) The
Strouhal number § = L/t,U <1, L=,/y/8 where 7, and
U are the characteristic time and velocity which enable to
neglect local acceleration in the momentum equation.
These approximations, which are valid when the wave-
length of the instability of the ablative surface is large
compared to the thickness of the layer, are useful to ne-
glect many terms, particularly nonlinear terms in the ba-
sic eq. (44). We also assume that heavy fluid bounding
the lighter fluid is almost static because of creeping flow
approximation which is needed to study RT-instability”'.
Under these approximations, the basic eq. (44) reduces
to, after making the resulting equations dimensionless us-
ing the scales h for length, 8k for pressure, Sh*/u for
velocity and W/dh for time, the form

0 = —dp/ox + 9’ uldy’* — M’u, (46)
0 = —dp/dy, (47)
du/dx + dv/dy =0, (48)

where M =u,hH 40/ is the Hartmann number and
H, is the applied transverse magnetic field. These equa-
tions have to be solved using the following boundary and
surface conditions. The no-slip condition at the rigid sur-
face is

u=v=0 at y=0. (49)
No shear at the free surface is

duldy=0 at y=1. (50)
The dynamic condition is

p=n—2 T =t (51)
For linear analysis, the kinematic condition is

v=adn/or at y=1. (52)

Dispersion relation

Solving eq. (43) and using the conditions in eqs (49) and
(50), we get
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M? ChM

4o P {ChM(l—y)_
X

1}, ChM =cosh M, Pzg—p. (53)

Integrating eq. (48) with respect to y from O to 1 and sim-
plifying, we get

2
MChM — ShM 0 P ShM =sinh M .

o(1) =
M3ChM  ox?

(54)

From eq. (52), using normal mode solution of the form
N =1.e“" and using eqs (51) and (54), we get the dis-
persion relation of the form

n=n,—Plo,,
where

(M —tanh M) ¢(1—¢%/B)
= M3 5

(55)

Ua
M?—-3(M —tanh M)

P =307 )

n is the growth rate, ¢ is the wavenumber, B is the Bond
number, and

02 )
ny = ?(1—£ / B), (56)
obtained from eq. (55) in the limit of M — 0, and for
convenience we call it the classical value. Note that for
comparison purpose, v, is used both in eqs (38) and (55),
but they are different.

Equation (55) clearly shows that the effect of magnetic
field is to reduce the growth rate of RTI considerably
compared to the one in the absence of the magnetic field.
The physical reason for this reduction is that the trans-
verse magnetic field suppresses the flow by converting
the kinetic energy into magnetic energy.

A self-consistent analytical approach is used to study
linear RTI of an ablatively laser-accelerated target filled
with an incompressible electrically conducting viscous
plasma, in the presence of a transverse magnetic field.
The RTI growth rate formula given by eq. (55) is analo-
gous to the one given by eq. (38) for compressible fluid,
and eq. (39) for porous lining.

Setting n =0 in eq. (55), we obtain the cut-off wave-
number ¢, above which RTI mode is stabilized and is
found to be

¢, =+B.

The maximum wavenumber £,, obtained from eq. (55) by
setting on/df = (0 is

¢, =vBI2=1_12.

(57

(58)
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Equations (57) and (58) are true even in the absence of
magnetic field (i.e. M = 0) given by eq. (56) and for con-
venience we call them as classical results. The maximum

growth rate, n,, for the corresponding £, given by eqs
(55) and (56) is

B(1 M? —3(M —tanh M
n,=—|——=Al|, A= ( - ) (59)
413 3IM
Table 3. Variation of G,, with M
Hartmann Maximum growth
number M rate G,
0.01 0.99996
0.10 0.99602
1.00 0.71522
10.00 0.02700
100.00 0.00030
B=0.06
e o
nT 0,003 K
" B=004
A R
0.002 4 h
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Figure 6. Growth rate n versus wavenumber £ for M = 1 and for dif-

ferent bond numbers B.
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Figure 7. Ratio of maximum growth rate G, versus M.
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Rom = BI12. (60)

From these, we get the ratio of maximum growth rate n,,
to Rom, given by

G = Np/Mom = 3(M — tanhM)/M. (61)
Equation (55) is plotted in Figure 6 for the growth rate n
versus the wavenumber £ for M = 1 and for different val-
ues of B. We see that the perturbations of the interface
having a wavenumber smaller than f are amplified when
>0 (i.e. py <py) and the growth rate decreases with a
decrease in B, implying increase in surface tension. That
is, increase in surface tension makes the interface more
stable. Similar behaviour is observed even for M = 10 and
it was found that an increase in M decreases the growth
rate considerably. To know the amount of reduction in
the growth rate by magnetic field compared to that in the
absence of magnetic field, eq. (61) is numerically com-
puted for different values of M ranging from 107 to 10°,
The results are given in Table 3 and are also plotted in
Figure 7 with G,, versus M. We see that the decrease in
the growth rate compared to the classical one is steep for
M in the range 107 to 10" and the ratio G,, becomes in-
dependent of M for values M > 10, tending to the value of
0.0003. For M = 1, we find that G,, = 0.71522, that is, the
maximum growth rate is reduced to 71.52% of the classi-
cal value n,,. However, at M = 10, we find that the maxi-
mum growth rate is reduced by 97.3% of the classical
value n,,. Similarly, for M = 100, we find that the maxi-
mum growth rate is reduced to 99.97% of the classical
value #n,,. From this, we conclude that an increase in the
value of magnetic field M, reduces considerably the
growth rate compared to the classical value. This infor-

mation is useful in the extraction of IFE efficiently, by

maintaining the symmetry of the target.
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