Effect of charge orderingdisordering on Raman line shape in manganites
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Manganites are characterized by a fascinating interplay of double exchange, spin and charge fluctuations,
and orbital excitations. In this paper we focus attention on charge fluctuations and concomitant charge
ordering/disordering, influenced by phonons. Our theoretical results, based on a resolvent expansion of the
time-development operat@propagator, are specially tailored for calculating normal mode correlation func-
tions, relevant for optic modes and the associated Raman scattering. The computed line shape, and the resultant
line shift and linewidth, are compared with experiments iggfCa, 3 MnO;. While the line shift data agree
well with theory, the linewidth results indicate that changks)ordering may not be the only relaxation
mechanism in this system.

I. INTRODUCTION There will of course be a static line shift due to the presence
of charge ordering itself.

Manganites are systems of great interest in contemporary With the preceding survey the outline and purpose of the
condensed matter physics. They exhibit a remarkable rang@@sent paper are as follows. In Sec. Il A we present the
of phenomena including metal-insulator transition, coloss%ra_m"ton'an which forms the basis of all our calculations.
and giant magnetoresistance, electron correlations, ar\ his Hamiltonian describes charge ordering and hopping in a

h Jorbital ordering. We focus our discussion in theattice gas picture besides, also, charge-phonon interaction.
charge/orbi Ing. us our discussion 1 In Sec. Il B we set up the calculational scheme for the Ra-

present work on charge ordering, especially in relation iy, jine shape. Section Il C then contains a discussion of a
Raman Scattering experiments. unitary transformation on our basic Hamiltonian, which pro-

Among the manganites thed3ransition metal oxides are vides a convenient method of calculation. The complete line
characterized by relatively smaller bandwidths. Conseshape calculation is next presented in Sec. lll. From the
guently, Coulomb correlation between charge carriers plays anotional narrowing” limit of the line shape, the line width
dominant role in determining magnetic and electronic prop-and the line shift are extracted in Sec. Ill C. Because the
erties. One manifestation of this correlation is the occurrencétarting point of our analysis is ab initio Hamiltonian, the
of charge/orbital ordering. Examples of such systems arémperature dependence of the line shape parameters can be

1 . i\ 2 extracted from first principles. This calculation, involving
F&0,,”"  Lay ,SKNiOs (x=1/33)," L&y SKFeO; (X gne_phonon and two-phonon processes, is presented in Sec.
=2/3) ** (Lay_yNd,),_,SK,CaQ, (x=1/8)7and so on. Il D. While the method of calculation and the derived re-

Perovskite-type manganese oxides, formulated asults for the Raman line shape are of general validity for
RE; xAExMnOs;, where RE and AE are a trivalent rare earth charge-ordered perovskites, we make specific comparison
and an alkaline rare earth, are other prominent systemgith the recently obtained Raman data i BEa, 5 MnO5.°
marked by an interplay of spin, charge, and orbitattice)  This system, which is a paramagnetic insulator at room tem-
degrees of freedom. For instance, in REMn@®=0) the  perature, is characterized by an increase in resistivity as the
electron configuration (@; t3, ej) is realized for the temperature is lowered and a peak in magnetization at the
Mn3" site, and due to ordering of theg orbital the substance charge orderingCO) temperaturelT co~240 K. However,
is a layered antiferromagnetic insulator. In REAE,MnO3;,  the antiferromagnetic spin-ordering occurs not concurrently
the substitution of RE" with AE?" at the perovskite A site  but at a lower temperature,®170 K, and no ferromag-
controls the mean Mn valence and a charge/orbital orderingyetic state is known to occur in zero field. The antiferromag-
namely a real space ordering of RMMn** accompanied netic ordering is of the CE structure beldWo, as has been
by a simultaneous ordering ef; orbital of Mr**, is known  confirmed by neutron diffraction studyThe temperature de-
to occur atx~3. pendence of the two Raman active modeg2hand Ay(4)

In this paper we present a fully dynamical theory of shows that the peak position increases by about 10 ‘cas
charge ordering, in which the dynamics is occasioned by théhe temperature is lowered from 300 K to 25°KThis is
hopping of a charge from one site to a nearest neighbor sitenuch higher than what can be attributed to quasiharmonic or
in an underlying lattice gas model. In addition, we treat re-anharmonic contributions. Most interestingly, the tempera-
laxational dynamics, caused by the coupling between théure dependence of the linewidth is anomalous in that it in-
(charge order parameter and phonons. It is the combinatiorcreases on decreasing the temperature. Section 1V is devoted
of these two kinds of dynamics which is envisaged to con+o a detailed comparison between our theoretical results and
tribute to the broadening and shift of the Raman line shapehe Raman data in PgCay 3MnO3.8 Finally, in Sec. V, we



offer a few concluding remarks, both on the present work as B. The Raman line shape

well as future directions. The Raman line shape is giveny

Il. THEORETICAL FORMULATION lq(w)= %fﬁ;dtexq - th)<QE(O)Q_9(t)>’ (2.9

A. The Hamiltonian

whereQ, is the operator associated with the vibrational co-
ordinate for theqth Raman active optic mode and the angu-
lar brackets indicate statistical average. The time dependence

charge/electron on a lattice site is represented by an Isin? Q-q is governed by the usual Heisenberg evolution. Al-

spin, pointing up or down, respectively. The fully charge- fernatively,
ordered state then corresponds to an antiferromagnetic

ground state of the pseudospins. This ground state can be (w)=£Ref
disturbed in two distinct ways in which fluctuations make d ™
their presence felt(i) thermal effects; andii) tunneling/

hopping of the charge/electron between two near neighbor (z=iw+9), (2.5
lattice sites. Clearly, in this picture, the effect of the Pauli _

exclusion principle is ignored, except that the hopping of arwhereC(z) is the Laplace transform of the correlation func-
electron to an already occupied site is excluded. Thus thgon:

spin Hamiltonian can be written as

Following Lee and Mirf we formulate charge ordering,
i.e., alternate ordering of Mi and Mrf", in terms of a
lattice gas/lsing model. Thus the presence or absence of

oo

dtexp(—iwt)Cq(t)= %Reéq(z),

Co(1)=(Qq(0)Q g(1))- 2.6

s . Recall that we are interested in Raman transitions between
H:Zj ViiSiSj’Lt<i21.> (/s +sis7), (2D the occupation number levels correspondingnte=0 and
ng=1 only, and involving a frequency of the order of
) - 258 cm'! (=370 K). Thus all other transitions are ther-

whereV;; (>0) denotes the strength of antiferromagnetic |y forbidden as the Boltzmann population of the higher
coupling between pseudo-spisfs, assumingz-axis to be the  excited levels i;>1) is exceedingly small, even at room
direction in which sublattice ordering occurs, wheresthe  temperature.
strength of hopping, the latter being described in terms of the  Hence, it makes sense to isolate the two levels involved in
ladder operators;” . The angular brackets oveandj depict  the transition, ignore the other levels and represent these two
nearest neighbor sites. levels with the aid of Pauli matrices;,, o, etc. Further,

To Eg. (2.1) we must add the effect of lattice distortion the rest of the phonon modes may be viewed to provide a
when the electron resides at the #nsite in view of the fact “phonon background,” only passively participating in the
that M** is a Jahn-Teller ion. Following again Lee and underlying relaxation processes through the charge-ordering
Min,® and writing the displacement field in terms of phononoperators?. Thus the full Hamiltonian, relevant for Raman
creation and annihilation operators, the Hamiltonian in Eqscattering, can be written as
(2.1) can be expanded as

1
H=§ Wq‘72+2i giqSiZO'x +Hi—m» 2.7

Hi-w=Hst+ 2 572 Gi(K)(bi+by)+ > wo(K)biby, - |
[ k - - - Kk - - - whereH__y, though still given by Eq(2.2), is to be read

(2.2 such as to presume that the-q term is excluded from the
summation. Since the phonon backgroubdth comprises
where’ is the spin Hamiltonian described by the two termsof a continuum of modes this exclusion is expected to have
in Eq.(2.1), G;(k) is the strength of the distortion field at the no discernible effect on the nature of the bath. In this sim-
ith siteR; due to thekth phonon mode: plified picture the transition operat@, may be replaced by
oy, thus B

Gi(k)=G(kye'“H, (2.3 Co1)=Ag( T 0) (1), 2.9

whereA, is an arbitraryg-dependent prefactor that can be

b.(by) is the phonon creatiofannihilation) operator, and absorbed in the intensitpr dropped altogethgrand

wo(K) is the “free” phonon frequency. Lee and Min have
calculated the shift in the phonon frequency based on Eq. o (1) =exp(iHt) o (0)exp —iHt). (2.9
(2.2) but have ignored the hopping termFor our workt is

crucial as it critically governs the Raman line shape, in genThe Hamiltonian in Eq. (2.7) belongs to a(very) large
eral, and the linewidth, in particular. Thus the Lee-Min resultHilbert space comprising of the two level spaceogfN two
for the line shift will naturally be a by-product of our result. level spaces 0§ (N being the number of lattice sitesle-



noted by{s}, and the 3-dimensional space of the phonons,
represented byp} wheren is the number of atoms per unit | (W=—R

cell.

C. Unitary transformation

As is customary in polaron physiéSjt is convenient to
eliminate the linear coupling term, i.e.,

mation:

S= exp[E 2 (k)(bk b |- (2.10

Under this transformation the Hamiltoniéty _, transforms
into:'

Hi-m=SH, -nS™*

:% vijsiz

s+t (B;B/s's; +B/B/s /)
i

+ > Wo(k)blby, (2.11)
K - 2 =
where
. Gi(k)
B =ex :2 — (b* b |, (2.12
i Wo(k)
and
7y &G 013
TR wolk) '
The full Hamiltonian in Eq(2.7) then becomes
~ 1 , ~
HZE WSUZ+2| giﬂsio-x +HL*M' (214)

Note that the correlation function in E€R.8), and hence the

1 1

1
4 S—i(w+wi+ad) S—i(w—/wi+aj)
- (217

where

the second term on
the right hand side of E¢2.2), through a unitary transfor-

aq=2i igS (2.18

and the angular brackets now denote statistical average gov-
erned by the Ising term, viz., the first term on the right hand
side of Eq.(2.11). Considering only the Stokes term and
employing mean-field approximation the Raman line posi-
tion is given by

1/2

(2.19

~| Wi+ EJ 9iq0jo(S7S])

This result is somewhat different from the one derived by
Lee and Min. In particular, for optical frequencies, the first
term inside the square parenthesis is much larger than the
second. Thus,

Giq9;
Wq Wq 1+ — E qulq(sizsjz) ) (2.20
2 Ij Wq
Hence the line shift is given by
— 9iq9jq
Aquwq—wq=—z =—=(s[s]). (2.21
— — — |] W9

We shall return to this result later in the context of experi-
ment.

IIl. LINE SHAPE CALCULATION

A. Preliminaries

Before we embark on a perturbation theory calculation
involving the many body Hamiltonian E¢2.14) it is useful

line shape, remain invariant under the transformation in Eqto discuss in physical terms the logical sequence of the vari-

(2.10.

We may remark in passing that if the hopping tetns
zero, the case considered by Lee and Min, the sygspris
decoupled from the systefp} and the operatos; is a con-
stant of motion[cf. Eq. (2.11)]. Thus™, _y drops out from
the time evolution ofo,(t) [see Eq(2.9)] and we have

—exp(iHot) o (0)exp(—iHgt),  (2.15

where

1
Ho=5 WQUZ+Z 9igSTox |- (2.16

Using the property of Pauli matricswe can easily calcu-
late o, (t) in Eq. (2.15), substitute the result in E¢2.8), and

finally evaluate the line shape function in EG.5). The re-
sult is

ous steps involved. The first step is to recognize that the first

term inH [cf. Eq.(2.14)], which is primarily responsible for
the occurrence of the “bare” Raman line centered around
Wq, is not influenced byH, _\ but for the presence of the
charge-ordering operatgf . The latter fluctuates in time, if
we think in terms of an interaction picture treatment of

H,_w. Alternately, we could adopt a stochastic

formulation®>**in which # is replaced by a fully time de-
pendent Hamiltonian:

H(t)= azwq+axz glqs )], (3.1

wheres/(t) is a suitably modeled stochastic process, simu-
lating the effect of the heat bath in which the system is em-
bedded. While we shall present such a stochastic model cal-
culation in Appendix B and compare with our many body



formulation, the whole idea of the many body treatment is inand Z,, is the partition function for the phonon system. In
fact to extract the time dependencesift) from first prin-  second order perturbation theory the averaged time-
ciples. development operator reduces’to:

At this stage it is instructive to assess what the influence

of the second term in the right of E(8.1) on the eigenstates (Z{(z))avz[z—i,COJrE(z)]*l, (3.9
of the first term is expected to be. As, is purely off- ~ ) . .,

diagonal in the representation in which is diagonal, the Where(2) is the so-called “self-energy:

second term causes transitions between the Raman active

levels. This would produce a shift, the static component of S(2)=| £ Z—i(£p+£s)£' av, (3.10

which is already estimated in E.19, and a width propor-

tional to the mean square fluctuationdfi(t). As the latter is where different scripLC’s represent Liouville operators asso-

ehxpeclf]ted to bsco_me more andTmozce rapk|)d Ias onhe ap%r%aChaﬁted with different parts of the Hamiltonian, denoted by the
the charge-ordering temperaiureo from below, the width oo cfive subscripts. It is pertinent to mention here that it is

is expected to decrease as the temperature increa3eg, to o , .
This qualitative picture is indeed what is seen inthe Markovian limit of%(2) (i.e,, z—0) is what appears as

experiment$, as discussed in detail in Sec. IV, and is akin tothe refaxation matrix in the stochastic model calcuatze
the familiar “motional narrowing effect” in nuclear magnetic ~APPendix B.

resonance® In order to translate the above picture into con-
crete mathematical expressions we shall now focus our at-

tention to7, _ and split it as

B. Self-energy in mean field approximation

Recall that we are interested in the partially charge-
ordered regime below o (and aboveTy) which exhibits
antiferromagnetic ordering of the pseudo-spins. In mean-
field theory the antiferromagnetic phase splits into two sub-
lattices A and B, with alternate up and down spin orienta-
tions. Thus it makes sense to isolatee central spin, say 0

H—w=Hs+H+H,, (3.2

whereH, is the pseudo-spin part:

Hs=2 Vyjsis], (3.3
ij
H, is the phonon part:

Hy= 2k wo(k) bgblﬁ, (3.9

and ¥, is the interaction between the two parts:

H|:t<2> (B B/'s{'s; +B/'B; s’ s/). (3.5
1]

Recall that in the calculation of the correlation function

Eq(z) we do not have to worry about amljrect effect on the

transition operatorr, of the phonon system; instead we are
time
development operator. The Laplace transform of the time-"

interested in extracting the phonon-averaged
development operator can be written as

Uz)=(z—iL)™ 1, (3.6)

where £ is the Liouville operatot associated with the total
Hamiltonian H in Eq. (2.14). The phonon-averaged time-

development operator is then given by

1 ~
Z))av=35" exp — Ny Ny, M| U(Z) Ny Ny ),
(U(D)ay=5~ 2 exp(—BEn) (M. nll(2)|ni.n)

p nk,n,L
o (3.7)
whereEnk is the energy eigenvalue @{, defined by
Hp|n5>= Enk|n|f>, (38)

which, without loss of generality, can be assumed to belong
to sublatticeA. (Clearly, for a translationally invariant sys-
tem, the results would be the same if the central spin were
chosen to belong to sublatti&) In this simplified picture

the Hamiltonian in Eq. (2.14) can be rewritten as

H=Ho+Hs+Hpy+H,, (3.11)

where, now
Ho= %(WSUZJF gﬂsécrx), (3.12
H.th’ (ByB/'s¢s; +B¢B; sps'), (3.13

the prime indicating that the sum ovegoes over the nearest
neighbor sites of 0, which therefore belong to the sublattice

B

One other point merits attention. Since it is only the cen-
tral spinsg that participates directly in the Raman transitions,
all other spins have to be lumped into what is regarded as the
heat bath. Thus, the meaning of (. ),, in Eq. (3.7) has to

be expanded in order to encompass not just the average over
the phonon states but also the one over the eigenstates of all
other spins, excluding the central spin. Therefore,

- 1
(u(z))av:ﬁ > D e FETEY
P=S nyny s -

(3.19

whereE; is the energy eigenvalue of the Ising spin Hamil-
tonian (excluding the central spjrandZ, is the correspond-
ing partition function. Needless to s&g describes collec-

X (s, ns|U(z)ngs’ ngs’),



tively the spin configuration{s;,s,,...}. Of course,
(U(2)) 4, is still given by Eq.(3.9), but now the self-energy
is [cf. Eq.(3.10]:

2 7)= e B(En +Eg)
1 Ial nlal
X nks nks |(£—+£s) nEs ,nEs .
(3.19

It may be noted thad (z) is a superoperator in the re-
stricted Hilbert space ofj alone as all other degrees of
freedom are averaged over in E§.15. Since the operator
oy involved in the Raman transition commutes wigh, the

specific matrix elements &(z) that are required in the line
shape expressidref. Eq. (2.8)] are of the type

m(2)=(mo,mg[S(2)|mg,mg), (316

where the single site stat@s,) and|m}) are the eigenstates
of s§:

Selmg) =mg| M),
SolMg) = mg|mg), (3.17)

the allowed values ofn, and my being 3 and —3. Thus
there are onlyfour relevant matrix elements d(z). These

are computed in Appendix A, in the Markovian limit and are

reproduced here:
(++[3(0)[++)=—(++[2(0)] - —)=xp_,
(3.18
and

(== [3(0)] = —)=—(—=[3(0)[+ +)=\p,,
(3.19

where\ is the “relaxation rate,” given by

)\Zr]tzfjo drexp(—2iJ(0)M7)é&(7), (3.20

&)= ex;{ fdw&cotr(%ﬂw”

j(w) coswrt

expf daw— ——

X
w2 sinh(2Bw) |’

(3.21

7 being the number of nearest neighbor sitdsis the sub-
lattice magnetizationj(w) is the phonon density of states
and p.. are the Boltzmann populations for the states)
=|3) and |mg)=|—3), respectively. Since the mean-field
Hamiltonian for the central spin, located in tAesublattice,
is given by

HI=J(0)Ms3,

J<0>=$ Vi, (3.22
the occupation probabilities are:
eF2IOMB
p+= . (3.23

e2JOMB 4 o-3J(O)MpB

As is shown in Appendix B, expressiori3.18 and (3.19
are in conformity with detailed balance of transitions.

C. The line shape and its “motional narrowing” limit

At this stage it is pertinent to point out that the many body
calculation based on the resolvent operator technique, pre-
sented above, yields an expression for the line shape which is
identical to the one derived in the stochastic formulation, in
the Markovian limit(see Appendix B However, the advan-
tage of the many body treatment is that within the same
formalism one also obtains a calculable expression for the
relaxation ratex. This situation should be contrasted with the
stochastic theory in which appears merely as a parameter.

With this background we refer back to Appendix B and
note that

S(0)=\(1-J), (3.24)

where the transition matrix, which was introduced earlier in
Appendix B, has the special structure

(MoMg| J1MoMG) = Prmy Sy S - (3.29
Recall that in evaluating the angular brackets in @cf), the

superoperato(l?{(z))a,, has to be further averaged over the
states of the central spif. Denoting this averaging by an
overhead bar, we have

1 |
(z+N)—iLo—\J|

(U2)a= 2 Pm,

Mo mo

My, Mg mg,mg | .

(3.26

The structure of7 as in Eq.(3.25 allows us to simplify the
above expression &%

(U2)=[U(z+N)"1=\]7E, (3.27)
where
1
U%z+N\)= > Pnm (mo Mo mméymé)-

momg

(3.28

Note thatL, is the Liouville operator associated with the
Hamiltonian given by Eq.(3.12. In the regime of rapid
relaxation it makes sense to further sgl as

Ho=Ho+V, (3.29

where



— 1

HOZEWEUz- (3.30
and

V= EQEUXSS, (3.3)

and develop the coupling term, proportionalgpas pertur-

bation. Thus, denoting the corresponding Liouville operators -

aszo and L, , respectively, we may derivé:
U (z+N)) t=(z+N—iLy) — IEggM oy

142 2

qu(l_M )
+0'><_——0'><, 3.3

zeN—iL, (3:82

where the superscript cross denotes Liouville operators and ——

M, the sublattice magnetization, is obtained from

M :z pmomO- (3.33

Mo
Therefore, from Eq(3.27),
UD))ay=2— i Lot geM o + (F9(17MY
U(2))ay=2—1Ly 299 Oy T Oy z+)\—iZO Oy
(3.39
The complete line shape is then given[loy. Eq. (2.9)]

Cy(2)= ME (o ' Yo' ol vy (' w| (U2) 0| v V),

ror

m'v

(3.35
where|u), |v), etc. are the eigenslates @f . Thus
Co@=(+ U@+ =)+ (= +[U2)| - +)
+(+ U= )+ (= + U2+ —).
(3.39

A few limiting cases may now be discussed.

1. “Static” shift
If the hopping ternt is neglectedthe Lee-Min limip the

Wq= (W -+ ggM?) Y2 (3.39
This is the mean-field version of ER.19. Following our
discussion after Eq2.19), the line shift, for optical frequen-
cies, is given by

2

Awg==—M?2
- 2 Wq

(3.39

2. “Dynamic” shift and width

The effect of relaxational dynamics, occasioned by the
phonon-mediated hopping of charges, is encapsulated within
the fourth term inside the curly brackets in E§.34). Since
the effect of static shift has already been estimated above, we
shall ignore the third term and write

-1
_ 1
U2))ap=32—1L +ig2(1-M3) g ———
(U(2))4 0 499( oy Z+)\_i£00-x
(3.40

The 4x 4 matrix inside the curly brackets in E.40 can
be written as(where the rows and columns are labeled by

++, ——, +—,and—+)
N 207 207 0 0 i
2T — — =
224—W(21 22+W§
207 N 207 0 0
[— Z -
224—w(21 ZZ+W§
) 2a 2a ,
0 0 z—iwgt+ = - =
=z z
2a )
0 0 - = z+iwgt+ =
_J Z - Z-
(3.41
where
a=3gq(1-M?),
Z=z+\. (3.42

It is clear from Eq.(3.36 that it is only the lower X2

relaxation rate\ goes to zero and the Laplace transform of o in Eq.(3.41) which is relevant for the line shape cal-

the averaged time-development operator in E326) re-

duces to the Laplace transform of the unperturbed time

development operator, i.e.,

(U(2))0y=U(2)=

| (3.37
Z=iLo+ 59qM oy

culation. After inverting this block and summing all the four
elements, as required by E@®.36), we have

From the structure ofo [cf. Eq.(3.30)], it is evident that the  which can be further simplified, in the regime of rapid relax-

characteristic frequency is now given by

ation, as



2 )\Z(T)OCT7!

Co)=——5—. (3.44
Wyq T<0Op, (3.49
z+ —=
da or
z+—
A 1 1/2 Ea
- o exp — —|,
Denoting (EaKT F( KT)
4o g5(1-M?) T>05,, (3.50
r=—=-=+_ - (3.49 °
A A where @, is the Debye temperature and the activation en-

ergy E, is the so-called “coincidence energy.” However, in

Eq. (3.44 can be written as a sum of two terms: 4 . .
a- (344 an important paper by Teichler and Seefeit has been

iT/2 pointed out that one-phonon contributions are significant
1— when the distortion fields at the two sites involved in the
~ W 1_1“2/4\,\,5 hopping process are distinct. Because this is indeed the case
Cq(2)= e = for charge hopping between Nih and Mrf* sites, M+
. being a Jahn-Teller ion, we must reckon with this particular
o _T12 2
2= —iwg V114w, effect, which yields
ir/?2 Ny (T)ecT,
1+ ——
W\ 1-T2/4w; T<0Op. (3.5)
+ = -, 3.4
r 5 (348 For the system BgLa 3 MnO; at hand, the Debye tem-
Z+§ + iWq\/1—1“2/4Wq perature is substantially larger than the charge-ordering tem-

peratureT.o. Hence, in order to fit the date we have con-
Thus the “dynamic” width is given byl' in Eq. (3.45  sidered
whereas the “dynamic” shift isl'%/8w,. Combining with 5
Eq. (3.39, the net line shift is given by I(T)=g2 (1-M%)

YT rary (.52

1g§

=2 . (3.47  wherea is an arbitrary fitting parameter.
w
a

Awg

1({gq\2
M2+—(—q) (1-M?)2
4\

IV. COMPARISON WITH DATA IN Pr 5Ca05MnO 3

D. Temperature dependence of the linewidth ) . . .
In this section we turn our attention to the analysis of

As discussed above, the linewidth is given by E2149.  Raman scattering experiments, performed in single crystals
Thus ther_e_are two sources of the temperature dependence(gffpromc%mMnOS, over a temperature range of 20 K—300
I, one arising from the temperature dependence of the ord§{. The studies reveal strong anomalous temperature depen-
parameteiM: dence of line shift and line width of the two Raman activge

T modes. The details of the experiment, the symmetry analyses
M =tan!‘(£M and the origin of the relevant optic modes have been com-
T municated recentl§? It turns out that only two mode#\y(2)
centered on 258 cit and involving in-phase rotation of the

_} @ (3.48 in-plane oxygen cage, amj;(4) centered on 289 cnt and

o2 K ' involving out-of-phase rotation of the apical oxygen, are
prominently observable, upto room temperature. We discuss
below, section wise, how the data compare with the theoret-
ical results presented in Sec. Ill.

and the other from that of the relaxation rate

In order to extract the temperature dependenck,aine
has to evaluate the integral in E®.21). Such an integral is
known to occur in various contexts of polarofisadiation-
less transitions’ phonon-assisted tunneling of light intensti-
tials in metals:®®%%etc. As is well known in the literature, As we mentioned before, the line shift has been calculated
the terms corresponding to one-, two-, etc. phonon processesrlier by Lee and Min, albeit in the context of ultrasonic
are obtained by expanding the exponential in the squarmmeasurements involving acoustic phonons. There are two
brackets in Eq.3.21) in a power series. These processesdistinct ways in which our result in Eq3.47) goes beyond
contribute different temperature dependencies. Normallythat of Lee and Min. First, of course, is the presence of the
one-phonon processes can be neglected and the two-phonsecond term in square parentheses in(Bet7), which origi-
processes yiellf nates from the phonon bath-induced relaxation dynamics.

A. The line shift
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(') mode andy,=38.8 cm ! for Agy(4) mode. Having thus de-

. Ag2) terminedg, we employ these values in the rest of the fit as
20 . . 1 well as in the analysis of the linewidth data, given below.
E ’ In Fig. 1(a) we display the line shift result as a function of
% 0| 1 temperature, along with raw data, for thg(2) mode: w

=258 cm'!, and fixed values fog,=36.7 cm * and T¢o

, , =280 K. Figure 1b) exhibits similar plots, but now for the
150 250 Ag(4) mode: 289 cm' and derived value ofg,

202 , , =38.8 cm! , while the mean field transition temperature
®) for charge ordering is kept fixed at 280 K. The agreement
Ag4) between theory and experiment seems quite satisfactory. One
| point is worth remarking here. Sindé is nearly unity at 80

K at which temperaturdwy, is identical (=2.6 cm L, from

290 : . 1 the digital datd), the ratiog/w, is the samg =5.2 cm %,

cf. EqQ.(3.39] for both theAy(2) andA4(4) modes. Thus an
289 : : important conclusion is that the line shift simply scales with

50 150 250
T the square of the order parameter.

258
50

201 +

Ao (cm™)

FIG. 1. The line shif(in cm™?) based on E¢3.39, whereM is
given by Eq.(3.48 and T¢p has been fixed at 280 K, is plotted
versus temperature from 50 K to 280 (& For the mode frequency
w,=258 cm ' By equating the theoretical resul=@.6 cm %) Before we analyze the linewidth based on E852 we
with the data point aT =80 K, the value of the coupling constant should point out that the narrowing of the Raman line in our
has been deduced ag=36.7 cm*; (b) for the mode frequency treatment arises entirely from charge-disordering process,
wq=289 cmt. Again, by fixing the theory £2.6 cmi'') with  caused by intersite hopping of charges, triggered by phonons.
data point afT=80 K, we findg,=38.8 cni*. The data points Therefore, at temperatures much lower thegy, when
(Ref. 6 have been shown as solid circles. charge ordering is complete, it is expected that hopping of

charges would also be rare events, having a negligible influ-
This was not treated by Lee and Min. Apart from that, evenence on relaxational phenomena. This is clearly reflected in
when it comes to computing the static line shift, our result,Eq. (3.52 which shows that the width goes to zero when the
given by the first term in Eq(3.47), is different. This is order parameteM saturates to unity.
because we have an explicit expression, derived in mean- From the discussion in the above paragraph it is evident
field theory and for optical frequencies, relevant for Ramarthat charge disordering cannot be the sole reason for the
scattering. dynamic linewidth. It was mentioned earlier that the system

It turns out, however, that the dynamical contribution toat hand, PygCa 37MnOs, is marked by an antiferromagnetic
line shift, given by the second term in E@.47), is of order  transition at a Neel temperatuigy=170 K. Hence, it is
(gq/)\)z, and is therefore, negligibly small compared to theexpected that belowthere would be significarimagnetig
static shift. We have verified this point numerically. There-spin fluctuation effects which might contribute to the Raman
fore, what we have plotted in Fig(d) and Fig. 1b) is sim-  linewidth.

B. The linewidth

ply the contribution of the first term in E3.47), in which In a scenario, completely different from our charge
the order parametevl has been computed self-consistently (dis)ordering mechanism, Pai and Ramakrishnan have con-
from the mean-field solutio(3.48. sidered a spin-phonon interaction involving thg spins and

A few comments are in order regarding the fitting of thethe A4 modes?! Using a Schwinger boson model for spin
data with theory. In the observed data there is a sharp changcitations and treating the spin-phonon coupling in second
in the mode frequency at around 50 K, which has been aterder perturbation theory, Pai and Ramakrishnan have calcu-
tributed to the presence of a canted antiferromagnetic insuated the decay rate for th&; phonons. This could be a
lator phase below that temperature. Since the physics of thiglausible mechanism for the observed linewidth at low tem-
phase has not been included in our theory, the data analysieratures and mode softening at temperatures of orgler T
has been made only for temperatures above 50 K. Secondpmewhat higher.
we have set the critical charge-ordering temperafigg at We come back now to our linewidth result, originating
280 K for the purpose of comparison with experiment, be-from chargetdis)ordering processes and plot in FigaRthe
cause mean-field theory is known to overestimate the transexpression given by Eq3.52 for the Ay(2) mode atw,
tion temperature by at least about 10%. Finally, the only=258 cni? for which we had estimated earlier from the
fitting parameter left is the coupling constagy. SinceM line shift fit, the valueg,=36.7 cn* for the coupling con-
saturates to unity below around 80 K amg for both the  stant. A similar plot is given in Fig. (®), but now for the
A4(2) andA4(4) modes are known we have evaluatgcby ~ Ay(4) mode atw,=289 cm ! andg,=38.8 cm*. In both
equating the experimental data pointTat 80 K to the the-  Fig. 2(a) and Fig. 2b), the value of the parametarhas been
oretical value. The results arg,=36.7 cm* for Ay(2)  estimated to be around 1&'. Although the value of a is so



30 ‘ ‘ - ‘ temperature range of 200 K-300 K, both for thg(2) and
fg’(z) A4(4) modes, in Figs. @) and 3b), respectively. Consider-
20| ] ing that the coupling constants aterivedfrom the line shift
5 data and are no longer fitting parameters, and the only fitting
§ 10+ parameter left is the relative weightage “a” of one-phonon
versus two-phonon processes, the agreement between theory
and experiment between 200 K and 300 K is remarkably
050 1 60 150 2(IJO 250 300 gOOd :
50 ; ; . ‘ V. SUMMARY AND CONCLUSIONS
)

40 ¢ A ] We have addressed in detail in this paper the issue of
Taol | charge ordering which is considered to be ubiquitous in the
s topically important materials of manganites. The many body
20 1 theory we have formulated has been specifically geared to

10} 1 carefully scrutinizing questions in the context of the Raman

line shape. The resolvent operator technique, in conjunction

0 - - . . . . . . .

50 100 150 200 250 300 with the mean-field approximation, has enabled us to derive

T expressions for the line shape, which can be compared and

FIG. 2. The linewidth(in cm™ 1) based on Eq(3.52 has been ~Contrasted with explicit stochastic considerations.

plotted against temperature from 50 K to 300 (&} The coupling The Coupling between charge ordering ?nd phonons,
constanig, has been fixed at what has been deduced foagte) ~ Made plausible by the occurrence of dynamic Jahn-Teller
mode in Fig. 1a). An overall scale factor 18 has been lumped as aeffect in manganites, lends a certain flavor to our treatment
prefactor in Eq.(3.52, arising from the strength of, whereasa ~ Which is reminiscent of polaron physics. Indeed, we have
has been estimated as 16, (b) the value of the coupling constant been able to adapt from the literature expressions for
now is g,=38.8 cm*, as in Fig. 1b), and the prefactor in Eq. polaron-mediated tunneling rates for light interstitials in sol-
(3.52 has been taken as 30. ids, as influenced by one- and two-phonon processes.
From the derived expression for the line shape we have
small, the two-phonon contributiofiproportional to T7) estimated line shift and linewidth for explicit comparison

dominates over the one-phonon contributiproportional to ~ with Raman experiment in Pga 3 MnOs. In fact, from
T), above 150 K! the low temperature line shift data we have been able to

For reasons mentioned before, we do not attach mucbeterminethe coupling constant of the charge-phonon inter-
credence to the linewidth result below 200 K, keeping inaction, which is otherwise a floating parameter of the theory.
mind that the antiferromagnetic Neel temperatlig is  The same value of the coupling constant has then been em-
around 170 K, at least as far as the systegxfa, ;MnO;  ployed in analyzing the linewidth data. While the agreement
is concerned. Therefore, we have replotted our theoreticdletween theory and experiment for line shift is quite satis-
results for the linewidth, along with raw data poifits) the ~ factory the same cannot be claimed when it comes to the

linewidth, especially at low temperatures. Notwithstanding

26 ; . the fact that the extraction of linewidth is always plagued by

: bigger uncertainties than that of the line shift, as the entire
line shape has to be fitted, the linewidth data nevertheless
point to the possibility of the dynamics in manganites being
far more complex than just chargeis)ordering. It seems to
us that one has to reckon with combined and concomitant
presence of spins, orbital ordering, charge ordering, and
8 . . ‘ phonons. The possibility of the occurrence of orbital waves
200 225 250 27 %0 or orbitons in manganites has already been talked &Bout.
What is lacking is a complete many body formalism which
brings together magnons, orbitons, and phonons.

Finally, we feel that the theory of charge ordering we have
formulated is quite generally applicable. Although the theory
is unable to explain all the ingredients of the Raman data in
Pry sCa 3MNO;, it may have better success in other oxide
systems, e.g., §©,.5 Work in this direction is in progress
and will be reported elsewhere.
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APPENDIX A

In this appendix we fill in the mathematical steps which have been omitted in Sec. Ill B and Sec. Il C.
First, note from Eq(2.8) that the Laplace transform of the correlation function is given by

Cy(2)= ; (wloy ' )}v' oy v)
w'v'

X 2% Prmy(Mo, Mol (U(2)) a0 Mg,mg), (A1)

momg

where(U(z)),, is defined in Eq(3.14). Itis (the Laplace transform pthe averaged time-development operator, averaged over
the phonon states as well as the eigenstates of all other pseudospins barring the central one, in the mean-field sense. The
quantitypmO is the Boltzmann factor corresponding to the quantum numiefor the central spiricf. Eq. (3.17)].

Since((2)),, is given by Eqgs(3.9) and(3.10 it is now our task to evaluate the matrix elements of the self-energy. These
are given by

imo,m(’)(z) = (mo,m0|§(2)|m6,m6)

1
ZZ

1
(£| ——i(£p+ﬁs)£')m0n55 MoNicS )

E E e AEn* Es)(monks MoNis

s nkn ss’

Rewriting the resolvent back in terms of a time integral, we have

Sy my(D=5 f dre™7 > > e AEn B (monys,monis|(£,[e " 972, ]) | mpnys’ mgnys”)
nkn ss'

1
f dre > > e FEFE) X > E (mons, monks|£,|mgn’k’s mg’nﬁ’s”’)
ZpZS "n.__mn "._m "

ngny ss’ mgmg ngny s'’s

XeIT[(E n—E w)+(E n—Eg ’”)](m”n[és mg’nﬁ’s’”|£||m(’,n{<s’,m{)nIQS’), (AZ)

where we have employed completeness relations and the properties of Liouville operators.
Further, we have for instance,

(Monis, MoNys| £, mgn [<’5 mg’nﬁ'S"’):<monk5|Hl|mg |’<’5">5m0mg’5nkn;(” sg"—<m6’”f<"3/"|7"||monks>5momg5nkn;(’ s
o (A3
Therefore, from Eq(A2),

~ 1 ©
EmOvmé(Z):?ZsJ'o dre” ZTE E e PEnTE PRI e'T[(E” F WH(E - Em)][<monks|H|m6nf<,s">5mom8'5nknﬁ' s

"M n_m Mot
ngny s mgMg NN’ 's

N

—(mg N s”|H,|mons) St On sg/][<mgn{;s”|H,|mén,@s’)5mgm65nﬁrn|255ms,

! 1N "M I
- <mOnkS |HI | Mg nk S >5mgm(’)5n;’nl’<55"s’]

1
7.2 f dre*7 >, 2, e A +ES){ 5mom62,, [(monESIH||m nkS (Mg ”1'<S |H||monk5> <m0nkS|Hl|m0nkS )

p=s nknk ss mg

X <m6nl’(s’ |H| | monks>]] (eiT[(En£7 EnE)+(Es’7Es)] + efiT[(EnlifEnE)Jr(Es’*Es)]),



having made use of delta functions;

1 ©
= J dre 2>, > e AEn+E) 5m0m62 [{monis| H,[mgnjs”){mg nis '[Hi(7)[monies) +(monys| Hy (7) [ mg nis’)
0 - mrr - -
0

Z.Z,

’ U
p nny SS

X{mg nkS "IH, |m0nk3>] [<monkSIH [mg nk5'><méné5'|H|(T)|mon55>+<monES|H|(T)|m0”£3/><m6n£5'|Hl|mo”55>] ,

(A4)
where we have used the Heisenberg time-evolution operators, as (2.84q.
To simplify Eq. (A4) further, we consider a typical term, e.g.,
e B(Enk+Es)
E E 2 Z Z <monkS|H Img nks "){mg nks |H|(T)|m0nks>
”k”k ss' m0
e B(En +ES) . -
=22 > E —5 5 [(monis|Bq By sg s +Bg By sg 8" [mgnis’}(mgnys'|B (7)By, (7)sg (7)sy, ()
(N ”k”k ss’ - -
+Bo(r)B.,(r>s5<r>s.f<r>|mon5s>],
having substituted fot, from Eq.(3.13,
=t220" 2, [(molsg [ m)(mjlsy (7)|moX(s (0)s(m))((Bo (0BG ()))((B/ (0B (7))
+(mo|sy IMg){(mg|sg (1)Mo)((si"(0)s; (7))){(Byg (0)Bg (7))){(By (0)B/ (1)))], (A5)

where we have utilized the properties of sgitadder opera- L[ ) . . L
tors, neglected off-site correlation in the mean-field sense, 2mgm;(2=0)=t J’ dr>, (%o (D (7)
and introduced correlation functions, e.g.,

. U X 5m0m(’)2” (mo|sg [mg)(mglso (7)|m)

Q" (1)=((s (0)s/ (7)) mg
e FEs
=2 ——(slsrIs'(s'Is"(7ls),  (A6) —(molsg |mg){me|so (7)|mo)
ss’ S

+® (N Py (DY) (1)
and
X 5m0m62” <m0|s(;|m ><m |SO(T |m0>

Mo

\If(+(r)=<<BF(0)Bﬁ(T)>>
- °

NNy p

—(molsy |Mg)(mg|sg (7)[mp)

_ N ] (A8)
" (B OInp(nylBy (.

A7
(A7) Equation(A8) yields four different terms which can be

listed as
The next term, following the above “typical term” in Eq.
(AB), is simply the one obtained by interchangimgwith
— 7. Since we are interested in the Markovia+=0) limit of 3 o 2J L _
the self-energy, the two terms together enable us to write the 24 (z=0)=t dTZ (+lsol=XN~lso (D] +)
7-integral from— oo to +9o0. Combining therefore all the con-

tributions occurring in Eq(A4), we can write XO (D)W, (DWW (1), (A9)



~ » 2 -
S =02 arS (-Isgl )+l () - e [ are-zaom:

@2 BIOM 4 o= 3 BIOM

Xq)frf(r)\lfarf(r)\lffr(r), (A10) " i
X exp _J’ M cotf(iﬁw)—COSW(T i Bl4)
0

4 1
w? sinl-(z,b’w)

(A15)

3, (z=0)=-3, ,(z=0),

S L (z=0)=3__(z=0). (A11)
Changing the contour of integration over we obtain the

Referring to Eq/(3.22, we may further write result given in Eq(3.18. Similar steps yield Eq(3.19.

- t? APPENDIX B
2, 4(z=0)=

e%BJ(O)M + ef%BJ(O)M In this Appendix we sketch a mean field, stochastic model
calculation for the line shapd:!* The model Hamiltonian is

Xf dre 2IOMTS " ot (g (), given by[cf. Eq.(3.1)]
— % |

(A12) =T+ > V,fi(1), (B1)

where we have made use of the fact that if the central spin ==
belongs to sublattic& with magnetizatior+ M, the nearest
neighbor spin must belong to sublattiBevith magnetization where
—M.

Note that the correlation functiong’s are given by Eq. T-{O: 1 Wqo, (B2)
(A7) wherein the operatorB’s are defined in the textf. -
Eq. (2.12]. We have shown elsewhéfe

V.= % gga'x ) (B3)
V()= (1)
and
s G(k) 1
=exp — = || cothl —Bwg(k =—1
= | wok) 4B o(k) V_ 2 9q0x (B4)
The quantityf;(t) is a dichotomic MarkoJtelegraph pro-
X (1—coswg(K)7) +i sinwg(K) 7 cess, mimicking the fact that the pseudospin opersft)
oz Rl jumps at random betweepn and — 3, due to spin-lattice re-
laxations.
(A13) As shown in Eq.(13) of Ref. 14(the Laplace transform

of) the averaged time-development operator is given by
independent of. Introducing then the spectral density of the
b) ,

phonon weight factor as _ . -1
(U(Z))aﬁ% Pal @ (Z+7\)—i£o—i; VFFJ—AJ}
i(w)=23 GA(k)o(w—w(k)), (A14) (B5)

we have, from Eq(A12), whereV:* denotes the Liouville operator associated with

and the stochastic “statega) and|b) are associated with
p_, given by Eq.(3.23. Finally, the projection operator
p| Fj(w)
Xexpy — >
0w As shown in Eqs(19) and (20) of Ref. 14, the special

I —2iJ(0)M 7 . AN / ;
~ e
3. .(2=0)= ﬂtzf dr the spin statefmgm,), |mgmyg), etc., introduced in the text.
F; (F, andF _, in the present cagdas been defined in Eq.
] structure for the transition matrig, given in Eq.(3.25 of

- e%BJ(O)M_i_ef%ﬁJ(O)M Similarly, the Boltzmann weighp, has two valuep, and
1
cot 2 Bw |(1—coswr) (8) of Ref. 14.
the text, allows us to derive:

+isinwr

n being the number of nearest neighbors; (U2)a=[UO%z+N))"1=N]"1, (B6)



where (m)—l

U(z+N)= 2, pil(z+N)—iLo—iVi] L (B7) = (z+\=iLo)=iV*
==

Vzen—iLy ! b zen—iL, ’

. . . _ 1 — 1 —
As in Ref. 14, we are further interested in the motional nar- +2 pj Vi Xy X
rowing limit in which the termVjX can be developed as a )

perturbation. Thus,

(B10)
WOz n) = 1 _ 147 _ In the present examplef. Egs.(B3) and (B4)],
Z+N—iLg Z+N—iLg 1
1 1 V=2 (P =P-)0q0% (B11)
X X
-2 PV —Vj — |
i Z+N—iLy  zZtN—iLg where
(B8)
Where (p+_p7):M1 (812)
_ the order parameter. This then yields E8.32 of the text if
V<=2 pV/. (B9  we remember that
j
Hence, (py+po)=1. (B13)
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