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Manganites are characterized by a fascinating interplay of double exchange, spin and charge fluctuations,
and orbital excitations. In this paper we focus attention on charge fluctuations and concomitant charge
ordering/disordering, influenced by phonons. Our theoretical results, based on a resolvent expansion of the
time-development operator~propagator!, are specially tailored for calculating normal mode correlation func-
tions, relevant for optic modes and the associated Raman scattering. The computed line shape, and the resultant
line shift and linewidth, are compared with experiments in Pr0.63Ca0.37MnO3. While the line shift data agree
well with theory, the linewidth results indicate that charge~dis!ordering may not be the only relaxation
mechanism in this system.
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I. INTRODUCTION

Manganites are systems of great interest in contempo
condensed matter physics. They exhibit a remarkable ra
of phenomena including metal-insulator transition, colos
and giant magnetoresistance, electron correlations,
charge/orbital ordering. We focus our discussion in
present work on charge ordering, especially in relation
Raman Scattering experiments.

Among the manganites the 3d transition metal oxides are
characterized by relatively smaller bandwidths. Con
quently, Coulomb correlation between charge carriers pla
dominant role in determining magnetic and electronic pr
erties. One manifestation of this correlation is the occurre
of charge/orbital ordering. Examples of such systems

Fe3O4,1 La12xSrxNiO4 (x51/3,12 ),2 La12xSrxFeO3 (x
52/3),3,4 (La12yNdy)22xSrxCaO4 (x51/8),5 and so on.

Perovskite-type manganese oxides, formulated
RE12xAExMnO3, where RE and AE are a trivalent rare ear
and an alkaline rare earth, are other prominent syst
marked by an interplay of spin, charge, and orbital~lattice!
degrees of freedom. For instance, in REMnO3 ~x50! the
electron configuration (3d4; t2g

3 eg
1) is realized for the

Mn31 site, and due to ordering of theeg orbital the substance
is a layered antiferromagnetic insulator. In RE12xAExMnO3,
the substitution of RE31 with AE21 at the perovskite A site
controls the mean Mn valence and a charge/orbital order
namely a real space ordering of Mn31/Mn41 accompanied
by a simultaneous ordering ofeg orbital of Mn31, is known
to occur atx' 1

2 .
In this paper we present a fully dynamical theory

charge ordering, in which the dynamics is occasioned by
hopping of a charge from one site to a nearest neighbor
in an underlying lattice gas model. In addition, we treat
laxational dynamics, caused by the coupling between
~charge! order parameter and phonons. It is the combinat
of these two kinds of dynamics which is envisaged to c
tribute to the broadening and shift of the Raman line sha
ry
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There will of course be a static line shift due to the prese
of charge ordering itself.

With the preceding survey the outline and purpose of
present paper are as follows. In Sec. II A we present
Hamiltonian which forms the basis of all our calculation
This Hamiltonian describes charge ordering and hopping
lattice gas picture besides, also, charge-phonon interac
In Sec. II B we set up the calculational scheme for the R
man line shape. Section II C then contains a discussion
unitary transformation on our basic Hamiltonian, which pr
vides a convenient method of calculation. The complete l
shape calculation is next presented in Sec. III. From
‘‘motional narrowing’’ limit of the line shape, the line width
and the line shift are extracted in Sec. III C. Because
starting point of our analysis is anab initio Hamiltonian, the
temperature dependence of the line shape parameters c
extracted from first principles. This calculation, involvin
one-phonon and two-phonon processes, is presented in
III D. While the method of calculation and the derived r
sults for the Raman line shape are of general validity
charge-ordered perovskites, we make specific compar
with the recently obtained Raman data in Pr0.63Ca0.37MnO3.6

This system, which is a paramagnetic insulator at room te
perature, is characterized by an increase in resistivity as
temperature is lowered and a peak in magnetization at
charge ordering~CO! temperatureTCO'240 K. However,
the antiferromagnetic spin-ordering occurs not concurren
but at a lower temperature TN'170 K, and no ferromag-
netic state is known to occur in zero field. The antiferroma
netic ordering is of the CE structure belowTCO, as has been
confirmed by neutron diffraction study.7 The temperature de
pendence of the two Raman active modes Ag~2! and Ag(4)
shows that the peak position increases by about 10 cm21 as
the temperature is lowered from 300 K to 25 K.6 This is
much higher than what can be attributed to quasiharmoni
anharmonic contributions. Most interestingly, the tempe
ture dependence of the linewidth is anomalous in that it
creases on decreasing the temperature. Section IV is dev
to a detailed comparison between our theoretical results
the Raman data in Pr0.63Ca0.37MnO3.6 Finally, in Sec. V, we
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offer a few concluding remarks, both on the present work
well as future directions.

II. THEORETICAL FORMULATION

A. The Hamiltonian

Following Lee and Min,8 we formulate charge ordering
i.e., alternate ordering of Mn31 and Mn41, in terms of a
lattice gas/Ising model. Thus the presence or absence
charge/electron on a lattice site is represented by an I
spin, pointing up or down, respectively. The fully charg
ordered state then corresponds to an antiferromagn
ground state of the pseudospins. This ground state ca
disturbed in two distinct ways in which fluctuations ma
their presence felt:~i! thermal effects; and~ii ! tunneling/
hopping of the charge/electron between two near neigh
lattice sites. Clearly, in this picture, the effect of the Pa
exclusion principle is ignored, except that the hopping of
electron to an already occupied site is excluded. Thus
spin Hamiltonian can be written as

H5(
i j

Vi j si
zsj

z1t(̂
i j &

~si
1sj

21si
2sj

1!, ~2.1!

where Vi j (.0) denotes the strength of antiferromagne
coupling between pseudo-spinssi

z , assumingz-axis to be the
direction in which sublattice ordering occurs, whereast is the
strength of hopping, the latter being described in terms of
ladder operatorssi

6 . The angular brackets overi andj depict
nearest neighbor sites.

To Eq. ~2.1! we must add the effect of lattice distortio
when the electron resides at the Mn31 site in view of the fact
that Mn31 is a Jahn-Teller ion. Following again Lee an
Min,8 and writing the displacement field in terms of phon
creation and annihilation operators, the Hamiltonian in E
~2.1! can be expanded as

HL2M5Hs1(
i

si
z(

k
Gi~k!~bk

†1bk!1(
k

wo~k!bk
†bk ,

~2.2!

whereHs is the spin Hamiltonian described by the two term
in Eq. ~2.1!, Gi(k) is the strength of the distortion field at th
i th siteRi due to thekth phonon mode:

Gi~k!5G~k!eik.Ri, ~2.3!

bk
†(bk) is the phonon creation~annihilation! operator, and

w0(k) is the ‘‘free’’ phonon frequency. Lee and Min hav
calculated the shift in the phonon frequency based on
~2.2! but have ignored the hopping termt. For our workt is
crucial as it critically governs the Raman line shape, in g
eral, and the linewidth, in particular. Thus the Lee-Min res
for the line shift will naturally be a by-product of our resu
s

f a
g

-
tic
be

or
i
n
e

e

.

q.

-
t

B. The Raman line shape

The Raman line shape is given by9

I q~w!5
1

2pE2`

`

dt exp~2 iwt !^Qq~0!Q2q~ t !&, ~2.4!

whereQq is the operator associated with the vibrational c
ordinate for theqth Raman active optic mode and the ang
lar brackets indicate statistical average. The time depende
of Q2q is governed by the usual Heisenberg evolution. A
ternatively,

I q~w!5
1

p
ReE

2`

`

dt exp~2 iwt !Cq~ t !5
1

p
ReC̃q~z!,

~z5 iw1d!, ~2.5!

whereC̃q(z) is the Laplace transform of the correlation fun
tion:

Cq~ t !5^Qq~0!Q2q~ t !&. ~2.6!

Recall that we are interested in Raman transitions betw
the occupation number levels corresponding tonq50 and
nq51 only, and involving a frequency of the order o
258 cm21 ('370 K). Thus all other transitions are the
mally forbidden as the Boltzmann population of the high
excited levels (nq.1) is exceedingly small, even at room
temperature.

Hence, it makes sense to isolate the two levels involve
the transition, ignore the other levels and represent these
levels with the aid of Pauli matrices,sz , sx , etc. Further,
the rest of the phonon modes may be viewed to provid
‘‘phonon background,’’ only passively participating in th
underlying relaxation processes through the charge-orde
operatorsi

z . Thus the full Hamiltonian, relevant for Rama
scattering, can be written as

H5
1

2 Fwqsz1(
i

giqsi
zsxG1HL2M , ~2.7!

whereHL2M , though still given by Eq.~2.2!, is to be read
such as to presume that thek5q term is excluded from the
summation. Since the phonon background~bath! comprises
of a continuum of modes this exclusion is expected to h
no discernible effect on the nature of the bath. In this si
plified picture the transition operatorQq may be replaced by
sx , thus

Cq~ t !5Aq^sx~0!sx~ t !&, ~2.8!

whereAq is an arbitraryq-dependent prefactor that can b
absorbed in the intensity~or dropped altogether!, and

sx~ t !5exp~ iHt !sx~0!exp~2 iHt !. ~2.9!

The HamiltonianH in Eq. ~2.7! belongs to a~very! large
Hilbert space comprising of the two level space ofs, N two
level spaces ofs (N being the number of lattice sites!, de-
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noted by$s%, and the 3n-dimensional space of the phonon
represented by$p% wheren is the number of atoms per un
cell.

C. Unitary transformation

As is customary in polaron physics,10 it is convenient to
eliminate the linear coupling term, i.e., the second term
the right hand side of Eq.~2.2!, through a unitary transfor
mation:

S5expF(
i

si
z(

k

Gi~k!

wo~k!
~bk

†2bk!G . ~2.10!

Under this transformation the HamiltonianHL2M transforms
into:11

H̃L2M5SHL2MS21

5(
i j

V̄i j si
zsj

z1t(̂
i j &

~Bi
2Bj

1si
1sj

21Bi
1Bj

2si
2sj

1!

1(
k

wo~k!bk
†bk , ~2.11!

where

Bi
65expF7(

k

Gi~k!

wo~k!
~bk

†2bk!G , ~2.12!

and

V̄i j 5Vi j 2(
k

Gi~k!Gj* ~k!

w0~k!
. ~2.13!

The full Hamiltonian in Eq.~2.7! then becomes

H̃5
1

2 Fwqsz1(
i

giqsi
zsxG1H̃L2M . ~2.14!

Note that the correlation function in Eq.~2.8!, and hence the
line shape, remain invariant under the transformation in
~2.10!.

We may remark in passing that if the hopping termt is
zero, the case considered by Lee and Min, the system$s% is
decoupled from the system$p% and the operatorsi

z is a con-

stant of motion@cf. Eq. ~2.11!#. ThusH̃L2M drops out from
the time evolution ofsx(t) @see Eq.~2.9!# and we have

sx~ t !5exp~ iH0t !sx~0!exp~2 iH0t !, ~2.15!

where

H05
1

2 Fwqsz1(
i

giqsi
zsxG . ~2.16!

Using the property of Pauli matrices12 we can easily calcu-
latesx(t) in Eq. ~2.15!, substitute the result in Eq.~2.8!, and
finally evaluate the line shape function in Eq.~2.5!. The re-
sult is
n

.

Iq~w!5
1

4p
ReKF 1

d2i~w1Awq
21aq

2!
1

1

d2i~w2Awq
21aq

2!
GL,

~2.17!
where

aq5(
i

giqsi
z , ~2.18!

and the angular brackets now denote statistical average
erned by the Ising term, viz., the first term on the right ha
side of Eq. ~2.11!. Considering only the Stokes term an
employing mean-field approximation the Raman line po
tion is given by

w̄q'Fwq
21(

i j
giqgj q^si

zsj
z&G1/2

. ~2.19!

This result is somewhat different from the one derived
Lee and Min. In particular, for optical frequencies, the fir
term inside the square parenthesis is much larger than
second. Thus,

w̄q'wqF 11
1

2
(
i j

giqgj q

wq
2

^si
zsj

z&G . ~2.20!

Hence the line shift is given by

Dwq5w̄q2wq5
1

2
(
i j

giqgj q

wq
^si

zsj
z&. ~2.21!

We shall return to this result later in the context of expe
ment.

III. LINE SHAPE CALCULATION

A. Preliminaries

Before we embark on a perturbation theory calculat
involving the many body Hamiltonian Eq.~2.14! it is useful
to discuss in physical terms the logical sequence of the v
ous steps involved. The first step is to recognize that the
term inH̃ @cf. Eq. ~2.14!#, which is primarily responsible for
the occurrence of the ‘‘bare’’ Raman line centered arou
wq , is not influenced byH̃L2M but for the presence of the
charge-ordering operatorsi

z . The latter fluctuates in time, i
we think in terms of an interaction picture treatment
H̃L2M . Alternately, we could adopt a stochast
formulation13,14 in which H̃ is replaced by a fully time de-
pendent Hamiltonian:

H̃~ t !5
1

2 Fszwq1sx(
i

giqsi
z~ t !G , ~3.1!

wheresi
z(t) is a suitably modeled stochastic process, sim

lating the effect of the heat bath in which the system is e
bedded. While we shall present such a stochastic model
culation in Appendix B and compare with our many bo
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formulation, the whole idea of the many body treatment is
fact to extract the time dependence ofsi

z(t) from first prin-
ciples.

At this stage it is instructive to assess what the influe
of the second term in the right of Eq.~3.1! on the eigenstate
of the first term is expected to be. Assx is purely off-
diagonal in the representation in whichsz is diagonal, the
second term causes transitions between the Raman a
levels. This would produce a shift, the static component
which is already estimated in Eq.~2.19!, and a width propor-
tional to the mean square fluctuation ins i

z(t). As the latter is
expected to become more and more rapid as one approa
the charge-ordering temperatureTCO from below, the width
is expected to decrease as the temperature increases toTCO.
This qualitative picture is indeed what is seen
experiments,6 as discussed in detail in Sec. IV, and is akin
the familiar ‘‘motional narrowing effect’’ in nuclear magneti
resonance.15 In order to translate the above picture into co
crete mathematical expressions we shall now focus our
tention toH̃L2M and split it as

H̃L2M5Hs1HI1Hp , ~3.2!

whereHs is the pseudo-spin part:

Hs5(
i j

V̄i j si
zsj

z , ~3.3!

Hp is the phonon part:

Hp5(
k

w0~k!bk
†bk , ~3.4!

andHI is the interaction between the two parts:

HI5t(̂
i j &

~Bi
2Bj

1si
1sj

21Bi
1Bj

2si
2sj

1!. ~3.5!

Recall that in the calculation of the correlation functio
C̃q(z) we do not have to worry about anydirect effect on the
transition operatorsx of the phonon system; instead we a
interested in extracting the phonon-averaged tim
development operator. The Laplace transform of the tim
development operator can be written as

U~z!5~z2 iL!21, ~3.6!

whereL is the Liouville operator9 associated with the tota
Hamiltonian H in Eq. ~2.14!. The phonon-averaged time
development operator is then given by

~U~z!!av5
1

Zp
(

nk ,nk8
exp~2bEnk

!~nk ,nkuŨ~z!unk8 ,nk8!,

~3.7!

whereEnk
is the energy eigenvalue ofHp defined by

Hpunk&5Enk
unk&, ~3.8!
n

e

ive
f

hes

-
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-

and Zp is the partition function for the phonon system.
second order perturbation theory the averaged tim
development operator reduces to:9

„Ũ~z!…av5@z2 iL01S̃~z!#21, ~3.9!

whereS̃(z) is the so-called ‘‘self-energy:’’

S̃~z!5S LI

1

z2 i ~Lp1Ls!
LI D

av

, ~3.10!

where different scriptL’s represent Liouville operators asso
ciated with different parts of the Hamiltonian, denoted by t
respective subscripts. It is pertinent to mention here that

the Markovian limit ofS̃(z) ~i.e., z→0) is what appears a
the relaxation matrix in the stochastic model calcuation~see
Appendix B!.

B. Self-energy in mean field approximation

Recall that we are interested in the partially charg
ordered regime belowTCO ~and aboveTN) which exhibits
antiferromagnetic ordering of the pseudo-spins. In me
field theory the antiferromagnetic phase splits into two s
lattices A and B, with alternate up and down spin orienta
tions. Thus it makes sense to isolateonecentral spin, say 0
which, without loss of generality, can be assumed to belo
to sublatticeA. ~Clearly, for a translationally invariant sys
tem, the results would be the same if the central spin w
chosen to belong to sublatticeB.! In this simplified picture
the HamiltonianH̃ in Eq. ~2.14! can be rewritten as

H̃5H01Hs1Hp1HI , ~3.11!

where, now

H05 1
2 ~wqsz1gqs0

zsx!, ~3.12!

HI5t( 8
l

~B0
2Bl

1s0
1sl

21B0
1Bl

2s0
2sl

1!, ~3.13!

the prime indicating that the sum overl goes over the neares
neighbor sites of 0, which therefore belong to the sublatt
B.

One other point merits attention. Since it is only the ce
tral spins0

z that participates directly in the Raman transition
all other spins have to be lumped into what is regarded as
heat bath. Thus, the meaning of (. . . )av in Eq. ~3.7! has to
be expanded in order to encompass not just the average
the phonon states but also the one over the eigenstates
other spins, excluding the central spin. Therefore,

„Ũ~z!…av5
1

ZpZs
(
nknk8

(
ss8

e2b(Enk
1Es)

3~nks,nksuŨ~z!unk8s8,nk8s8!, ~3.14!

whereEs is the energy eigenvalue of the Ising spin Ham
tonian~excluding the central spin! andZs is the correspond-
ing partition function. Needless to say,$s% describes collec-
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tively the spin configuration$s1 ,s2 , . . . %. Of course,
(U(z))av is still given by Eq.~3.9!, but now the self-energy
is @cf. Eq. ~3.10!#:

S̃~z!5
1

ZpZs
(
nknk8

(
ss8

e2b(Enk
1Es)

3S nks,nksUS LI

1

z2 i ~Lp1Ls!
LI D Unk8s8,nk8s8D .

~3.15!

It may be noted thatS̃(z) is a superoperator in the re
stricted Hilbert space ofs0

z alone as all other degrees o
freedom are averaged over in Eq.~3.15!. Since the operato
sx involved in the Raman transition commutes withs0

z , the

specific matrix elements ofS̃(z) that are required in the line
shape expression@cf. Eq. ~2.8!# are of the type

S̃m0 ,m
08
~z!5~m0 ,m0uS̃~z!um08 ,m08!, ~3.16!

where the single site statesum0& andum08& are the eigenstate
of s0

z :

s0
zum0&5m0um0&,

s0
zum08&5m08um08&, ~3.17!

the allowed values ofm0 and m08 being 1
2 and 2 1

2 . Thus

there are onlyfour relevant matrix elements ofS̃(z). These
are computed in Appendix A, in the Markovian limit and a
reproduced here:

~11uS̃~0!u11 !52~11uS̃~0!u22 !5lp2 ,
~3.18!

and

~22uS̃~0!u22 !52~22uS̃~0!u11 !5lp1 ,
~3.19!

wherel is the ‘‘relaxation rate,’’ given by

l5ht2E
2`

`

dt exp~22iJ~0!Mt!j~t!, ~3.20!

j~t!5expH 2E dw
j ~w!

w2
cothS 1

4
bwD J

3FexpE dw
j ~w!

w2

coswt

sinh~ 1
4 bw!

G , ~3.21!

h being the number of nearest neighbor sites,M is the sub-
lattice magnetization,j (w) is the phonon density of state
and p6 are the Boltzmann populations for the statesum0&
5u 1

2 & and um0&5u2 1
2 &, respectively. Since the mean-fie

Hamiltonian for the central spin, located in theA sublattice,
is given by
H s
05J~0!Ms0

z ,

J~0!5(
j

V̄i j , ~3.22!

the occupation probabilities are:

p65
e7

1
2 J(0)Mb

e
1
2 J(0)Mb1e2

1
2 J(0)Mb

. ~3.23!

As is shown in Appendix B, expressions~3.18! and ~3.19!
are in conformity with detailed balance of transitions.

C. The line shape and its ‘‘motional narrowing’’ limit

At this stage it is pertinent to point out that the many bo
calculation based on the resolvent operator technique,
sented above, yields an expression for the line shape whic
identical to the one derived in the stochastic formulation,
the Markovian limit~see Appendix B!. However, the advan-
tage of the many body treatment is that within the sa
formalism one also obtains a calculable expression for
relaxation ratel. This situation should be contrasted with th
stochastic theory in whichl appears merely as a paramet

With this background we refer back to Appendix B an
note that

S̃~0!5l~12J!, ~3.24!

where the transition matrix, which was introduced earlier
Appendix B, has the special structure

~m0m09uJum08m0-!5pm
08
dm0m

09
dm

08m
0-
. ~3.25!

Recall that in evaluating the angular brackets in Eq.~2.8!, the
superoperator„Ũ(z)…av has to be further averaged over th
states of the central spins0

z . Denoting this averaging by an
overhead bar, we have

~U~z!!av5 (
m0m08

pm0S m0 ,m0U 1

~z1l!2 iL02lJUm08 ,m08D .

~3.26!

The structure ofJ as in Eq.~3.25! allows us to simplify the
above expression as9,14

~U~z!!5@„U 0~z1l!…212l#21, ~3.27!

where

~U 0~z1l!!5 (
m0m08

pm0S m0 ,m0U 1

~z1l!2 iL0
Um08 ,m08D .

~3.28!

Note thatL0 is the Liouville operator associated with th
HamiltonianH given by Eq.~3.12!. In the regime of rapid
relaxation it makes sense to further splitH0 as

H05H̄01V, ~3.29!

where
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H̄05
1

2
wqsz , ~3.30!

and

V5
1

2
gqsxs0

z , ~3.31!

and develop the coupling term, proportional togq as pertur-
bation. Thus, denoting the corresponding Liouville operat
as L̄0 andLv , respectively, we may derive:14

„U 0~z1l!…21>~z1l2 i L̄0!2
i
2

gqMsx
3

1sx
3

1
4 gq

2~12M2!

z1l2 i L̄0

sx
3 , ~3.32!

where the superscript cross denotes Liouville operators
M, the sublattice magnetization, is obtained from

M5(
m0

pm0
m0 . ~3.33!

Therefore, from Eq.~3.27!,

„U~z!…av5z2 i L̄02
i
2

gqMsx
31sx

3

1
4 gq

2~12M2!

z1l2 i L̄0

sx
3 .

~3.34!

The complete line shape is then given by@cf. Eq. ~2.8!#

C̃q~z!5 (
mn

m8n8

^musxum8&^n8usxun&~m8mu~U~z!!avun8n!,

~3.35!

whereum&, un&, etc. are the eigenslates ofsz . Thus

C̃q~z!5~12uU 0~z!u12 !1~21uU 0~z!u21 !

1~12uU 0~z!u21 !1~21uU 0~z!u12 !.

~3.36!

A few limiting cases may now be discussed.

1. ‘‘Static’’ shift

If the hopping termt is neglected~the Lee-Min limit! the
relaxation ratel goes to zero and the Laplace transform
the averaged time-development operator in Eq.~3.26! re-
duces to the Laplace transform of the unperturbed tim
development operator, i.e.,

~U~z!!av5U 0~z!5
1

z2 i L̄01
i

2
gqMsx

3

. ~3.37!

From the structure ofL̄0 @cf. Eq.~3.30!#, it is evident that the
characteristic frequency is now given by
s

nd

f

-

w̄q5~wq
21gq

2M2!1/2. ~3.38!

This is the mean-field version of Eq.~2.19!. Following our
discussion after Eq.~2.19!, the line shift, for optical frequen-
cies, is given by

Dwq5
1

2

gq
2

wq

M2. ~3.39!

2. ‘‘Dynamic’’ shift and width

The effect of relaxational dynamics, occasioned by
phonon-mediated hopping of charges, is encapsulated w
the fourth term inside the curly brackets in Eq.~3.34!. Since
the effect of static shift has already been estimated above
shall ignore the third term and write

~U~z!!av5H z2 i L̄01 1
4 gq

2~12M2!sx
3

1

z1l2 i L̄0

sx
3J 21

.

~3.40!

The 434 matrix inside the curly brackets in Eq.~3.40! can
be written as~where the rows and columns are labeled
11, 22, 12, and21)

3
z1

2a z̄

z̄ 21wq
2

2
2a z̄

z̄ 21wq
2

0 0

2
2a z̄

z̄ 21wq
2

z1
2a z̄

z̄ 21wq
2

0 0

0 0 z2 iwq1
2a

z̄
2

2a

z̄

0 0 2
2a

z̄
z1 iwq1

2a

z̄

4 ,

~3.41!

where

a5 1
4 gq

2~12M2!,

z̄5z1l. ~3.42!

It is clear from Eq.~3.36! that it is only the lower 232
block in Eq.~3.41! which is relevant for the line shape ca
culation. After inverting this block and summing all the fou
elements, as required by Eq.~3.36!, we have

C̃q~z!5
2

S z21wq
21

4az

z̄
D S z1

4a

z̄
D , ~3.43!

which can be further simplified, in the regime of rapid rela
ation, as
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C̃q~z!5
2

S z1

wq
2

z1
4a

l

D . ~3.44!

Denoting

G5
4a

l
5

gq
2~12M2!

l
, ~3.45!

Eq. ~3.44! can be written as a sum of two terms:

C̃q~z!5

12
iG/2

wqA12G2/4wq
2

z1
G

2
2 iwqA12G2/4wq

2

1

11
iG/2

wqA12G2/4wq
2

z1
G

2
1 iwqA12G2/4wq

2

. ~3.46!

Thus the ‘‘dynamic’’ width is given byG in Eq. ~3.45!
whereas the ‘‘dynamic’’ shift isG2/8wq . Combining with
Eq. ~3.39!, the net line shift is given by

Dwq5
1

2

gq
2

wq
FM21

1

4
S gq

l
D 2

~12M2!2G . ~3.47!

D. Temperature dependence of the linewidth

As discussed above, the linewidth is given by Eq.~3.45!.
Thus there are two sources of the temperature dependen
G, one arising from the temperature dependence of the o
parameterM:

M5tanhS TCO

T
M D ,

TCO5
1

2

J~0!

K
, ~3.48!

and the other from that of the relaxation ratel.
In order to extract the temperature dependence ofl, one

has to evaluate the integral in Eq.~3.21!. Such an integral is
known to occur in various contexts of polarons,10 radiation-
less transitions,17 phonon-assisted tunneling of light intens
tials in metals,16,18,19etc. As is well known in the literature
the terms corresponding to one-, two-, etc. phonon proce
are obtained by expanding the exponential in the squ
brackets in Eq.~3.21! in a power series. These process
contribute different temperature dependencies. Norma
one-phonon processes can be neglected and the two-ph
processes yield:18
of
er

es
re
s
y,
non

l2~T!}T7,

T!QD , ~3.49!

or

}S 1

EaKTD 1/2

expS 2
Ea

KTD ,

T@QD , ~3.50!

whereQD is the Debye temperature and the activation e
ergy Ea is the so-called ‘‘coincidence energy.’’ However,
an important paper by Teichler and Seeger,19 it has been
pointed out that one-phonon contributions are signific
when the distortion fields at the two sites involved in t
hopping process are distinct. Because this is indeed the
for charge hopping between Mn31 and Mn41 sites, Mn31

being a Jahn-Teller ion, we must reckon with this particu
effect, which yields

l1~T!}T,

T!QD . ~3.51!

For the system Pr0.63Ca0.37MnO3 at hand, the Debye tem
perature is substantially larger than the charge-ordering t
peratureTCO. Hence, in order to fit the date we have co
sidered

G~T!5gq
2 ~12M2!

~T1aT7!
. ~3.52!

wherea is an arbitrary fitting parameter.

IV. COMPARISON WITH DATA IN Pr 0.63Ca0.37MnO3

In this section we turn our attention to the analysis
Raman scattering experiments, performed in single crys
of Pr0.63Ca0.37MnO3, over a temperature range of 20 K–30
K. The studies reveal strong anomalous temperature de
dence of line shift and line width of the two Raman activeAg
modes. The details of the experiment, the symmetry analy
and the origin of the relevant optic modes have been co
municated recently.20 It turns out that only two modes,Ag(2)
centered on 258 cm21 and involving in-phase rotation of th
in-plane oxygen cage, andAg(4) centered on 289 cm21 and
involving out-of-phase rotation of the apical oxygen, a
prominently observable, upto room temperature. We disc
below, section wise, how the data compare with the theo
ical results presented in Sec. III.

A. The line shift

As we mentioned before, the line shift has been calcula
earlier by Lee and Min, albeit in the context of ultrason
measurements involving acoustic phonons. There are
distinct ways in which our result in Eq.~3.47! goes beyond
that of Lee and Min. First, of course, is the presence of
second term in square parentheses in Eq.~3.47!, which origi-
nates from the phonon bath-induced relaxation dynam
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This was not treated by Lee and Min. Apart from that, ev
when it comes to computing the static line shift, our res
given by the first term in Eq.~3.47!, is different. This is
because we have an explicit expression, derived in me
field theory and for optical frequencies, relevant for Ram
scattering.

It turns out, however, that the dynamical contribution
line shift, given by the second term in Eq.~3.47!, is of order
(gq /l)2, and is therefore, negligibly small compared to t
static shift. We have verified this point numerically. Ther
fore, what we have plotted in Fig. 1~a! and Fig. 1~b! is sim-
ply the contribution of the first term in Eq.~3.47!, in which
the order parameterM has been computed self-consisten
from the mean-field solution~3.48!.

A few comments are in order regarding the fitting of t
data with theory. In the observed data there is a sharp cha
in the mode frequency at around 50 K, which has been
tributed to the presence of a canted antiferromagnetic in
lator phase below that temperature. Since the physics of
phase has not been included in our theory, the data ana
has been made only for temperatures above 50 K. Sec
we have set the critical charge-ordering temperatureTCO at
280 K for the purpose of comparison with experiment, b
cause mean-field theory is known to overestimate the tra
tion temperature by at least about 10%. Finally, the o
fitting parameter left is the coupling constantgq . SinceM
saturates to unity below around 80 K andwq for both the
Ag(2) andAg(4) modes are known we have evaluatedgq by
equating the experimental data point atT580 K to the the-
oretical value. The results are:gq536.7 cm21 for Ag(2)

FIG. 1. The line shift~in cm21) based on Eq.~3.39!, whereM is
given by Eq.~3.48! and TCO has been fixed at 280 K, is plotte
versus temperature from 50 K to 280 K:~a! For the mode frequency
wq5258 cm21. By equating the theoretical result (52.6 cm21)
with the data point atT580 K, the value of the coupling constan
has been deduced asgq536.7 cm21; ~b! for the mode frequency
wq5289 cm21. Again, by fixing the theory (52.6 cm21) with
data point atT580 K, we find gq538.8 cm21. The data points
~Ref. 6! have been shown as solid circles.
n
,

n-
n

-

ge
t-
u-
is
sis
d,

-
i-

y

mode andgq538.8 cm21 for Ag(4) mode. Having thus de
terminedgq we employ these values in the rest of the fit
well as in the analysis of the linewidth data, given below

In Fig. 1~a! we display the line shift result as a function o
temperature, along with raw data, for theAg(2) mode: wq

5258 cm21, and fixed values forgq536.7 cm21 andTCO

5280 K. Figure 1~b! exhibits similar plots, but now for the
Ag(4) mode: 289 cm21 and derived value of gq

538.8 cm21 , while the mean field transition temperatu
for charge ordering is kept fixed at 280 K. The agreem
between theory and experiment seems quite satisfactory.
point is worth remarking here. SinceM is nearly unity at 80
K at which temperatureDwq is identical (52.6 cm21, from
the digital data6!, the ratiogq

2/wq is the same@55.2 cm21,
cf. Eq. ~3.39!# for both theAg(2) andAg(4) modes. Thus an
important conclusion is that the line shift simply scales w
the square of the order parameter.

B. The linewidth

Before we analyze the linewidth based on Eq.~3.52! we
should point out that the narrowing of the Raman line in o
treatment arises entirely from charge-disordering proce
caused by intersite hopping of charges, triggered by phon
Therefore, at temperatures much lower thanTCO, when
charge ordering is complete, it is expected that hopping
charges would also be rare events, having a negligible in
ence on relaxational phenomena. This is clearly reflecte
Eq. ~3.52! which shows that the width goes to zero when t
order parameterM saturates to unity.

From the discussion in the above paragraph it is evid
that charge disordering cannot be the sole reason for
dynamic linewidth. It was mentioned earlier that the syst
at hand, Pr0.63Ca0.37MnO3, is marked by an antiferromagneti
transition at a Neel temperatureTN'170 K. Hence, it is
expected that below TN there would be significant~magnetic!
spin fluctuation effects which might contribute to the Ram
linewidth.

In a scenario, completely different from our charg
~dis!ordering mechanism, Pai and Ramakrishnan have c
sidered a spin-phonon interaction involving thet2g spins and
the Ag modes.21 Using a Schwinger boson model for sp
excitations and treating the spin-phonon coupling in sec
order perturbation theory, Pai and Ramakrishnan have ca
lated the decay rate for theAg phonons. This could be a
plausible mechanism for the observed linewidth at low te
peratures and mode softening at temperatures of order TN or
somewhat higher.

We come back now to our linewidth result, originatin
from charge-~dis!ordering processes and plot in Fig. 2~a! the
expression given by Eq.~3.52! for the Ag(2) mode atwq

5258 cm21 for which we had estimated earlier from th
line shift fit, the valuegq536.7 cm21 for the coupling con-
stant. A similar plot is given in Fig. 2~b!, but now for the
Ag(4) mode atwq5289 cm21 andgq538.8 cm21. In both
Fig. 2~a! and Fig. 2~b!, the value of the parametera has been
estimated to be around 10214. Although the value of a is so
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small, the two-phonon contribution~proportional to T7)
dominates over the one-phonon contribution~proportional to
T!, above 150 K!

For reasons mentioned before, we do not attach m
credence to the linewidth result below 200 K, keeping
mind that the antiferromagnetic Neel temperatureTN is
around 170 K, at least as far as the system Pr0.63Ca0.37MnO3
is concerned. Therefore, we have replotted our theore
results for the linewidth, along with raw data points,6 in the

FIG. 2. The linewidth~in cm21) based on Eq.~3.52! has been
plotted against temperature from 50 K to 300 K:~a! The coupling
constantgq has been fixed at what has been deduced for theAg(2)
mode in Fig. 1~a!. An overall scale factor 18 has been lumped a
prefactor in Eq.~3.52!, arising from the strength ofl, whereasa
has been estimated as 10214; ~b! the value of the coupling constan
now is gq538.8 cm21, as in Fig. 1~b!, and the prefactor in Eq
~3.52! has been taken as 30.

FIG. 3. The results in~a! Fig. 2~a! and 2~b! along with raw data
points~Ref. 6! are replotted, but now in the temperature range 2
K to 300 K.
h

al

temperature range of 200 K–300 K, both for theAg(2) and
Ag(4) modes, in Figs. 3~a! and 3~b!, respectively. Consider
ing that the coupling constants arederivedfrom the line shift
data and are no longer fitting parameters, and the only fit
parameter left is the relative weightage ‘‘a’’ of one-phon
versus two-phonon processes, the agreement between th
and experiment between 200 K and 300 K is remarka
good.

V. SUMMARY AND CONCLUSIONS

We have addressed in detail in this paper the issue
charge ordering which is considered to be ubiquitous in
topically important materials of manganites. The many bo
theory we have formulated has been specifically geared
carefully scrutinizing questions in the context of the Ram
line shape. The resolvent operator technique, in conjunc
with the mean-field approximation, has enabled us to de
expressions for the line shape, which can be compared
contrasted with explicit stochastic considerations.

The coupling between charge ordering and phono
made plausible by the occurrence of dynamic Jahn-Te
effect in manganites, lends a certain flavor to our treatm
which is reminiscent of polaron physics. Indeed, we ha
been able to adapt from the literature expressions
polaron-mediated tunneling rates for light interstitials in s
ids, as influenced by one- and two-phonon processes.

From the derived expression for the line shape we h
estimated line shift and linewidth for explicit compariso
with Raman experiment in Pr0.63Ca0.37MnO3. In fact, from
the low temperature line shift data we have been able
determinethe coupling constant of the charge-phonon int
action, which is otherwise a floating parameter of the theo
The same value of the coupling constant has then been
ployed in analyzing the linewidth data. While the agreem
between theory and experiment for line shift is quite sa
factory the same cannot be claimed when it comes to
linewidth, especially at low temperatures. Notwithstandi
the fact that the extraction of linewidth is always plagued
bigger uncertainties than that of the line shift, as the en
line shape has to be fitted, the linewidth data neverthe
point to the possibility of the dynamics in manganites be
far more complex than just charge~dis!ordering. It seems to
us that one has to reckon with combined and concomi
presence of spins, orbital ordering, charge ordering,
phonons. The possibility of the occurrence of orbital wav
or orbitons in manganites has already been talked abo22

What is lacking is a complete many body formalism whi
brings together magnons, orbitons, and phonons.

Finally, we feel that the theory of charge ordering we ha
formulated is quite generally applicable. Although the theo
is unable to explain all the ingredients of the Raman data
Pr0.63Ca0.37MnO3, it may have better success in other oxi
systems, e.g., Fe3O4.6 Work in this direction is in progress
and will be reported elsewhere.
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APPENDIX A

In this appendix we fill in the mathematical steps which have been omitted in Sec. III B and Sec. III C.
First, note from Eq.~2.8! that the Laplace transform of the correlation function is given by

C̃q~z!5 (
mn

m8n8

^musxum8&^n8usxun&

3 (
m0m08

pm0
~m0 ,m0u~ Ũ~z!!avum08 ,m08!, ~A1!

where„Ũ(z)…av is defined in Eq.~3.14!. It is ~the Laplace transform of! the averaged time-development operator, averaged
the phonon states as well as the eigenstates of all other pseudospins barring the central one, in the mean-field s
quantitypm0

is the Boltzmann factor corresponding to the quantum numberm0 for the central spin@cf. Eq. ~3.17!#.

Since„Ũ(z)…av is given by Eqs.~3.9! and~3.10! it is now our task to evaluate the matrix elements of the self-energy. T
are given by

S̃m0 ,m
08
~z!5~m0 ,m0uS̃~z!um08 ,m08!

5
1

ZpZs
(
nknk8

(
ss8

e2b(Enk
1Es)S m0nks,m0nksUS LI

1

z2 i ~Lp1Ls!
LI D Um08nk8s8,m08nk8s8D .

Rewriting the resolvent back in terms of a time integral, we have

S̃m0 ,m
08
~z!5

1

ZpZs
E

0

`

dte2zt (
nknk8

(
ss8

e2b(Enk
1Es)~m0nks,m0nksu~LI@ei (Lp1Ls)tLI # !um08nk8s8,m08nks8!

5
1

ZpZs
E

0

`

dte2zt (
nknk8

(
ss8

e2b(Enk
1Es) (

m09m0-
(

nk9nk-
(
s9s-

~m0nks,m0nksuLI um09nk9s9,m0-nk-s-!

3ei t[(Enk9
2Enk-

)1(Es92Es-)]~m09nk9s9,m0-nk-s-uLI um08nk8s8,m08nk8s8!, ~A2!

where we have employed completeness relations and the properties of Liouville operators.9

Further, we have for instance,

~m0nks,m0nksuLI um09nk9s9,m0-nk-s-!5^m0nksuHI um09nk9s9&dm0m
0-
dnkn

k-
dss-2^m0-nk-s-uHI um0nks&dm0m

09
dnkn

k9
dss9

~A3!

Therefore, from Eq.~A2!,

S̃m0 ,m
08
~z!5

1

ZpZs
E

0

`

dte2zt (
nknk8

(
ss8

e2b(Enk
1Es) (

m09m0-
(

nk9nk-
(
s9s-

ei t[(Enk9
2Enk-

)1(Es92Es-)]@^m0nksuHI um09nk9s9&dm0m
0-
dnkn

k-
dss-

2^m0-nk-s-uHI um0nks&dm0m
09
dnkn

k9
dss9#@^m09nk9s9uHI um08nk8s8&dm

0-m
08
dn

k-n
k8
ds-s8

2^m08nk8s8uHI um0-nk-s-&dm
09m

08
dn

k9n
k8
ds9s8#

5
1

ZpZs
E

0

`

dte2zt (
nknk8

(
ss8

e2b(Enk
1Es)H dm0m

08(
m09

@^m0nksuHI um09nk8s8&^m09nk8s8uHI um0nks&2^m0nksuHI um08nk8s8&

3^m08nk8s8uHI um0nks&#J ~ei t[(Enk8
2Enk

)1(Es82Es)]1e2 i t[(Enk8
2Enk

)1(Es82Es)] !,



having made use of delta functions;

5
1

ZpZs
E

0

`

dte2zt (
nknk8

(
ss8

e2b(Enk
1Es)H dm0m

08(
m09

@^m0nksuHI um09nk8s8&^m09nk8s8uHI~t!um0nks&1^m0nksuHI~t!um09nk8s8&

3^m09nk8s8uHI um0nks&#2@^m0nksuHI um08nk8s8&^m08nk8s8uHI~t!um0nks&1^m0nksuHI~t!um0nk8s8&^m08nk8s8uHI um0nks&#J ,

~A4!

where we have used the Heisenberg time-evolution operators, as in Eq.~2.9!.
To simplify Eq. ~A4! further, we consider a typical term, e.g.,

(
nknk8

(
ss8

(
m09

e2b(Enk
1ES)

ZpZs
^m0nksuHI um09nk8s8&^m09nk8s8uHI~t!um0nks&

5t2(
l ,l 8

(
nknk8

(
ss8

(
m09

e2b(Enk
1ES)

ZpZs
@^m0nksuB0

2Bl
1s0

1sl
21B0

1Bl
2s0

2sl
1um09nk8s8&^m09nk8s8uB0

2~t!Bl 8
1

~t!s0
1~t!sl 8

2
~t!

1B0
1~t!Bl 8

2
~t!s0

2~t!sl 8
1

~t!um0nks&#,

having substituted forHI from Eq. ~3.13!,

5t2( 8
l

(
m09

@^m0us0
1um09&^m09us0

2~t!um0&^^sl
2~0!sl

1~t!&&^^B0
2~0!B0

1~t!&&^^Bl
1~0!Bl

2~t!&&

1^m0us0
2um09&^m09us0

1~t!um0&^^sl
1~0!sl

2~t!&&^^B0
1~0!B0

2~t!&&^^Bl
2~0!Bl

1~t!&&#, ~A5!
s

.

th
-

e

where we have utilized the properties of spin-1
2 ladder opera-

tors, neglected off-site correlation in the mean-field sen
and introduced correlation functions, e.g.,

F l
21~t!5^^sl

2~0!sl
1~t!&&

5(
ss8

e2bEs

Zs
^susl

2us8&^s8usl
1~t!us&, ~A6!

and

C l
21~t!5^^Bl

2~0!Bl
1~t!&&

5 (
nknk8

e2bEnk

Zp
^nkuBl

2~0!unk8&^nk8uBl
1~t!unk&.

~A7!

The next term, following the above ‘‘typical term’’ in Eq
~A5!, is simply the one obtained by interchangingt with
2t. Since we are interested in the Markovian (z50) limit of
the self-energy, the two terms together enable us to write
t-integral from2` to 1`. Combining therefore all the con
tributions occurring in Eq.~A4!, we can write
e,

e

S̃m0m
08
~z50!5t2E

2`

`

dt(
l

8 H F l
21~t!C0

21~t!C l
12~t!

3Fdm0m
08(

m09
^m0us0

1um09&^m09us0
2~t!um0&

2^m0us0
1um08&^m08us0

2~t!um0&G
1F l

12~t!C0
12~t!C l

21~t!

3Fdm0m
08(

m09
^m0us0

2um09&^m09us0
1~t!um0&

2^m0us0
2um08&^m08us0

1~t!um0&G J . ~A8!

Equation~A8! yields four different terms which can b
listed as

S̃11~z50!5t2E
2`

`

dt( 8
l

^1us0
1u2&^2us0

2~t!u1&

3F l
21~t!C0

21~t!C l
12~t!, ~A9!



p

e

del

.

r
.

l

S̃22~z50!5t2E
2`

`

dt(
l

8 ^2us0
1u1&^1us0

2~t!u2&

3F l
12~t!C0

12~t!C l
21~t!, ~A10!

S̃12~z50!52S̃11~z50!,

S̃21~z50!5S̃22~z50!. ~A11!

Referring to Eq.~3.22!, we may further write

S̃11~z50!5
t2

e
1
2 bJ(0)M1e2

1
2 bJ(0)M

3E
2`

`

dte22iJ(0)Mt( 8
l

C0
21~t!C l

12~t!,

~A12!

where we have made use of the fact that if the central s
belongs to sublatticeA with magnetization1M , the nearest
neighbor spin must belong to sublatticeB with magnetization
2M .

Note that the correlation functionsC ’s are given by Eq.
~A7! wherein the operatorsB8s are defined in the text@cf.
Eq. ~2.12!#. We have shown elsewhere16

C l
12~t!5C l

21~t!

5expH 2(
k

S G~k!

w0~k!
D FcothS 1

4
bw0~k!D

3~12cosw0~k!t!1 i sinw0~k!tG J ,

~A13!

independent ofl. Introducing then the spectral density of th
phonon weight factor as

j ~w!52(
k

G2~k!d~w2w~k!!, ~A14!

we have, from Eq.~A12!,

S̃11~z50!5ht2E
2`

`

dt
e22iJ(0)Mt

e
1
2 bJ(0)M1e2

1
2 bJ(0)M

3expH 2E
0

` j ~w!

w2 FcothS 1

4
bwD ~12coswt!

1 i sinwtG J ,

h being the number of nearest neighbors;
in

5
ht2

e
1
2 bJ(0)M1e2

1
2 bJ(0)M

E
2`

`

dte22iJ(0)Mt

3expH 2E
0

` j ~w!

w2 F cothS 1

4
bwD2

cosw~t2 ib/4!

sinhS 1

4
bwD G J .

~A15!

Changing the contour of integration overt, we obtain the
result given in Eq.~3.18!. Similar steps yield Eq.~3.19!.

APPENDIX B

In this Appendix we sketch a mean field, stochastic mo
calculation for the line shape.13,14 The model Hamiltonian is
given by @cf. Eq. ~3.1!#

H̃~ t !5H̃01 (
j 56

Vj f j~ t !, ~B1!

where

H̃05 1
2 wqsz , ~B2!

V15 1
2 gqsx , ~B3!

and

V252 1
2 gqsx , ~B4!

The quantityf j (t) is a dichotomic Markov~telegraph! pro-
cess, mimicking the fact that the pseudospin operatorsi

z(t)
jumps at random between12 and2 1

2 , due to spin-lattice re-
laxations.

As shown in Eq.~13! of Ref. 14 ~the Laplace transform
of! the averaged time-development operator is given by

~U~z!!av5(
ab

paSaUF ~z1l!2 i L̄02i(
j

Vj
3F j2lJG21UbD ,

~B5!

whereVj
3 denotes the Liouville operator associated withVj

and the stochastic ‘‘states’’ua) and ub) are associated with
the spin statesum0m0), um08m08), etc., introduced in the text
Similarly, the Boltzmann weightpa has two valuesp1 and
p2 , given by Eq. ~3.23!. Finally, the projection operato
F j (F1 andF2 , in the present case! has been defined in Eq
~8! of Ref. 14.

As shown in Eqs.~19! and ~20! of Ref. 14, the specia
structure for the transition matrixJ, given in Eq.~3.25! of
the text, allows us to derive:

~U~z!!av5@~U 0~z1l!!212l#21, ~B6!



ar
a

where

U 0~z1l!5 (
j 56

pj@~z1l!2 i L̄02 iV j
3#21. ~B7!

As in Ref. 14, we are further interested in the motional n
rowing limit in which the termVj

3 can be developed as
perturbation. Thus,

U 0~z1l!.
1

z1l2 i L̄0
F11 iV̄3

1

z1l2 i L̄0

2(
j

pjVj
3

1

z1l2 i L̄0

Vj
3

1

z1l2 i L̄0
G ,

~B8!

where

V̄35(
j

pjVj
3 . ~B9!

Hence,
e

hy

g

a-

-

-

„U 0~z1l!…21

5~z1l2 i L̄0!2 iV̄3

1(
j

pj S Vj
3

1

z1l2 i L̄0

Vj
32V̄j

3
1

z1l2 i L̄0

V̄3D ,

~B10!

In the present example@cf. Eqs.~B3! and ~B4!#,

V̄35
1

2
~p12p2!gqsx

3 , ~B11!

where

~p12p2!5M , ~B12!

the order parameter. This then yields Eq.~3.32! of the text if
we remember that

~p11p2!51. ~B13!
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