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Spin Dynamics in a Dissipative Environment: From Quantal to Classical
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We address the problem of spin dynamics in the presence of a thermal bath, by solving exactly the
appropriate quantum master equations with continued-fraction methods. The crossover region between the
quantum and classical domains is studied by increasing the spin value S, and the asymptote for the
classical absorption spectra is eventually recovered. Along with the recognized relevance of the coupling
strength, we show the critical role played by the structure of the system-environment interaction in the
emergence of classical phenomenology.
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Quantum mechanics is one of the most subtle and pow-
erful theoretical constructions of the human mind. Under-
standing its implications, relation with other theories, and
domain of validity has captivated scientists since its ad-
vent. This domain has been slowly expanding from the tra-
ditional one of atoms and molecules, to condensed matter
systems (solids and liquids), and more recently by studies
of decoherence, quantum analogs of classical effects (e.g.,
chaos), and the quantum-to-classical transition [1].

These studies have also brought an increasing awareness
of the role of the environment. Thus, the field of open
quantum systems deals with systems consisting of a few
relevant degrees of freedom coupled to the surrounding
medium, which has a large number of constituents (pho-
tons, phonons, electrons, nuclei, etc.). The coupling pro-
duces dissipation, fluctuations, and decoherence; it also
enables the system to interchange energy and correlations
with the bath and relax to equilibrium [2]. Besides its basic
interest, the above generic conditions make this topic
relevant in various areas of physics and chemistry.

Spins constitute one of the most paradigmatic quantum
systems due to their discrete and finite energy spectrum.
Their dynamics is also special and rich because of the
underlying commutation relations �Si; Sj� � i�ijkSk.
Naturally, it is important to take into account environmen-
tal effects in spin problems, and this has led to several
theories of spin relaxation. To deal rigorously with quan-
tum dissipative systems, however, is a difficult task. Path
integral propagators and quantum Langevin or master
equations can typically be solved in a few simple cases:
free particle (or in a uniform field), harmonic oscillator [2],
two-state systems (e.g., S � 1=2 spins) [3], etc.

The continued-fraction method, devised originally for
classical Brownian-motion problems [4], has been success-
fully adapted to solve master equations for some quantum
systems [5–8]. Here we shall apply this technique to a spin
with arbitrary S weakly coupled to a dissipative bath, and
monitor its intrinsic dynamics via spin resonance. We in-
vestigate how the approach to the classical results takes
place (out of reach of previous exact methods due to their
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limitations in S). We focus on the effects of the environ-
ment, not only of the coupling strength, but also of the
structure of the spin-bath Hamiltonian. Usual studies of
open quantum systems overlook the latter and adopt the
simplest bilinear interaction. We consider two models with
a solid-state motivation: coupling to electron-hole excita-
tions, actually linear in S, and to phonons, an even poly-
nomial in S. We find that the approach to the classical re-
sults depends qualitatively on the coupling structure (and
the bath spectral properties). This is specially critical for
the uniformity of the convergence in the different fre-
quency sectors of the spin absorption spectra. The problem
is not merely academic; large-spin molecular clusters are
in the focus, while magnetic nanoparticles provide a natu-
ral classical limit [9]. Thus, our results could also help in
discriminating different proposed couplings in those sys-
tems and hence ascertain the microscopic origin of
dissipation.

Let us start with the Hamiltonian of a spin S coupled to a
bosonic bath (linearly in the bath variables)

H tot �H �S� �
X
q

VqFq�S��a
�
q � a�q� �H b: (1)

Here H �S� and H b �
P
q!qa

�
q aq are the spin and bath

Hamiltonians, Fq�S� the spin-dependent part of the inter-
action, and Vq coupling constants. For systems with a
discrete and finite spectrum, it is convenient to introduce
the Hubbard (level-shift) operators Xmn � jnihmj. Any op-
erator F can then be expanded in this basis F �P
nmFnmX

m
n , with Fnm � hnjFjmi. When coupled to the

environment, the spin is not in a pure state and it needs to
be described by its density matrix %. Its matrix elements
are given in this framework by %mn � hXmn i.

Many problems in quantum optics, magnetism, or
chemical physics involve weak system-bath coupling [2].
Then, the dynamical equation for % can be obtained by
perturbation theory. In the Hubbard formalism, using the
Sz eigenstates as the basis, Szjmi � mjmi, one finds for
H �H d�Sz� � B 	 S the following density-matrix equa-
tion [10,11]
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d
dt
Xmn � i�nmXmn � �i=2�B��‘mXm�1

n � ‘n�1Xmn�1�

� �i=2�B��‘m�1Xm�1
n � ‘nXmn�1� � R

m
n : (2)

The �nm � "n � "m are the frequencies associated with
the m! n transition, "m being the levels of the diagonal
part of the spin Hamiltonian (including Bz). The circular
components of the transverse field are B
 � Bx 
 iBy and
the ‘m � �S�S� 1� �m�m� 1��1=2 are ladder factors.

The first three terms in Eq. (2) give the unitary evolution
of the isolated spin in the Heisenberg representation. The
relaxation term Rmn incorporates the effects of the bath and
has a non-Markovian (history dependent) form

Rmn � �
Z t

�1
d�fK��� t�F����F;Xmn �

�K�t� ���F;Xmn �F���g: (3)

Here the operators without time argument are evaluated at t
whereas F��� �

P
n0m0Fn0m0X

m0
n0 ���. The memory kernel K

is given in terms of the spectral density of bath modes,
J�!� � �

2

P
qjVqj

2��!�!q�, and bosonic occupation
numbers, n! � 1=�e!=T � 1�, by

K ��� �
Z 1

0

d!
�
J�!��n!e�i!� � �n! � 1�e�i!��: (4)

To second order in the interaction, and not too strong
transverse field, the retarded time dependences Xm

0

n0 ��� can
be determined by the dominant term in the conservative
evolution Xmn ��� ’ e�i�nm�t���Xmn �t�. Inserting such Xm

0

n0 ���
in Rmn , only operators evaluated at t remain and non-
Markovian features effectively disappear. Then, the coef-
ficients of the Xm

0

n0 include, along with the coupling matrix
elements Fnm, the relaxation rates Wnjm � W��nm�, with
the universal rate function associated with the kernel
W��� � Re�

R
1
0 d�e

�i��K����.
We shall consider in the sequel the following family of

couplings F: linear in S
 � Sx 
 iSy but allowing for
Sz-dependent ‘‘coefficients’’ v�Sz�:

F�S� � ���v�Sz�; S��� � ���v�Sz�; S���: (5)

Here �
 are some scalars ensuring F� � F while
�A;B�� � AB� BA. Then, the matrix elements Fnm �
hnjFjmi read Fnm � Lm;m�1�n;m�1 � L

�
m�1;m�n;m�1,

where Lm;m0 � ���v�m� � v�m0��‘m;m0 and ‘m;m
1 �

�S�S� 1� �m�m
 1��1=2. The relaxation term for these
couplings acquires the following (Redfield) form [10–12]

Rmn � Ln;n�1L
�
m;m�1�Wnjn�1 �Wmjm�1�X

m�1
n�1

� �jLn�1;nj
2Wn�1jn � jLm�1;mj

2Wm�1jm

� jLn;n�1j
2Wn�1jn � jLm;m�1j

2Wm�1jm�Xmn

� L�n�1;nLm�1;m�Wnjn�1 �Wmjm�1�Xm�1
n�1 :

(6)

Inserting this Rmn in Eq. (2) we get the master equation for
our problem within a fully quantum treatment (no phe-
19040
nomenological relaxation is introduced, no preconceived
form of the equation is assumed). Recall finally that han-
dling the spin precession requires solving the full density-
matrix equation, because it involves off-diagonal elements,
and it is not captured by a (Pauli) master equation for the
level populations (%mm).

We mentioned the difficulties in solving our models for
quantum dissipation and that the continued-fraction
method (a relative of the recursion method and Lanczos
tridiagonalization) has been applied to several quantum
systems [5–8]. For spin problems [12] one starts writing
the master equation compactly as _Xmn �

P
n0m0Q

m;m0

n;n0 X
m0
n0

with n0 � n� 1; n; n� 1 and m0 � m� 1; m;m� 1. To
convert this 2-index differential recurrence into a 1-index
one, we introduce appropriate �2S� 1� vectors, cn, and
�2S� 1� � �2S� 1� matrices, Qn;n0 , with components and
elements [12]

�cn�m � hXmn i; �Qn;n0 �mm0 � Qm;m0

n;n0 ; (7)

obtaining _cn � Qn;n�1cn�1 �Qn;ncn �Qn;n�1cn�1. In
this 1-index form the recurrence can be tackled by (matrix)
continued-fraction methods [4] yielding the solution of the
master Eq. (2). We have then the full density matrix %mn �
hXmn i � �cn�m and any observable (magnetization, suscep-
tibilities, etc.) can be computed from the trace formula
hAi � Tr�%A�. The matrix associated with the original
system, _X � QX, had dimensions �2S� 1�2 � �2S� 1�2

making the handling even of moderate spins (S & 10)
difficult. The continued-fraction approach replaces it by
2S� 1 problems but with matrices �2S� 1� � �2S� 1�,
allowing us to gain some orders of magnitude in S and
pursue the classical limit a way longer.

We now apply the above formalism to the problem of
spin dynamics in a magnetic-anisotropy plus Zeeman po-
tential H � �DS2

z � B 	 S. This Hamiltonian may also
be viewed as the minimal model for superparamagnets [9].
The anisotropy term has two minima at Sz � 
S with a
barrier at Sz � 0. The coupling to the environment pro-
vokes quantum Brownian motion of the spin, which may
overcome the potential barriers. We consider two basic
solid-state mechanisms [2,3]: (i) Coupling to electron-
hole excitations near the Fermi surface (a bosonizable
bath); then F�S� � 1

2���S� � ��S�� [i.e., v�Sz� � const
in Eq. (5)] while the bath is Ohmic, J�!� � �!.
(ii) Coupling to phonons; now v�Sz� / Sz and the environ-
ment is super-Ohmic, J�!� � �!3 (in 3D). Classically
these couplings yield field-type and anisotropy-type fluc-
tuations, respectively, in the Langevin equations. The rates
Wn0jm0 required in Rmn can be obtained from the spectral
density by W��� � J���n� � J�����n�� � 1�, under-
standing J�!< 0� � 0. We start with the super-Ohmic
nonlinear case, which has received less attention in the
context of quantum dissipative systems than the Ohmic
bilinear coupling; we will see that it also has a rich physics.

The Zeeman term and F / S
 have nonzero matrix
elements between the states jmi, producing transitions
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between them. In an oscillating field, they result in peaks in
the imaginary part �00��� of the dynamical susceptibility
(absorption line shape) located at the transition frequencies
�m;m�1 � "m � "m�1 � D�2m� 1� � Bz (Fig. 1). The
transitions at the potential wells (jmj  S) correspond to
the largest frequencies (� 2DS at Bz � 0), while those
near the barrier top (m 0) appear at low frequencies
(D). Then, going from high to low �, the intensity of
the peaks decreases, as they involve transitions between
higher levels, which are thermally less populated.

The peaks have finite width and height due to the damp-
ing � and the temperature, as the interaction with the bath
‘‘blurs’’ the spin energy levels. Thus, a lowering of � or T
makes the peaks narrower and higher (phenomenology
akin to that of a damped oscillator). There is an extra
narrowing of the low � peaks, because the spin-phonon
coupling F SzS
 leads to an effective damping decreas-
ing with m [�eff  ��2m
 1�2]. This enters in Rmn via the
modified ladder factors jLm;m
1j

2  �2m
 1�2‘2
m;m
1 and

it is a spin analogue of position-dependent damping in
translational Brownian motion.

Next, let us briefly discuss the corresponding classical
behavior. The actual line shape will depend on the phe-
nomenological relaxation model considered (Bloch equa-
tions, Landau-Lifshitz, etc.). Nevertheless, the result in the
limit of zero damping is universal [13,14]

�00��� �
�2

T
�

2Z
��1� ��=�a�

2� exp�	��=�a�
2�: (8)

Here Z is the partition function, �a the resonance fre-
quency at the wells, and 	 the barrier over T. Physically,
the anisotropy H d � �DS

2
z leads to Sz-dependent pre-

cession frequencies / @H =@Sz and the ensuing spreading
of the line shape (inset of Fig. 1). The population of the
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FIG. 1. Absorption line shape �00��� for a spin S � 10 with
D � 0:5 at Bz � 0. Thick line: 	 � DS2=T � 5 and spin-pho-
non coupling � � 3� 10�8. Thin lines: effects of halving the
damping at the same T (solid), and of halving T keeping �
(dashed). Vertical lines: loci of the transition frequencies
�m;m�1 � D�2m� 1�. Inset: classical dampingless asymptote
(8) for 	 � 1, 2, and 3 (lines), and exact Fokker-Planck results
for finite Landau-Lifshitz damping (�LL � 0:003; symbols).
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different Sz orbits changes with T, modifying �00���. Note
that this dissipationless limit provides a good description
for weak enough coupling in most of the � range.

We thus see that the classical phenomenology looks
quite different from the multipeaked structure of the quan-
tum case. This poses the following questions: (i) How does
quantum mechanics manage to join those two behaviors?
and (ii) Which are the main factors determining the way in
which the classical phenomenology emerges? We now try
to answer these questions by solving the density-matrix
equation (2) for increasing S and getting as close as pos-
sible to the classical domain.

Recall, however, that limiting procedures in physical
problems (e.g., lattice to continuous limit in field theories,
thermodynamic limit in statistical mechanics, etc.) require
us to define clearly: (i) which quantities are kept constant
when taking the limit and (ii) which scaled variables are
needed to monitor the evolution. We fix the reduced an-
isotropy and field parameters 	 � DS2=T and 
 � SB=T.
At constant T this entails keeping the anisotropy-barrier
height and amount of Zeeman energy constant (and hence
finite) while introducing more levels with S (the spacing
decreases as � 1=S). As for the scaled quantities, guided
by the classical result (8), we use �=�0 with �0 � S�S�
1�=T (corresponding to�2=T) and �=2DS (which tends to
�=�a). Finally, we also scale the bare coupling strength �
with S. The reason is that in the density-matrix equation the
Hamiltonian coefficients go as � 1=S while the relaxa-
tion ones decrease as �D2L2�2  �=S2 (we include a D2

dependence arising in the coupling to phonons [11]). Thus,
fixing �=S we can study the effects of going to large S
while maintaining the relative ‘‘weights’’ of the conserva-
tive and relaxation terms in the quantum master equation.

Proceeding in this way, we compute the transverse dy-
namical response for various S (Fig. 2). For moderate spins
we clearly recognize the quantum features of Fig. 1. As S is
increased more peaks are introduced into the same interval
�=�a. Because of their finite width they start to coalesce
and a limit curve progressively emerges. However, the
approach is far from uniform in �. At low frequencies
the peaks merge slowly with S; they are sharp and narrow
due to them-dependent damping associated with Sz in F
SzS
. This is less relevant at high frequencies [large jmj,
��eff=�eff  4=�2m
 1�] and a smooth peakless line
shape arises there. For a fixed S, in addition, one would
expect that larger spin-bath coupling will ‘‘accelerate’’ the
classical convergence. Figure 2 actually shows that the
wildly peaked part is then pushed further into the low �
sector and that the ‘‘oscillations’’ around the limit curve
are reduced. It is remarkable that this limit curve is indeed
Gekht’s classical prediction (8).

The finite width of the absorption peaks has been essen-
tial to reconstruct the classical curve. Here it has been
provided by the coupling to the environment; in other
situations different broadening mechanisms may contrib-
ute [15]. The form of the interaction, on the other hand, has
led to a highly nonuniform approach to the classical
1-3
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asymptote. This shows that not only the strength, but also
the structure of the coupling Hamiltonian can play an
important role in the approach to the classical regime.

This can be further supported by comparing with the
‘‘electron-hole’’ coupling model, where F S
. To assess
the different contributions we proceed in two steps, adjust-
ing � to get the same intensity for the ground-state tran-
sitions (rightmost peaks); Fig. 3. First, we go from the
phonon-coupling F SzS
 to a hybrid model with F
S
, but still super-Ohmic spectral density. This F greatly
tames the low-frequency sharp peaks, but some nonuni-
formity still remains, due to Wmjm�1  J���n�  �3�1

m;m�1

in the relaxation term. Second, we add the Ohmic bath J /
! to the bilinear coupling. Then Wmjm�1 �1�1

m;m�1 

const and the approach to the classical behavior becomes
quite uniform in most of the � range, in spite of the
moderate spin value considered (S � 10).

In summary, we have addressed the problem of spin
dynamics in a dissipative thermal bath. Solving exactly
the quantum master equation by a continued-fraction
method for increasing S has allowed us to approach the
classical prediction for the absorption spectra. We have
investigated the effects of the spin-bath interaction on the
quantum-to-classical crossover. The coupling strength, as
usual in quantum dissipative systems, accentuates the at-
19040
tainment of the classical phenomenology. However, the
approach is qualitatively affected by the structure of the
interaction, as illustrated with the different convergences in
the different sectors of the absorption spectra for two
important solid-state mechanisms. Although the relevance
of dissipation, specially in mesoscopic systems, is amply
recognized, only studies of decoherence and approach to
equilibrium had paid due attention to the structure of the
coupling Hamiltonian. Here we have shown its relevance
also in the features of the quantum-classical border and in
the emergence of classical behavior.
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00113 (DGES, Spain). We thank B. Dutta-Roy and F. Luis
for critical readings of the manuscript.
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