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Correlation-induced spectral changes and energy conservation
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An energy conservation law is derived for fields generated by random, statistically stationary, scalar sources
of any state of coherence. It is shown that correlation-induced spectral changes are in strict agreement with this
law and that, basic to the understanding of such changes, is a distinction that must be made between the
spectrum of a source and the spectrum of the field that the source generates. This distinction, which is
obviously relevant for spectroscopy, does not appear to have been previously recognized.
[S1050-294{P6)06610-3

PACS numbd(s): 42.50.Ar

[. INTRODUCTION sian components of the polarization vector and of one of the
electromagnetic field vectors, respectively, although this, of
It has been predicted theoretically some years [dga]  course, is only a rough analogy. We will show elsewhere that
that the spectrum of light and of other radiation may changéhe main conclusions of our analysis hold when the full elec-
on propagation, even in free space. This phenomenon, whidomagnetic nature of the source and of the field are taken
was soon verified experimentallg—5], has attracted a good into account.
deal of attention and has resulted in the publication of about Since we are interested in spectral properties it is conve-
100 papers on this subjefd]. The spectral changes, which nient to deal with the Fourier transforms
have their origin in spatial correlation properties of sources,
may be of very different kinds. They may, for example, con- — 1 (= o
sistyof redshifz/s or blueshifts of spé/ctral)/lines, narrgwing or p(rw)=5— j_xp(r,t)e' dt 2.1
broadening of the lines, and generation of new lines. More-
over, different spectral changes may occur in different direczng
tions of observation.
In spite of the considerable interest that has been shown in - 1 (= ,
this effect, an explicit demonstration that such spectral E(ro)=5_ J E(r,t)e'“'dt 2.2
changes do not violate energy conservation has, up to now, o
been demonstrated iny under somgwhat restricted circums p(rt) and E(r 1), respectively. They are related by the
stanceqd12-14. In this paper we derive an energy conser-. .
. i i inhomogeneous Helmholtz equation
vation law for fields produced by random, statistically sta-
tionary sources of any state of coherence and we demonstrate
that correlation-induced spectral changes do not violate this
law. Our analysis, which is valid for both classical and quan- here
tum sources, shows also that basic for the understanding i
this phenomenon is a distinction that must be made between K= w/c (2.4)
the spectrum of a source and the spectrum of the field that '
the source generates. This distinction, which is obviouslyg o free-space wave number associated with the frequency

very relevant to the interpretation of spectroscopic data, doec%l ¢ being the speed of ligh vacuo The outgoing solution
not appear to have been previously appreciated. of Eq. (2.3 is

(V24+K2)E(r,w) = — 47k?P(r; w), (2.3

Il. THE SOURCE SPECTRUM AND THE SPECTRUM ~ e
OF THE RADIATED FIELD E(r,o)=k o TT=r] p(r',w)dr’. (2.5

We consider radiation from a scalar source, localized in a =) _ 5 v
finite regionD of space(Fig. 1). Let p(r,t) denote the source | Ne fieldE ™ (ru,w) at a pointr=ru (u”=1) in the far zone
density distribution ancE(r.t) the field generated by the (the radiation fieldl is obtained at once from Ed2.5 by
source, at a point, at timet. We take bottp(r,t) andE(r,t)y ~ Making use of the asymptotic approximatisee Fig. 1
to be the complex analytic signal representatiptfs| of a i’ "
real source variable and a real field variable. In order to elkir=r |~ —iku-r’ : (2.6
illustrate the main aspects of the theory we will ignore the [r—r'] © r '
vectorial nature of the problem and tagé,t) andE(r,t) to
be scalars. We may think @f andE as representing Carte- (kr—oo with u fixed) and hence
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If, as is often the case, the source is homogeneous in the
sense that the source spectr@jir,) is the same at every
source point, i.e., if

Sp(ru,w)=S,(w) for all reD, (2.13

formula(2.12 reduces to

SE(r @) =M(w,u1)Sy(w), (214

Source domain
where
FIG. 1. lllustrating notation relating to E¢2.6). P is a point in
the far zone of the source,is a unit vector, andi-r’=0ON. k4 S
M(w’u,r):r_z f f /_Lp(r/,rn’w)e—lku-(r -r >d3r’d3r”.
. DJD
. e|kr _ _ .
E(“’)(ru,w)=szJ’ p(r',m)e " rdd’. (2.7 (2.19
D

Formula(2.14), together with Eq(2.15), confirms again the
In any realistic situation the source distribution and, con-ésult established in several previous publications, that the
sequently, the field distribution are not deterministic but arespectrum of the radiation field depends, in general, not only
random functions of time. We assume that the ensemble@n the spectrum of the source but also on its correlation
that characterize the temporal fluctuations i t) and ~ Properties, represented by the spectral degree of coherence
E(r,t) are statistically stationary, at least in the wide sense4p(r".r",»). Consequently, the two spectra will, in general,
[16] The Spectrunsp(r'w) of the source distribution and the differ from each other. It is not difficult to show that this is

spectrumSg(r,w) of the field distribution are then given by SO even when the source is spherically symmetric, as has
the formulas already been previously demonstrafé@—14. Because the

proportionality factorM in formula (2.14) depends not only
(b’*(r,w)b'(r,a)’)>=Sp(r,w)é(w—w’), (2.8a on the frequencyw but also on the unit vectan, the spec-

trum of the radiation will be different, in general, in different
E* = " = o directions of observation. These conclusions have also been
(B*(r,0)B(r,0"))=S(r,0)d(0=-0’), (289 confirmed by guantum-mechanical calculations relating to

where the angular brackets denote the ensemble average aﬂH‘ple atomic systemi20,21.

J is the Dirac delta function.

On substituting from Eq(2.7) into Eq. (2.8b we obtain, lIl. ENERGY CONSERVATION IN PARTIALLY
for the spectrum of the radiation field, the expression COHERENT FIELDS
KA One of several misconceptions surrounding the subject of
S (ru,w)=— f f W, (11", w)e  ku-("=r")g3p q3p7, correlation-induced spectral changes concerns the question
reJoJo P of energy conservation. In order to show that energy is in-

(2.9  deed conserved in such situations, we will first derive an

] . energy conservation law that holds for statistically stationary
whereW,(r',r",w) is the cross-spectral density of the polar- fie|ds of any state of coherence.

ization density defined by the formula8] With a suitable choice of units, the average energy flux
. . . , vectorF(r) at frequencyw, in a stationary optical field, is
(P*(r', @)p(r", 0" ) =Wy(r',I",0)d(w—w"). 2.10 given by the formuldcf. Eq. (5.7-13, Ref.[11]]

. . : : Fo(Né(w—o’)
It is convenient to express the right-hand side of 299)

in a somewhat different form. For this purpose we introduce

i~ ~ - ~
the spectral degree of cohererd8] of the polarization den- T 2%k [(E*(r,0)VE(r,0") —E(r,0") VE*(r,0))].
sit
y 3.1)
(1" ) Wo(r',r", ) (2.11) If we use an elementary vector identity we readily find that

VSp(r7, @) VSy(r", @)
V-F,(Nélw—w")
On substituting fo'W, from Eg. (2.11) into the integral in

Eq. (2.9 we see at once that __ ﬁ [(E*(r,0)VZE(r,0') ~E(r,0' ) VZE* (r,0))].

SE(ru w)zk—:f f VST ) VS (1, @) (11", 0) 3.2
, 2 ) ), VR I @) pp(r, 17,

o Let us eliminatév’E andVZE* on the right-hand side by the
X @ tku-(r=rg3p g3, (2.12  use of Eq(2.3). We then obtain, foN -F(r), the expression
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sin(k|r—r’])
. — 4 ' I L
LFw(r) n do=4xk foDWp(r,r W) K —17]

n xd3 d3r’. (3.6)

Since the left-hand side of E@3.6) represents the rate at
which energy emerges from the volurve the right-hand
side evidently represents the rate at which the source radiates
energy. This term is seen to depend on the second-order
correlation properties of the polarization, represented by the
G cross-spectral densitwp(r,r’,w).

Formula(3.6) is the integral form of the energy conser-
vation law for statistically stationary fields of any state of
coherencelt is to be noted that iholds at each frequency
This fact is a consequence of the assumed stationarity of the
source because different frequency components of members
of a statistically stationary ensemble are uncorrelf2si.

N

\

R

Source domain

FIG. 2. lllustrating notation relating to E@3.5). IV. CONSISTENCY OF THE PHENOMENON OF

, SPECTRAL CHANGES IN FREE PROPAGATION
V-F,(nNélo—w') WITH ENERGY CONSERVATION

=2mik[(p(r,w)E*(r,0’)=p*(r,0)E(r,0'))]. (3.3 We will now show that neither the difference between the
spectra of the source polarization and of the radiated field nor
Next we eliminatee andE* by the use of Eq(2.5) and find the dependence of the field spectrum on the direction of ob-
that servation noted in Sec. [tf. Eq. (2.14)] violates the law of
energy conservation.
The energy flux vectoF”(ru) and the spectral density

SE)(ru,w) of the radiation field are, for a suitable choice of
units, simply related24]:

(3.4 FC(ru) =S (ru,m)u. 4.

iklr—r'|

=

V-F,(r)=47k%Im J’ W3 (1,1, o) d3r’,
D

whereW,(r,r',w) is the cross-spectral density of the polar- If we substitute forSE) expression(2.9), Eq. (4.1) gives

ization defined by Eq(2.10 and Im denotes the imaginary K4 _
part. Fo(ruy=u— J' f Wp(r’,r”,w)e*'"“'(r ~d3rd3r”.

Formula(3.4) expresses arnergy conservation lavor r~JoJo
stationary fields of any state of coherence. When the point 4.2
is outside the source domalh, W,(r,r',w)=0 and Eq(3.49)  Hence the total energy flux radiated by the source is given by
reduces to the expression

V-F,(r)=0. (3.4) f F§j°>(ru)-ur2dn=k4f dnf f W,y (r',r", o)
A7 A DJD
The physical significance of formul@.4) becomes more w @ iku- (" =r") 43,1 437 4.3

apparent if we convert it into integral form. Let us integrate

both sides of that equation throughout a domdjrbounded  (kr—=), whered(} is the element of solid angle generated
by a closed surface, which contains the source domdin by the real unit vectou and the() integration extends over
in its interior (see Fig. 2 On using the Gauss theorem and the whole 4r solid angle. Let us interchange, on the right-
the fact thatW,(r,r',)=0 for all pointsr located outsid®,  hand side of Eq(4.3), the order of the angular and the spatial

we find that integrations and use the identitg5]
) sin(k|r"—r"
elklr=r’| dQ e K =D=474 H (4.9
wa(l’)ﬂ do=4mk3 Imf fwg(r,r’,w)m am
7 bIb Equation(4.3) then becomes
x d3 d®r’, (3.9
. . . . J F)(ru)-ur2dQ

wheren is the unit outward normal te-. Finally, if we use 4
the fact that the cross-spectral density is Hermitian ) -
[W*(rr’,)=W(r'r,w)] and also that the free-space Green's A4 ;oo Sk =)

. ) , ol C =47k Wp(r',r", o) ——— d°r’'d°r”.
function expik|r —r'[}/|r —r'| is symmetric with respect to pJo Klr'—r"|

andr’, formula(17) may be expressed in the forf@2] (4.5
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Relation(4.5), together with the fact that in the far zone the
flux vector is in the outward radial directidmas seen from
Eq. (4.1)], is precisely the energy conservation |4@.6),
specialized to the situation where the surfads taken to be

a sphere of infinitely large radius centered on a point in the ~ R
source region. We have thus demonstrated that expression (p'~)(r,w)p'™(r",0"))=Wy(r,r',w)d(w—w'),
(2.9 and, consequently, also expressi@rl4 for the spec-
trum of the radiated field do not violate energy conservation.
This conclusion confirms the correctness of the predictiorWhere t_he angular .brackets now denote the quantum-
evident from Eqs(2.14 and(2.15 that, in general, the spec- mechanical expectation value. Similarly, E®.1 for the
trum of the radiation field differs from the source spectrumaverage flux vector will now be replaced by the formula

and that it may be different at different points of observation.

P, (r,0))=S,(r,0)8(w—w'), (5.13

(EC(r,@)ED(r,0))=Su(r0)8(w—w'), (5.1D

(5.2

F (N d(w—w')=— # (EC(r,0)VEH(1,0")

V. QUANTUM FORMULATION

—EG(r,0 ) VEC(r,@). (5.3

The preceding analysis was based entirely on the statisti-
cal theory of classical fields. However, it can readily be seefyjth these definitions our basic conversation k8a) holds.
that the same conclusions also follow when the field is quan-

tized. One only needs to replace the classical field variable ACKNOWLEDGMENTS

E(r,w) by the positive frequency paB‘*)(r,w) of the elec-
tric field operator and the polarizatiqnr,w) of the source
by the positive frequency pap™)(r,w) of the polarization
operator. In place of Eq$2.8) and(2.10 we then have
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