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An energy conservation law is derived for fields generated by random, statistically stationary, scalar sources
of any state of coherence. It is shown that correlation-induced spectral changes are in strict agreement with this
law and that, basic to the understanding of such changes, is a distinction that must be made between the
spectrum of a source and the spectrum of the field that the source generates. This distinction, which is
obviously relevant for spectroscopy, does not appear to have been previously recognized.
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I. INTRODUCTION

It has been predicted theoretically some years ago@1,2#
that the spectrum of light and of other radiation may change
on propagation, even in free space. This phenomenon, which
was soon verified experimentally@3–5#, has attracted a good
deal of attention and has resulted in the publication of about
100 papers on this subject@6#. The spectral changes, which
have their origin in spatial correlation properties of sources,
may be of very different kinds. They may, for example, con-
sist of redshifts or blueshifts of spectral lines, narrowing or
broadening of the lines, and generation of new lines. More-
over, different spectral changes may occur in different direc-
tions of observation.

In spite of the considerable interest that has been shown in
this effect, an explicit demonstration that such spectral
changes do not violate energy conservation has, up to now,
been demonstrated only under somewhat restricted circum-
stances@12–14#. In this paper we derive an energy conser-
vation law for fields produced by random, statistically sta-
tionary sources of any state of coherence and we demonstrate
that correlation-induced spectral changes do not violate this
law. Our analysis, which is valid for both classical and quan-
tum sources, shows also that basic for the understanding of
this phenomenon is a distinction that must be made between
the spectrum of a source and the spectrum of the field that
the source generates. This distinction, which is obviously
very relevant to the interpretation of spectroscopic data, does
not appear to have been previously appreciated.

II. THE SOURCE SPECTRUM AND THE SPECTRUM
OF THE RADIATED FIELD

We consider radiation from a scalar source, localized in a
finite regionD of space~Fig. 1!. Let p~r ,t! denote the source
density distribution andE~r ,t! the field generated by the
source, at a pointr , at timet. We take bothp~r ,t! andE~r ,t!
to be the complex analytic signal representations@15# of a
real source variable and a real field variable. In order to
illustrate the main aspects of the theory we will ignore the
vectorial nature of the problem and takep~r ,t! andE~r ,t! to
be scalars. We may think ofp andE as representing Carte-

sian components of the polarization vector and of one of the
electromagnetic field vectors, respectively, although this, of
course, is only a rough analogy. We will show elsewhere that
the main conclusions of our analysis hold when the full elec-
tromagnetic nature of the source and of the field are taken
into account.

Since we are interested in spectral properties it is conve-
nient to deal with the Fourier transforms

p̃~r ,v!5
1

2p E
2`

`

p~r ,t !eivtdt ~2.1!

and

Ẽ~r ,v!5
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of p~r ,t! and E~r ,t!, respectively. They are related by the
inhomogeneous Helmholtz equation

~¹21k2!Ẽ~r ,v!524pk2p̃~r ;v!, ~2.3!

where

k5v/c ~2.4!

is the free-space wave number associated with the frequency
v, c being the speed of lightin vacuo. The outgoing solution
of Eq. ~2.3! is

Ẽ~r ,v!5k2E
D

eikur2r8u

ur2r 8u
p̃~r 8,v!d3r 8. ~2.5!

The field Ẽ~`!~ru,v! at a pointr5ru ~u251! in the far zone
~the radiation field! is obtained at once from Eq.~2.5! by
making use of the asymptotic approximation~see Fig. 1!
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~kr→` with u fixed! and hence
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p̃~r 8,v!e2 iku•r8d3r 8. ~2.7!

In any realistic situation the source distribution and, con-
sequently, the field distribution are not deterministic but are
random functions of time. We assume that the ensembles
that characterize the temporal fluctuations ofp~r ,t! and
E~r ,t! are statistically stationary, at least in the wide sense
@16#. The spectrumSp~r ,v! of the source distribution and the
spectrumSE~r ,v! of the field distribution are then given by
the formulas

^ p̃* ~r ,v! p̃~r ,v8!&5Sp~r ,v!d~v2v8!, ~2.8a!

^Ẽ* ~r ,v!Ẽ~r ,v8!&5SE~r ,v!d~v2v8!, ~2.8b!

where the angular brackets denote the ensemble average and
d is the Dirac delta function.

On substituting from Eq.~2.7! into Eq. ~2.8b! we obtain,
for the spectrum of the radiation field, the expression

SE
~`!~ru,v!5

k4

r 2 EDEDWp~r 8,r 9,v!e2 iku•~r92r8!d3r 8d3r 9,

~2.9!

whereWp~r 8,r 9,v! is the cross-spectral density of the polar-
ization density defined by the formula@18#

^p* ~r 8,v!p~r 9,v8!&5Wp~r 8,r 9,v!d~v2v8!.
~2.10!

It is convenient to express the right-hand side of Eq.~2.9!
in a somewhat different form. For this purpose we introduce
the spectral degree of coherence@19# of the polarization den-
sity

mp~r 8,r 9,v!5
Wp~r 8,r 9,v!

ASp~r 8,v!ASp~r 9,v!
. ~2.11!

On substituting forWp from Eq. ~2.11! into the integral in
Eq. ~2.9! we see at once that

SE
~`!~ru,v!5

k4

r 2 EDEDASp~r 8,v!ASp~r 9,v!mp~r 8,r 9,v!

3e2 iku•~r92r8!d3r 8d3r 9. ~2.12!

If, as is often the case, the source is homogeneous in the
sense that the source spectrumSp~r ,v! is the same at every
source point, i.e., if

Sp~ru,v![Sp~v! for all rPD, ~2.13!

formula ~2.12! reduces to

SE
~`!~r ,v!5M ~v,u,r !Sp~v!, ~2.14!

where

M ~v,u,r !5
k4

r 2 EDEDmp~r 8,r 9,v!e2 iku•~r92r8!d3r 8d3r 9.

~2.15!

Formula~2.14!, together with Eq.~2.15!, confirms again the
result established in several previous publications, that the
spectrum of the radiation field depends, in general, not only
on the spectrum of the source but also on its correlation
properties, represented by the spectral degree of coherence
mp~r 8,r 9,v!. Consequently, the two spectra will, in general,
differ from each other. It is not difficult to show that this is
so even when the source is spherically symmetric, as has
already been previously demonstrated@12–14#. Because the
proportionality factorM in formula ~2.14! depends not only
on the frequencyv but also on the unit vectoru, the spec-
trum of the radiation will be different, in general, in different
directions of observation. These conclusions have also been
confirmed by quantum-mechanical calculations relating to
simple atomic systems@20,21#.

III. ENERGY CONSERVATION IN PARTIALLY
COHERENT FIELDS

One of several misconceptions surrounding the subject of
correlation-induced spectral changes concerns the question
of energy conservation. In order to show that energy is in-
deed conserved in such situations, we will first derive an
energy conservation law that holds for statistically stationary
fields of any state of coherence.

With a suitable choice of units, the average energy flux
vectorFv~r ! at frequencyv, in a stationary optical field, is
given by the formula@cf. Eq. ~5.7-13!, Ref. @11##

Fv~r !d~v2v8!

52
i

2k
@^Ẽ* ~r ,v!“Ẽ~r ,v8!2Ẽ~r ,v8!“Ẽ* ~r ,v!&#.

~3.1!

If we use an elementary vector identity we readily find that

“•Fv~r !d~v2v8!

52
i

2k
@^Ẽ* ~r ,v!¹2Ẽ~r ,v8!2Ẽ~r ,v8!¹2Ẽ* ~r ,v!&#.

~3.2!

Let us eliminate¹2Ẽ and¹2Ẽ* on the right-hand side by the
use of Eq.~2.3!. We then obtain, for“•Fv~r !, the expression

FIG. 1. Illustrating notation relating to Eq.~2.6!. P is a point in
the far zone of the source,u is a unit vector, andu•r 85ON.

54 4425CORRELATION-INDUCED SPECTRAL CHANGES AND . . .



“•Fv~r !d~v2v8!

52p ik@^ p̃~r ,v!Ẽ* ~r ,v8!2 p̃* ~r ,v!Ẽ~r ,v8!&#. ~3.3!

Next we eliminateẼ andẼ* by the use of Eq.~2.5! and find
that

“•Fv~r !54pk3 Im E
D
Wp* ~r ,r 8,v!

eikur2r8u

ur2r 8u
d3r 8,

~3.4!

whereWp~r ,r 8,v! is the cross-spectral density of the polar-
ization defined by Eq.~2.10! and Im denotes the imaginary
part.

Formula ~3.4! expresses anenergy conservation lawfor
stationary fields of any state of coherence. When the pointr
is outside the source domainD,Wp~r ,r 8,v!50 and Eq.~3.4!
reduces to

“•Fv~r !50. ~3.48!

The physical significance of formula~3.4! becomes more
apparent if we convert it into integral form. Let us integrate
both sides of that equation throughout a domainV, bounded
by a closed surfaces, which contains the source domainD
in its interior ~see Fig. 2!. On using the Gauss theorem and
the fact thatWp~r ,r 8,v!50 for all pointsr located outsideD,
we find that

E
s
Fv~r !•n ds54pk3 Im E

D
E
D
Wp* ~r ,r 8,v!

eikur2r8u

ur2r 8u

3d3r d3r 8, ~3.5!

wheren is the unit outward normal tos. Finally, if we use
the fact that the cross-spectral density is Hermitian
@W* ~r ,r 8,v!5W~r 8,r ,v!# and also that the free-space Green’s
function exp@ik ur2r 8u#/ur2r 8u is symmetric with respect tor
and r 8, formula ~17! may be expressed in the form@22#

E
s
Fv~r !•n ds54pk4E

D
E
D
Wp~r ,r 8,v!

sin~kur2r 8u!
kur2r 8u

3d3r d3r 8. ~3.6!

Since the left-hand side of Eq.~3.6! represents the rate at
which energy emerges from the volumeV, the right-hand
side evidently represents the rate at which the source radiates
energy. This term is seen to depend on the second-order
correlation properties of the polarization, represented by the
cross-spectral densityWp~r ,r 8,v!.

Formula ~3.6! is the integral form of the energy conser-
vation law for statistically stationary fields of any state of
coherence. It is to be noted that itholds at each frequency.
This fact is a consequence of the assumed stationarity of the
source because different frequency components of members
of a statistically stationary ensemble are uncorrelated@23#.

IV. CONSISTENCY OF THE PHENOMENON OF
SPECTRAL CHANGES IN FREE PROPAGATION

WITH ENERGY CONSERVATION

We will now show that neither the difference between the
spectra of the source polarization and of the radiated field nor
the dependence of the field spectrum on the direction of ob-
servation noted in Sec. II@cf. Eq. ~2.14!# violates the law of
energy conservation.

The energy flux vectorFv
~`!~ru! and the spectral density

SE
(`)~ru,v! of the radiation field are, for a suitable choice of

units, simply related@24#:

Fv
~`!~ru!5SE

~`!~ru,v!u. ~4.1!

If we substitute forSE
(`) expression~2.9!, Eq. ~4.1! gives

Fv
~`!~ru!5u

k4

r 2 EDEDWp~r 8,r 9,v!e2 iku•~r92r8!d3r 8d3r 9.

~4.2!

Hence the total energy flux radiated by the source is given by
the expression

E
4p
Fv

~`!~ru!•ur 2dV5k4E
4p
dVE

D
E
D
Wp~r 8,r 9,v!

3e2 iku•~r92r8!d3r 8d3r 9 ~4.3!

~kr→`!, wheredV is the element of solid angle generated
by the real unit vectoru and theV integration extends over
the whole 4p solid angle. Let us interchange, on the right-
hand side of Eq.~4.3!, the order of the angular and the spatial
integrations and use the identity@25#

E
4p
dV e2 iku•~r2r !54p

sin~kur 82r 9u!
kur 82r 9u

. ~4.4!

Equation~4.3! then becomes

E
4p
Fv

~`!~ru!•ur 2dV

54pk4E
D
E
D
Wp~r 8,r 9,v!

sin~kur 82r 9u!
kur 82r 9u

d3r 8d3r 9.

~4.5!

FIG. 2. Illustrating notation relating to Eq.~3.5!.
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Relation~4.5!, together with the fact that in the far zone the
flux vector is in the outward radial direction@as seen from
Eq. ~4.1!#, is precisely the energy conservation law~3.6!,
specialized to the situation where the surfaces is taken to be
a sphere of infinitely large radius centered on a point in the
source region. We have thus demonstrated that expression
~2.9! and, consequently, also expression~2.14! for the spec-
trum of the radiated field do not violate energy conservation.
This conclusion confirms the correctness of the prediction
evident from Eqs.~2.14! and~2.15! that, in general, the spec-
trum of the radiation field differs from the source spectrum
and that it may be different at different points of observation.

V. QUANTUM FORMULATION

The preceding analysis was based entirely on the statisti-
cal theory of classical fields. However, it can readily be seen
that the same conclusions also follow when the field is quan-
tized. One only needs to replace the classical field variable

Ẽ~r ,v! by the positive frequency partẼ
ˆ (1)(r ,v) of the elec-

tric field operator and the polarizationp̃~r ,v! of the source

by the positive frequency partp̂̃(1)(r ,v) of the polarization
operator. In place of Eqs.~2.8! and ~2.10! we then have

^ p̂̃~2 !~r ,v! p̂̃~1 !~r ,v8!&5Sp~r ,v!d~v2v8!, ~5.1a!

^ Ễ~2 !~r ,v!Ễ~1 !~r ,v8!&5SE~r ,v!d~v2v8!, ~5.1b!

^ p̂̃~2 !~r ,v! p̂̃~1 !~r 8,v8!&5Wp~r ,r 8,v!d~v2v8!,
~5.2!

where the angular brackets now denote the quantum-
mechanical expectation value. Similarly, Eq.~3.1! for the
average flux vector will now be replaced by the formula

Fv~r !d~v2v8!52
i

2k
^ Ễ~2 !~r ,v!“ Ễ~1 !~r ,v8!

2 Ễ~1 !~r ,v8!“ Ễ~2 !~r ,v!&. ~5.3!

With these definitions our basic conversation law~3.6! holds.
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