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Cavity-induced decay of Floquet states in a bichromatic driving field
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A theoretical study of the dynamics of Rydberg atoms in a microwave cavity driven by a strong
bichromatic field is presented. The resonator is assumed to operate in the low-Q regime. As a
consequence, photons emitted by the atoms are dissipated in the cavity walls during the interaction
time of the atoms inside the resonator. In this situation the cavity 6eld follows the atomic dynam-
ics adiabatically. The transient behavior of the system is analyzed in terms of Floquet states and
cavity-induced transition rates between these states are calculated for a large range of parameters of
the bichromatic 6eld. Narrow resonances are found in the transition rates, in agreement with recent
experimental investigations of cavity Rydberg atoms subjected to strong bichromatic driving. We
explain in detail the structure of the resonances, which is determined by the frequency-dependent
cavity-mode density as well as the Rabi frequencies of the applied 6elds. The intensity-dependent
shifts of the resonance frequencies are also calculated and found to be largely insensitive to inhomo-
geneous broadening. Finally, the numerical results are compared with experimental observations.

PACS number(s): 42.50.Ct, 42.50.Hz, 32.70.Jz, 42.52.+x

I. INTRODUCTION

Following Mollow's classic work [1] on the radiative
characteristics of an atom driven by a monochromatic
Geld, the dynamic behavior of atoms interacting with a
bichromatic Geld has recently been studied both theo-
retically and experimentally. The bichromatic nature of
the driving field leads to a number of new features in
the field radiated by the atom that are not present in
the single-&equency case. With monochromatic driving,
for example, the fluorescence emitted by a two-level sys-
tem shows a resonance when the excitation &equency is
tuned to the atomic &equency. This resonance is power
broadened when the intensity of the field is increased. In
a bichromatic Geld, on the other hand, the fluorescence
intensity exhibits well-defined resonances as a function of
either the Rabi &equencies or the beat frequency of the
two components of the driving Geld. These resonances
have been verified experimentally [2,3]. Also the spec-
trum of fluorescence emitted by an atom in a bichromatic
Geld is much richer than that observed in the monochro-
matic case [4,5]. There is a large number of sidebands,
separated by the modulation kequency of the driving
field amplitude. Again, experimental results agree with
the theoretical predictions from Bloch equations with a
bichromatic field [6,7].

It must be emphasized that existing theoretical and
experimental work on resonance fluorescence in a bichro-
matic Geld is restricted to the steady-state behavior of
atoms in Bee space. However, it was already realized in
1946 by Purcell [8] that spontaneous emission is strongly
influenced by the mode density distribution of the elec-
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tromagnetic environment, even if no external fields are
applied. If an atom is placed in a resonant cavity, the
density of modes at the transition frequency is much
higher than in &ee space, which leads to an enhanced
spontaneous emission rate. Conversely, when the cavity
is detuned &om the atomic resonance, decay is inhib-
ited since there is no field mode available for the atom
to interact with. Both enhancement and inhibition of
spontaneous emission have been observed in the optical
domain [9], with microwave transitions between highly
excited Rydberg levels [10,11], as well as in the in&ared
spectral region [12]. When a monochromatic driving field
is applied to an atom in a cavity, additional effects oc-
cur. The atomic dynamics in the presence of a frequency-
dependent mode density leads to the suppression of spon-
taneous emission [13,14] even when the atoms and the
cavity are in resonance.

The remarkable phenomena found in interactions of
atoms with bichromatic Gelds, on the one hand, and
cavity-related phenomena, on the other, provided the
stimulus for the present analysis of the interplay between
cavity-modified dynamics and bichromatic driving. A
further motivation was the need to examine the transient
behavior of atoms in the event of Rabi evolution and ra-
diative decay being equally important [15]. Transient
effects are particularly relevant to the dynamics of Ryd-
berg atoms in cavities, where no steady state is reached
during the interaction time due to the long radiative life-
times involved.

The present work provides a theoretical interpretation
of experiments at Max-Planck-Institut fiir Quantenoptik
in Garching [16] for investigating the dynamics of Ryd-
berg atoms in a microwave cavity driven by an intense
bichromatic Geld. The paper is organized as follows. In
Sec. II we lay the theoretical foundation for studying the
cavity quantum electrodynamics of a Rydberg atom in a
bichromatic Geld. Note that effectively one has to con-
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sider the interaction of atoms with fields of frequencies
ui, u2, corresponding to the two injected fields, and the
cavity field at u, . The strong driving fields are described
as classical fields, while the cavity mode has to be treated
quantum mechanically. We take into account effects due
to the finite cavity Q factor and temperature of the cav-
ity walls. In this paper we only consider the limiting case
of a low-Q cavity, which allows us to eliminate the cavity
variables adiabatically. The periodicity of the problem
makes it advantageous to analyze the system in terms
of Floquet states of the atom. In Sec. III cavity-induced
transition rates between the Floquet levels are calculated
from the master equation. In Sec. IV we present numeri-
cal results. The origin of the resonances observed experi-
mentally is discussed in detail. They arise from the com-
bined effect of the dipole matrix element of transitions
between Floquet states and the resonant structure of the
cavity mode. Avoided crossings between the Floquet lev-
els play a dominant role in determining the nature of the
observed resonances. To obtain a realistic model of the
experiment, we also include the effects of inhomogeneous
broadening of the atomic line. Finally, in Sec. V the
most important numerical results are compared with the
experimental findings.

dp z
[—H—, p] + Zp,

dt
l:p = —K(1+ n) (asap —2apat + pata)

icn (a—at p —2at pa + paat) . (2.2)

Here v = w, /2Q is the cavity field damping rate and n
is the mean thermal photon number in the cavity.

It is advantageous to transform Eq. (2.2) to a represen-
tation in which the two components of the driving field
couple directly to the atom. This leaves the cavity mode
with only a small average occupation of n thermal pho-
tons. We introduce the unitary displacement operator

D(A) = exp (Aat —A*a), (2.3)

where A is defined as

E —iwgt
I e

K ~c+(ukk=i, 2

(2 4)

supplemented to include the relaxation of the cavity with
quality factor Q at a finite temperature T. The master
equation describing dissipation in the combined system
of atom and cavity field is

II. BASIC EQUATIONS FOR THE ATOMIC
DYNAMICS IN A CAVITY UNDER INTENSE

BICHROMATIC DRIVING

H = RuoS' + Ru, ata+ hg (S+a + S at)

+$(aE*e'~' i + at E e
+aE*e' "+atE2e ' ") (2 1)

The annihilation and creation operators a and a~ are as-
sociated with the cavity mode and the spin-& angular
momentum operators S and S provide a description
of the two-level atom. The Hamiltonian (2.1) has to be

We consider a two-level atom with a transition fre-
quency uo which is coupled to a single-mode cavity of
frequency u, . The cavity is driven by a bichromatic field
with &equency components ui and ~2 and amplitudes
Ei and E2. The detunings of the injected fields relative
to the atomic levels are sketched in Fig. 1. The Hamil-
tonian for the interaction of the atom, the cavity mode,
and external fields can be written as

We can now set up the master equation for the trans-
formed density matrix

p' = Dt(A)pD(A), (2.5)

which can be written as

d '

dt h
[H', p']+ Zp'——

if we define the Hamiltonian in the new picture as

H' = RgoS' + bur, ata+ hg (S+a+ S at)

+—(O, S+e ' "+0 S+e * "+H.c.) .
2

(2.7)

2gEI,
K + Z(Cd~ —iL)g)

(2.8)

For a resonant driving field ~I, = ~, the intracavity Rabi
&equency reaches its largest modulus

The complex Rabi frequencies Oi and 02 are related to
the applied field amplitudes by

2gEI,
k k =1,2. (2.9)
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FIG. 1. Scheme of the unperturbed atomic states and the

frequencies characterizing the system. The theoretical anal-
ysis uses the frame rotating at the average driving frequency
~&. Experimental spectra are taken by scanning uz across the
cavity frequency LLi (shaded region) while keeping cu2 fixed.

The driving term in the Hamiltonian H' is periodic in
time, the modulation &equency being 2v = u2 —~i. Even
though no stationary eigenstates of H' exist, applying
Floquet's theorem [17] allows solutions of the Schrodinger
equation to be expanded in a series of terms oscillating at
harmonics of &equency v. The associated energy levels
are called Floquet levels or quasienergy levels. As they
constitute a natural basis for the treatment of bichro-
matic interactions, the system will be analyzed in terms
of Floquet states of H'. We are mainly interested in the
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change of atomic inversion in the Floquet basis, since
this is the quantity monitored in the Rydberg atom ex-
periment of Lange, Walther, and Agarwal [16]. It is as-
sumed that the atoms enter the cavity adiabatically, so
that Landau-Zener-type transitions between the Floquet
states during entry and exit can be neglected. In this
case the principal source of decay of atomic inversion are
cavity-induced transitions among the Floquet states. In
the transient regime we consider, the relevant quantity is
the rate at which these transitions occur.

This follows from our choice of the energies of the un-
perturbed states and the normalization (@l@)= 1. Note
further that if E is an eigenvalue, +E+nv is also an
eigenvalue. It is therefore sufficient to calculate the low-
est positive eigenvalue, which we will call e. From the
periodicity of the quasienergies it follows that 2e & v.

We now make a specific choice of the basis states for
determining cavity-induced transition rates. We use the
two adjacent Floquet states with quasienergies +e at the
time t =0:

A. Floquet basis

First we consider the Hamiltonian Ho in the absence
of the cavity field:

h
Ho ——RuoS'+ —(AgS+e * "+02S+e ' "+H.c.) .

(2.17)

The thermal cavity field at the finite temperature T and
spontaneous emission cause transitions between the Flo-
quet states iv)+) and l@ ). We will calculate the corre-
sponding cavity-modified transition probability.

(2.io)

QJi + Ca)2
(di =

2
(2.ii)

The effective Hamiltonian in the rotating frame is

We will work in a frame rotating at the average driving
field frequency

B. Adiabatic elimination of the cavity field

The cavity-induced transition rate between the basis
states l@~) may be calculated on the assumption that
the cavity Q is low enough for the cavity variables to be
adiabatically eliminated. Throughout this paper we will
work in this limit. Defining

h-
H, = M, iS' + — S+(Aqe' + 02e '"

) + H.c. , (2.12)
Eq. (2.2) is rewritten in the rotating frame:

(2.18)

ih —l@(t)) = H. (t) ltlI(t)).
0

(2.13)

Solutions of Eq. (2.13) are the so-called quasienergy wave
functions ltIJ(t)), defined by the series expansion

where L~ ——~0 —su~. The unperturbed states of the
atom with energies Ruo/2 and —Ruo/2 are denoted as

l
1)

and l2), respectively. Making use of the periodicity of
H, (t), we apply Floquet's theorem [17,18] to solve the
Schrodinger equation

d ' I

H, + M,ata+ hg (S+a+ S at), p' +. Cp'.
dt

(2.19)

We now make a transformation to the interaction picture
so that

, (2.20)

where

U, (t) = T exp —— H, (7.)d~
h 0

(2.21)

T denoting time ordering. The equation of motion for p'
is found to be

The eigenvalues E and the eigenvector components o,,
are determined by inserting expansion (2.14) into (2.13),
yielding the recurrence relations

dp
ig a(t)G(t)e ' —'+ H.c., p' (2.22)

a(t) = e ae (2.23)

(2.i5) G(t) = U+(t)S+U, (t). (2.24)
r n*, 02@+It&+

l
~2 ol, —1 +ol, +1l 2 ) ' 2 ' 2 Let 0 be the reduced density matrix for the atomic sys-

tem
These are then solved by standard continued fraction
methods [19,20]. It should be noted that 0'(&) = Trcavity p (&) (2.25)

) (&y,p+ &z + &2 o.'2,p+ ) = ~go. (2.i6)
Following the method presented in Appendix A of
Ref. [21], we derive the master equation for o (t), assum-
ing that the cavity field can be adiabatically eliminated:
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OC)

dt
= —g (1+n) d7. e " ' [G(t)G+(t —))a.

G—+ (t —~)~G(t)]

—g n2— dv- e " ' [aG+(t —).)G(t)

—G(t) a.G+ (t —).)] + H.c. (2.26)

The density matrix equation in the original picture is
obtained by applying the unitary transformation (2.21).
The solution of Eq. (2.26) yields complete information on
the atomic dynamics. However, it can only be obtained
numerically because of the explicit time dependence of
the Hamiltonian II, (t) [Eq. (2.12)].

III. MASTER EQUATION
IN THE FLOQUET BASIS

In this section we calculate the cavity-induced tran-
sition rates between Floquet states. Equation (2.26) is

I

used to derive a Pauli-like master equation for the diag-
onal elements of the atomic density matrix, projected to
the Floquet basis Ig~) defined in Eq. (2.17). We make
the secular approximation, assuming that the diagonal
and off-diagonal terms do not couple, to obtain an equa-
tion for the evolution of the Floquet populations:

++ ——I+~++ + r (3.1)

o = —I cT + I+0++) (3.2)

~++ = (4+1~14+). (3.3)

The rates I'+ (I' ) thus describe cavity-induced transi-
tions from Ig+) to Ig ) (Iv) ) to Iv)+&). The secular
approximation is justified as long as the levels Ig+& and

) are not degenerate and breaks down only in the
limit e —+ 0.

Using Eq. (2.26), we determine the rates I'~ as

(1+") (@+IG(t) +(t —~)
I 0+) —&0+ IG+(t ~) I@+)W+ IG(t) 14+)

+ g n &g I+G+(t —) )G(t)lap+) —&g+IG(t) lg+&&p+IG+(t —) )le+) ) dr e " ' + c.c.,

(g'(1+-) &V IG(t)G (t- )le-&-&4-IG (t- )I&-&«-IG(t)14-)
0

+ g'n &0-IG+(t —r)G(t)l&-) —8-IG(t)l@-)(@-IG+(t—r)I&-) }dr' " "+" (3.4b)

Only the constant components of the transition rates will
be retained. To simplify expressions (3.4), some interme-
diate steps are necessary. First we make use of the com-
pleteness of the Floquet basis to factor the correlation
function:

(@.IG(t)G (t- )I&.&

= &&.IG(t) 14.) &4.1G'(t — ) I&.&

+(~+IG(t)l@-&«-IG'(t - )l~+) (35)

We then apply definitions (2.14), (2.21), and (2.24) to
obtain

o+ = —I ~o+

From Eq. (2.26) the decay rate I'~ is found to be

(3 8)

I

The rate I' is obtained from Eq. (3.7) by interchanging
the terms scaling with n and 1+n.

Next, we calculate the rate of cavity-induced decay of
coherence in the Floquet basis. We continue to apply
the secular approximation, so that the diagonal matrix
elements o++ and o, as well as the counterrotating
coherence a +, do not appear in the equation of motion
for o+

&&+IG(t) I&-) = &&+IU.+(t)~+U. (t) I&-&
= (@+(t)l~+ I&-(t) &

= 8+(t) I ). ' ' '"" --11)

I'~ ——g Re 1+n U v+ib + R' r —ib

+n V(r. + i8) + Z(r. —i8) (3.9)

i(Z+ —E )t / * —ivt(n —m)
g .O'2n —O'1m

where f denotes the Laplace transform of f(7). The
functions U, V, W, and Z are de6.ned by

n)m

Inserting Eqs. (3.6) and (3.5) into Eq. (3.4a), we find the
result for the transition rate I'+,

I'+ ——2g (1+nj Re2 /' 2n — 1m+ 2p 1q+
r + i 8 —2i E+ + iv (p —q)n)m)p)q

& ~n —m;p —q

+2g n Re2— 2n+ ~1m —~2p+ ~1q
r +ih + 2zE+ + iv(p —q)n)m)p)q

U( ) = 8+IG(t)G'(t — )l~+)
—8+ I

G+(t —~) I&+)(&- I G(t) I&- &

V(~) = &y IG+(t —r)G(t)1@ )
—&&+ I G(t) I 4+) &O'- I G+ (t —r) I&- &

~(~) = &q IG(t —r)G+(t)lq )
-&@.IG (t) I~.) &O-IG(t —r) 14-&,

Z(.) = 8,+IG+(t)G(t —.) l~+)
—(@+IG(t —r) I@+)g —IG+(t) 10-& (3.1O)

(3.7) where = indicates that only the constant components
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with respect to time t are to be retained on the right-
hand sides. The explicit expression for I'~ in terms of
the eigenvector components o.k ~ of the quasistates is
rather involved and so is not given here.

Experimentally, it is not the individual transition rates
I'~ between the Floquet states that are observed, but the
decay of the inversion o.++ —0. in the Floquet basis,
obeying the equation 6 + 2E + PV = 0) (3»)

Next, modifications of the system behavior due to the
presence of the cavity are to be considered. The inHuence
of the resonant structure of the cavity response function
on atomic fluorescence is expressed by the denominators
in (3.13). The transition rate r~~ exhibits cavity-induced
resonances at the frequencies given by

d—(o++ —o )dt

= —(r, + r ) (~„—~ ) - r + r . (3.11)

We will therefore concentrate on the decay rate

I'ii ——I' + I' (3.12)

which is the analog of the longitudinal relaxation rate in
the standard Bloch equations.

By using Eq. (3.7) the transition rate r~~ can be written
in terms of the Floquet eigenvector components:

r~~ = 2g (1+2n)

&2n —+1m+ +2p —&lq+xRe
( K + i b —2i E+ + i v (p —q)nimipiq

0'2n+ 0'lm —0'2p+ 0'lq

r. +ib+ 2iE+ +iv(p —q) )
(3.13)

= 0. (3.14)

It is met at avoided crossings of the Floquet levels. Con-
sequently, a maximum contribution of the numerator to
the decay rate r~~ in Eq. (3.13) is expected when the
quasienergy levels undergo an avoided crossing.

A nonzero dipole coupling only occurs when P = p —q
is an even number. Therefore, in second. -order pertur-
bation theory, only transitions with even P contribute
to fluorescence. If, however, terms up to order g are
included in the calculation of the transition rate, reso-
nances generated by multimave mixing can occur. They
are found at either avoided crossings or crossings of the
Floquet levels, the latter corresponding to nonzero ma-
trix elements involving odd values of P.

Equation (3.13) is the central result of our analysis, al-
lowing us to study cavity-induced decay of the population
difference in the Floquet basis. In Sec. IV we evaluate
I'I~ numerically.

Some general conclusions on I'~~ can already be ob-
tained from the structure of expression (3.13). The sum
over the product of eigenvector components in the nu-
merator is proportional to the time-independent compo-
nent of the &ee space fluorescence rate. Information on
this quantity can be obtained &om the behavior of the
eigenvalues E~ of the periodic Hamiltonian as a func-
tion of the driving field frequencies ui and w2 [22]. It
is known that Huorescence peaks when the slope of the
quasienergy E~(uri, ~2) approaches zero. With ui as the
variable &equency, this condition reads

where again P = p —q is an integer and e = ~E~~. As P
may assume different values, several adjacent resonances
may contribute to cavity-enhanced transitions. If condi-
tion (3.15) is not fulfilled, cavity-induced decay is dynam-
ically suppressed by the bichromatic driving Geld. This
effect is analogous to the dynamic suppression of sponta-
neous emission by a monochromatic field [13,14,21).

Equation (3.15) may be rewritten as

(1+P) (1 —P)
2

+ M2
2

+26. (3.16)

We are interested in the avoided crossing regions, where
the numerator of I'~~ is large. Here it is advantageous to
define a quantity g as the energy splitting between two
Floquet levels undergoing an avoided crossing:

1
2

(3.17)

By definition, ~il[ reaches its minimum at the avoided
crossing. For simplicity we choose ul & u2. Moreover,
we assume that al is tuned close to the cavity frequency
cu„as is the case in the experiment (see also Fig. 1).
The reason is that only close to the cavity frequency is it
possible to inject a suKcient intensity into the resonator.
With definition (3.17), condition (3.16) becomes

~c —~1+ VP = —g,

(d~ —Mi + v(P —2) = '17.

(3.18a)

(3.18b)

Thus, with ui ) cu, (wi ( u, ) the cavity enhances atomic
decay for P = 0 (P = 2) exclusively. The appearance of
exactly these two values of P is a consequence of the
choice of ~@+) and ~g ) as basis states. If other Flo-
quet levels had been used as Gnal and initial states, dif-
ferent values of P would lead to enhancement. Gener-
ally, Eqs. (3.18) show that a resonance occurs when cui

is tuned to w + g. Therefore, the splitting between the
Floquet levels can be read off from the detuning between
the resonance frequency wl and the cavity frequency u,
which are easily obtained from experiment.

Peaks in the decay rate I'~~, which are large enough
to be detected experimentally, can only occur if strong
coupling between the Floquet levels coincides with cavity
enhancement at the corresponding transition frequency.
In other words, the conditions (3.14) and (3.15) must
be fulGlled simultaneously. Otherwise dynamic suppres-
sion of Floquet transitions prevails and decay is inhib-
ited. The exact position of the cavity-enhanced maxima
in the decay rate can only be found numerically. How-

ever, as shown above, at resonance the detuning ~cui —w,
~

is equal to the splitting g of the Floquet levels. As a con-
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8+Pv = 0, (3.19)

which may be rewritten as

sequence, the location of the largest peaks in I
~~

yields
the level splitting precisely at an avoided crossing.

Note that the quasienergies E~ appearing in condi-
tions (3.14) and (3.15), and hence il, depend on (i) the
intracavity Rabi frequencies Oi and 02 of the two driv-
ing fields and (ii) the frequencies wi and w2. Owing
to Eq. (2.8), for given external field amplitudes Ei,E2
the Rabi frequencies also depend on tuning and the line
width K of the cavity. We finally mention that the rate
I'~ has additional resonances given by

40

30
Q)

20

10

-30

LJJ

CD

CD

-10
CO
c5 -20
(3

-2 -1 0 1 2

Detuning a, -A, (units of ~)
QJ2~, + —(P —1) — (P +—1) = 0.
2 2

(3.20)

IV. NUMERICAL RESULTS

We have studied numerically the behavior of the tran-
sition rates I'~~ and I'~ for a large range of parameters
of the bichromatic field and the cavity tuning. In this
section we present the main results of the analysis.

In the numerical evaluation of the decay rate we pro-
ceeded as follows. We start by determining the quasi-
energy e. It can be obtained from the two scalar recur-
rence relations (2.15) by calculating the corresponding
infinite continued fraction. We employed downward iter-
ation from a suitably chosen cutofF. In a second step the
eigenvector components o.I, are obtained, again from a
continued fraction. The result is used to evaluate I'~~ and
I'g.

A. Structure of resonances in the cavity-induced
decay rate

Ai ——(dp —(di, A2 = Mp —(d2& c = ~p —~c-

(4 1)

As noted in Sec. II A, the eigenvalue structure is periodic.
The energy levels recur, raised or lowered in steps equal
to the frequency v. The slope of the levels is mainly
determined by the shape of the Lorentzian cavity line.
Approaching the cavity resonance, there is an increas-
ing number of level crossings and avoided crossings. The
levels cross at E = +Nv with integer ¹ At these eigen-
values, the derivative BE/BAi has a local maximum and
therefore the dipole transition probability is low [22]. In

As explained in Sec. III, the resonances in the decay
rate are determined by the energies of the Floquet states
as well as their wave functions. This is illustrated by
our numerical results. Figure 2 shows the structure of
the Floquet quasienergy spectrum as a function of the
detuning Li of the first component of the driving field,
which is the quantity scanned in the experiment. The
detunings used in the numerical calculations are defined
with respect to the atomic transition frequency wp.

FIG. 2. Quasienergy levels of the Hamiltonian (2.12) in the
Floquet picture. The energy of Floquet state ~4+) is indicated
by the thick line. The variation of the levels with detuning and
the width of the avoided crossings depend on the cavity line
shape (dashed line) due to the resonant enhancement of the
intracavity field at u . Parameters: OI = 500K, Oz ——16 255K,

200+, and A = 140K.

addition, for Ai A, and hence 8 —v, Eq. (3.15)
shows that only transitions with P = 1 are enhanced
by the cavity when e = 0. As these do not correspond
to possible dipole transitions, no substantial decay can
occur at the level crossings.

By analogy with free-space Huorescence under bichro-
matic driving, which displays maxima when condition
(3.14) is met, cavity-induced decay is expected to peak at
avoided crossings of the quasienergy levels. These occur
when e approaches v/2, since this is where the level split-
ting il reaches a minimum. Figure 3 shows (a) two adja-
cent avoided crossings of the Floquet levels as well as (b)
the dominant eigenvector components ni,„gof ~@+) and

). It is obvious that the structure of the eigenvectors
undergoes a significant change at the avoided crossing.
The reason is that each of the levels involved picks up
a contribution &om the other level. In Fig. 3(c) the ex-
pression ~cia„niz+

~

is plotted, which equals the squared
matrix element, taken between the p-photon components
of initial state ~iIJ+) and final state ~@ ). In the narrow
transition regions centered at the avoided crossings, this
quantity has sharp maxima, since it is the product of a
rising and a falling eigenvector component.

The transition &om ~@+) to ~@ ) can occur via sev-
eral multiphoton processes distinguished by the number
of photons at frequencies ui and u2 being absorbed or
emitted. While in free space they can equally contribute
to the overall decay-rate, the cavity mode resonantly en-
hances only a small number of multiphoton transitions,
the others being strongly suppressed. It is therefore im-
portant to consider the transition matrix element as a
function of the Floquet indices p and q, the number of
driving field quanta associated with the final and initial
states. A typical distribution of partial transition prob-
abilities at an avoided crossing is displayed in Fig. 4.
The maximum contribution comes from the transition
p = 7, q = —7, corresponding to a process where seven
photons of frequency ~i are absorbed and seven photons
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of frequency w2 are emitted. In this case P = p —q = 14.
It is apparent, for example, from Eq. (3.18), that the
corresponding transition is highly nonresonant with the
cavity under the experimental conditions considered. As
demonstrated in Sec. III, only for P = 0 and P = 2 can
resonances occur with ~q close to the cavity. Therefore,
in Fig. 4 only the main diagonal (p = q) and the second
subdiagonal (p = q+ 2) have to be considered for cavity-
induced decay under bichromatic driving. The corre-
sponding partial transition matrix elements also peak at
avoided crossings and quickly decrease when uq is de-
tuned.

The cavity not only selects the order of multiphoton
processes contributing to a given resonance, but also de-
termines the degree of enhancement or inhibition of spon-
taneous decay. The largest possible transition rate is
achieved when the resonance denominator in Eq. (3.13)
reaches its minimum value r exactly at a maximum
of the numerator of I'ii. For a P = 0 resonance [see
Eq. (3.18a)], the cavity detuning b must equal 2e pre-
cisely at an avoided crossing of the energy levels. This
is the case in Fig. 5(a), where e and the adjacent quasi-
energy level are plotted as functions of the detuning L~
of the Brst driving Beld, together with the cavity detun-
ing parameter b/2. The decay rates I

ii
and I'~ shown in

Fig. 5(b) have a strong peak when a Floquet transition is
in resonance with the cavity. At this point, in Fig. 5(a)
the dashed lines touch the quasienergy levels. The size of
the decay rate reaches 10% of 2g /K, the enhanced decay
rate of an atom in a cavity with no driving Belds applied.
Note that the peak occurs at a driving Beld frequency
L~ ——4, —g, where g is again the level splitting at the
avoided crossing.

At an avoided crossing, Eqs. (3.18) can be fulfilled ex-
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FIG. 3. (a) Two adjacent avoided crossings of the
quasienergy levels. (b) Dominant eigenvector components
~o.'q„+~ (thin lines) and ~o.2z,

~

(thick lines) for p = 7 (solid),
p = 9 (dashed), and p = 11 (dotted). (c) Partial transition
matrix elements ~o2„o.q~+~ . The parameters are the same
as those of Fig. 2.

2p- 1q+

11
9
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cavity enhances spontaneous transitions only
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contributions are suppressed. Parameters:
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FIG. 6. Triplet structure of the decay rate I'I] when the
cavity resonance is slightly detuned from an avoided crossing.
(a) Quasienergy levels (solid) and cavity resonance (dashed).
(b) Cavity resonance factor I/~r + i(h —2~E~) ~. (c) Transition
matrix element io'2q nqq+~ . (d) Decay rate I'ii. The two side
resonances correspond to the intersections of dotted and solid
lines in (a). The parameters are the same as those of Fig. 4.

actly for specific parameters only. Otherwise the decay
rate is less strongly enhanced or even completely sup-
pressed. Two cases can be distinguished. Restricting the
discussion to Lq ( 4, and therefore P = 0, we first
consider the case b ) 2e at the avoided crossing. In
this situation condition (3.18a) can neither be met at the
avoided crossing nor detuned from it. As a consequence,
the decay rate I'II will be reduced by a factor

1+ i(b —2e)/K
(4.2)

compared with the full cavity-enhanced value. In this
case the transition rate is strongly suppressed even at
the avoided crossing and will not lead to significant decay
inside the cavity.

The second case is b ( 2e. As can be seen from
Fig. 6(b), there is no longer a single detuning At, at
which the cavity is resonant with a Floquet transition.
Instead, cavity enhancement now occurs at two distinct
frequencies, roughly symmetric to the avoided. cross-
ing. They can be obtained graphically by determining
the intersections of the quasienergy e with the line h/2
[Fig. 6(a)]. The fact that the peaks of cavity enhance-
ment, on the one hand, and coupling between the Flo-
quet levels, on the other, no longer coincide leads to a
substructure of the total decay rate I'II. In the example
of Fig. 6, the single peak in the transition matrix ele-
ment [Fig. 6(c)] and the double peaks in the cavity res-

onance [Fig. 6(b)] lead to the triplet shape of I'ii shown
in Fig. 6(d).

Depending on the width of the avoided crossing and
the size of b, other line shapes can occur. Some typical
examples are shown in Fig. 7. Again, the contribution
of the cavity resonance and the coupling between the
Floquet levels are shown separately to clarify the origin
of the structure in I'II. It is apparent that the width
of the resonances in the transition matrix element de-
creases inversely proportionally to the level splitting at
the corresponding avoided crossing [Fig. 7(c)]. This leads
to extremely sharp lines as the cavity resonance is ap-
proached. The change in the double peak structure of
the resonance denominator [Fig. 7(b)] is less dramatic,
as long as the resonance condition b = 2e can be fulfilled.
Otherwise there is only a broad single peak with a de-
creased amplitude. The resulting cavity-induced decay
rate is presented in Fig. 7(d). At b, t —b„= 9K, where-
the cavity is not resonant with any Floquet transition,
cavity enhancement is negligible and only marginally in-
creased decay is found. At Lq —L = —7.5K, two cavity
resonances appear, split by an amount comparable to the
width of the Floquet coupling peak. In this situation I'

II

also features two peaks. When the resonance in the coup-
hng narrows more and more, the transition matrix ele-
ment at the two cavity-supported frequencies gradually
decreases and cavity enhancement becomes less impor-
tant. At Lq —4 ——6.3K, for example, the two cavity
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enhanced peaks are not larger than the central peak at
the avoided crossing. This results in the triplet structure
from Fig. 6. As the size of the avoided crossing shrinks
further, the amplitude of the outer maxima quickly de-
creases (Aq —4, = —5.5r) until only the narrow central
peak in the transition probability contributes. Enlarged
views of the consecutive resonances are provided in Fig. 8,
illustrating the relation between the peaks in I'II and the
local structure of the Floquet levels.

Figures 7 and 8 were obtained for different resonances
of the decay rate, distinguished by the number of driving
field photons involved. The transition from cavity sup-
pression to cavity enhancement of a Floquet resonance
can be studied at a single avoided crossing if one of the
experimental parameters, for example L2, is varied. The
result is presented in Fig. 9. The decay rate shows a
pronounced maximum, corresponding to detunings such
that cavity enhancement and an avoided crossing of the
Floquet levels coincide. This is in keeping with the condi-
tion derived above for a strong resonance. By decreasing
the detunings Aq or L2 one can observe the expected
splitting, while at the same time the size of the decay
rate goes to zero. In the opposite case of increasing de-
tunings, the size of the resonance decreases too due to
cavity suppression. Similar results are obtained if in-
stead of the detunings the intensities of the driving fields
are varied.
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decay rate, such as those of Figs. 9 d 10,an, occurring
when the cavity is resonant with Fln wi a oquet transition
at an avoided crossing. SpeciGcally, the shift of these
resonances as a function of the intensities of the drivin
Gelds will be discussed.

s o e riving

Again, we start by studying the shift of cavity enhance-
ment and that of the avoided crossings separately. Ac-
cording to Eq. (3.15), for Aq ) A, and P = 2 maximum
cavity enhancement occurs for

0.02 b+ 2m+ 2v = 0. (4.3)
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and cavity Geld. Fi uigure 10 shows a typical example,
where only one peak signiGcantly contributes to du es o ecay,

i e e o her resonances are suppressed b the c
s s own in Sec. V, large isolated maxima in the decay

experimentally.
In this section, we will focus on th le arge peaks in the

II
in e I, 2 plane. TheF . 9. Single resonance of 7 in the A

maximum in the decay rate is reached when a Floquet transi-

crossing. Parameters: 0 = 3270 0 53 440K, and

c =80K

In Fsg. 11(a) this relation is evaluated as a function of
t e detuning Az of the first driving Geld and its intensity

avoided crossings of the Floquet levels are represented
by dashed lines. In keeping with the results obtained
above, large decay is expected where the two sets of lines
intersect. This is indeed the ca
comparison with Fig. 11(b), showing the decay rate I'

For small values of 0&, the intensity-dependent shifts
o cavity and avoided crossings are quite different, so that
arge maxima can appear only locally. With

Geld strength, however, the shift of the two quantities
ina y, e pea s in thecoincides in a larger region. F ll th

the strong Floquet transition at the avoided crossing.
Figure 12 shows again a density plot of the decay rate

~~

as a function of the detuning wq and the amplitude

Oz of the first driving Geld component over a large range
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FiG. 12. Density plot of I
~~

as a function of the detun-
ing and the amplitude of the first driving field. As the Beld
strength is increased, the maximum decay rate slowly shifts to
the outer (lower order) resonances. This behavior corresponds
exactly to the empirical condition (5.2) for the center of the
experimentally observed lines if the factor f is chosen as 2.35.
The resulting empirical curve is represented by small circles.
Parameters: 02 ——20000K, A2 ——200K, and D = 80+.

FIG. 13. Density plot of F~~ as a function of the detun-
ing of the first driving field and the amplitude of the second
(fixed frequency) field. As f12 is increased, decay occurs at
resonances of increasing order, closer to the cavity frequency.
As the higher-order resonances are too narrow to be resolved,
maxima in the decay rate are marked by crosses for clarity.
The solid line shows the empirical result (5.2) for f = 1.9.
Parameters: Oz ——3270+, A2 ——200+, and A, = 80K.

Generally, with increasing intensity, the strength of a
given resonance in I'~~ slowly diminishes. Simultaneously
the contribution of the neighboring resonance, further
away &om the cavity &equency, increases, so that elec-
tively the center of gravity of the peaks in the decay rate
slowly shifts to larger detunings &om the cavity-line. In
the experiment always the largest resonance should be
detected.

This agrees precisely with the observed behavior. Sec-
tion V shows that the experimental peaks follow a certain
curve, which is represented by small circles in Fig. 12. At
small intensities, this curve coincides with the calculated
intensity-dependent shift of the resonances. At larger
field strengths, the curve interpolates very well the dom-
inant peaks in I'~~.

Figure 13, on the other hand, shows the behavior of
the decay rate when the amplitude Oz of the second driv-
ing 6eld with a 6xed &equency is varied. In this situa-
tion a difFerent structure of the decay rate is found. As
the intensity is increased, the system does not follow a
certain resonance, but jumps to a neighboring avoided
crossing closer to the cavity center, which corresponds
to a larger number of photons involved in the transi-
tion. The higher-order resonances become increasingly
narrow until they cannot be resolved any more. There-
fore, the location of the corresponding maxima in Fig. 13
is marked by crosses. The solid line is the experimental
curve presented in Sec. V. The agreement between the
experimentally determined shifts of the resonances and
the calculated behavior of I'~I confirms the central role of
cavity-enhanced transitions among Floquet states in the
system under study.

C. ERects of inhomogeneous broadening

Finally, we brieBy discuss the eR'ects of inhomogeneous
broadening on the transition rates among Floquet states.

The problem is again solved numerically. In Rydberg
atom experiments, the main source of inhomogeneous
broadening are Stark shifts from electric stray fields. As
a simpli6cation we assume that a given atom experiences
a constant Stark shift during interaction with the cavity
6eld. In this case the decay rate I'~~ may be calculated
for a fixed atomic &equency. Afterwards an average over
a Gaussian distribution of frequencies is taken to obtain
an estimate of the decay rate in the presence of inhomo-
geneous broadening.

In Fig. 14(a) the decay rate I'ii is shown as a function of
the &equency shift of the atomic line. The decay rate is
again represented as a density plot. With the exception of
the two broad outer peaks, the position of the resonances
changes little as the atomic &equency is varied. This is
not surprising since the structure of the Floquet levels is
governed by light shifts and only marginally depends on
the energy separation of the unperturbed atomic states
involved.

Weighting the results with a Gaussian of width m

and integrating over the atomic frequency shift, we ob-
tained the inhomogeneously broadened spectra compiled
in Fig. 14(b). In this example there is only small broaden-
ing and practically no shift of the resonances, even if the
inhomogeneous width m is as large as 50K. This explains
why in the experiment narrow lines were observed in spite
of the presence of substantial inhomogeneous broadening.

Figure 15 shows an example of a broadened atomic
line leading to additional structure in the decay rate.
This is the case when, due to inhomogeneous broaden-
ing, the transition &equencies for a subset of atoms are
shifted such that condition (3.15) is fulfilled. As a conse-
quence, strong decay occurs and a second maximum ap-
pears, which may become larger than the original peak in
the absence of inhomogeneous broadening. In this way,
broadening of the atomic line can oH'er the system a wider
range of possibilities to undergo cavity-enhanced decay,
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FIG. 14. ~a~ Den '
( ) Density plot of I'II as a function of the detun-

ing Ki of the first driving field and the shift Duo ——(ug —~0
rom the average atomic frequency. (b) Spectra of I'ii for

inhomogeneous broadening of width = 10 ~d
ui = 30r (solid line), and w = 50+ (dotted line). Parameters:
0 500K) Q2 16 000) Q2 200K' and & = 140K.

thereby decreasing the separation between neighboring
resonances in the spectra. It should be noted, however,
that the inner resonances in Fig. 15 remain largely unaf-
fected by broadening.

V. COMPARISON WITH EXPERIMENTAL
OBSERVATION S

(5.1)

P
S

Two
level-
atoms mr0
Resonator m

C

Detector
{lower level}

External
fields

Thhe numerical results of Sec. IV provide an interpre-
tation of recent experiments with R db ty erg a oms rn a

(16). This
moderate-Q cavity driven by a stron bich t' fi ld

is section is devoted to a comparison between
theory and experimental findings.

The
A sc ematic of the setup employed is sho

' F . 16.wn in ig.
e experiments are performed using a beam of Rb

atoms excited to the 53 P3j2 Rydberg state. The atoms
traverse a cylindrical microwave cav t li y aong 1 s axis.
The TMp2p mode of the cavity is tuned close to reso-
nance with the 53 P3j ~ 53 S t t3j2 ] j2 ransitlon cdp

2vr x 25.59003 GHz) and driven by two separate mi-
crowave synthesizers whose frequency and output inten-
sity may be controlled independently. The atom-field
coupling g is 27t x 17 kHz, the cavity damping v is 2' x6.7
kHz. At a temperature of 4.2 K the thermal field in
the TMe p2p mode corresponds to a mean photon number
n = 2.9.

The coupling of the bichromatically driven atoms to
the vacuum field or the thermal field in the cavity leads
to spontaneous decay as well as thermally induced tran-
sitions. In contrast to the optical domain, the emitted
radiation cannot be observed directly, owing to the closed
cavity geometry. The quantity monitored instead is the
fraction P2 of atoms leaving the cavity in the lower state
(53 Si~2). For adiabatic entry and exit, there is a simple
connection between P2 and the decay t Iecay ra e /j.

FIG. 15. (a) Same as Fig. 14(a). (b) Spectra of I'II for in-
homogeneous broadening of width = 10i to = r, (dashed line),
iU = 27r (solid line), and ui = 50m (d tt d I'

= —6m a second peak appears due to cavity enhance-

2
——14440, Aq ——250K, and A = 100K.

FIG. 16. Ex er'p imental setup. Atoms are prepared in the
upper ~ 3j2~ level before entering the cavity. Inside theu er ~53 P

g ic roma ic ravingcavity t e atoms interact with the stron b h t
eld as well as the thermally occupied cavity mode. Outside

the cavity the population of the lower atomic level (53 Siyz)
is probed by state-selective field ionization.
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where T;„tis the interaction time of atoms and cavity
mode and

I

—) is the lower Floquet basis state as defined
in Eq. (2.17). Spectral information on the atom-cavity
system is obtained by recording the lower level occupa-
tion P2 as a function of the driving field frequencies. It is
convenient to vary only the first driving field (ui), keep-
ing all other parameters fixed.

Expression (5,1) shows that a substantial change in
the lower level occupation can only occur if the rate I'~~

exceeds the inverse transit time. This requirement is ful-
filled by the strong resonances appearing when cavity
enhancement coincides with a Floquet transition.

Another limitation is the finite experimental resolu-
tion. If the width of the resonances drops below the
linewidth of the microwave source employed, detection is
no longer possible. As the width of the peaks decreases
with the number of photons involved in the transition (cf.
Fig. 7), there is an upper boundary to the multiphoton
order N that can be resolved experimentally. In Ref. [16]
resonances up to N = 37 could be observed (see Fig. 19).

According to these theoretical considerations, spectra
should be dominated by a single pair of resonances when
the ft. equency ui is tuned across the cavity resonance.
All other resonances are either suppressed by the cavity
or too narrow to be resolved. This is precisely confirmed
by the experimental results, a typical example being pre-
sented in Fig. 17(a). For comparison, Fig. 17(b) shows
the corresponding theoretical calculation of P2 as a func-
tion of the detuning of the first driving field. Both curves
are approximately symmetrical with respect to the cavity
frequency.

O
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CD)
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A striking property of the resonances in Fig. 17 is their
line shape, characterized by steep edges and a Hat portion
in the middle. The fact that the occupation of the atomic
levels does not change in a finite range of driving field
frequencies signifies that cavity-induced decay is strong
enough to achieve thermalization of the Floquet popula-
tion inside the cavity. It is important to note that it is
the Floquet states that are pumped by the vacuum or the
thermal field in the cavity. This leads to a significantly
higher population in the lower tcnperturbed atomic level

(P2 ——68%) than the thermal equilibrium value (P2 57%——) .
The experimental peaks are wider than theoretically

predicted because of inhomogeneous broadening, which
has not been included in the calculations. Inhomoge-
neous broadening also washes out most of the substruc-
ture of the resonances discussed in Sec. IVA. However,
even in the presence of inhomogeneous broadening, re-
markable small linewidths are measured, in keeping with
the numerical investigations of Sec. IVC. Figure 18
shows a pair of resonances only 1 kHz wide, which is nar-
rower than the cavity linewidth and the inverse transit
time of the atoms.

Interestingly, driving field parameters can be found,
for which several pairs of resonances appear in the ex-
perimental spectra. An example is shown in Fig. 19. As
indicated in the figure, the inner narrow resonances cor-
respond to a much higher multiphoton order than the
broad outer peaks. The decreasing width of the reso-
nances towards the cavity frequency is in agreement with
the theoretical prediction for the decay rate 1

~~

as can be
seen ft. om Fig. 7.

In Sec. IVB the dependence of the multiphoton reso-
nances on the intensities of the driving fields was calcu-
lated. To experimentally test the numerical results, ui
spectra were recorded for diferent values of the strength
of the field component at ~i. The frequency and strength
of the second driving field were kept constant. Results for
a single pair of resonances are compiled in Fig. 20. The
splitting of the two peaks increases with the intensity of
the first driving field. The position of the observed res-
onances obeys a simple empirical condition: An increase
in the driving field amplitude Ei shifts the resonance

CL

o 0 6 — (b)
Gj
CL

0.4—
0
(D

0.2—
CD

0.0 —
i I i I i I i I i I i I

0
-10 -8 -6 -4 -2 0 2 4 6 8 10

Detuning a, -n, (in units of ~)

FIG. 17. Resonances in the lower level occupation as a
function of the frequency of the first driving field. (a) Ex-
perimental result. Parameters: Oz ——120 MHz; 02 ——15
MHz; u2 —ur, = 27r x 1018 kHz; (u, —(uo ——27r x 681 kHz. (b)
Corresponding theoretical calculation. The best agreement
with the experiment is obtained for e 2m x 21 kHz.
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' ' in such a way that the intracavity Rabi&equency coi
frequency Oi, defined in Eq. (2.8), stays constant.

The shift of the resonance &equencies in the ui spectra
is diferent, when the intensity of the field component at
u2 is varied. According to Fig. 21, the splitting of the
peaks decreases when the strength of the second driving
field is increased. The shift observed in the experiment
is descibed by an extension of the empirical condition
above: Peaks in the decay rate appear when the intra-
cavity Rabi &equencies Oi and 02 are equal up to a con-
stant factor f of the order of unity. Using Eq. (2.8), this
can be written as

30
I

'
I

'
I

'
I

25
N

& 20
cQ

0 15
C3

CD
O

10
CD

0

I i ! i I i I

-400 -200 0 200 400

Detuning (~, -co,)/2rr (kHz)

FIG. 20. Lower level count rate as a function of ui for
different intensities of the first driving field. Starting from
the lowest trace, the field strength increases by a factor of
10, successively. Detunings uz —cu, = 2m x 1700 kHz and

—uo ——2' x 680 kHz.
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FIG. 21. Lower level count rate as a function of cuq for dif-
ferent intensities of the second driving field. Starting from
the lowest trace, the field strength increases by a factor of
2 5 successively. Detunings: u2 —u = 27r x 1700 kHz;~ 7

no

K + t(ld~ —ldi)

no,

K + Z((d~ —lr/2)
(5 2)

Figures 12 and 13 demonstrate that condition (5.2) in-
terpolates the numerically obtained maxima in the decay
rate very well. In Fig. 12 the empirical condition, rep-
resented by small circles, follows a certain multiphoton
resonance for a large range of input intensities of the first
field before crossing over to a stronger neighboring res-
onance. In Fig. 13 the empirical condition (solid line)
again quite accurately describes the position of maxima
in the decay rate when the intensity of the second Geld
is varied.

The quantitative agreement between the experimen-
tally determined shifts of the resonances and the calcu-
lated behavior of I'~~ confirms that the bichromatically
driven system is best described by Floquet states inter-
acting with the vacuum Geld of the cavity.

VI. SUMMARY

In conclusion, we have provided a theoretical &ame-
work for studying the dynamics of Rydberg atoms in a
bichromatic field in the bad cavity limit, where the cav-
ity field adiabatically follows the atomic dynamics. From
this we have derived an expression for the decay rate of
the population inversion in the Floquet asis. Calculat-
ing the transition rates for a large range of parameters of
the bichromatic field, we have obtained good agreerpent
with the spectra observed experimentally. In particular,
the sharp resonances found in the spectra have a natu-
ral interpretation in our model as cavity-induced decay
of Floquet states. Furthermore, we have been able to
explain how the structure of the resonances is modified
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by changes in the Rabi frequencies of the applied fields,
confirming the empirical condition that resonances ap-
pear whenever the intracavity Rabi frequencies have a
certain constant ratio of the order of unity. We have
demonstrated that for a certain range of parameters the
resonances in the transition rates may become extremely
narrow, even in the presence of inhomogeneous broaden-
ing. Again, this is in agreement with experiments.

Finally, we should mention that we have not exhausted
all the possibilities that can occur in cavity quantum elec-

trodynamics in the presence of bichromatic driving fields.
Dynamic effects in high-q cavities such as the oscillatory
exchange of energy between atom and cavity field as well
as cooperative e8'ects can only be addressed in the future.

Note added. While this work was being completed,
P. Lambropoulos and M. Elk [23] had also examined
the response of a two-level system driven by a strong
bichromatic Geld in a cavity. They developed a numerical
method to treat the interaction between the cavity-field
and the atom without the Born approximation.
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