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A Genuinely Multi-dimensional Relaxation Scheme

for Hyperbolic Conservation Laws

K.R. Arun1, S.V. Raghurama Rao2, Phoolan Prasad1, M. Lukáčová -
Medvid’ová3

Abstract

A new genuinely multi-dimensional relaxation scheme is proposed. Based on
a new discrete velocity Boltzmann equation, which is an improvement over pre-
viously introduced relaxation systems in terms of isotropic coverage of the multi-
dimensional domain by the foot of the characteristic, a finite volume method is
developed in which the fluxes at the cell interfaces are evaluated in a genuinely
multi-dimensional way, in contrast to the traditional dimension-by-dimension treat-
ment. This algorithm is tested on some bench-mark test problems for hyperbolic
conservation laws.

1 Introduction

Finite volume methods have been popular for the numerical solution of hyperbolic con-
servation laws in the last three decades. For multi-dimensional flows, however, the tradi-
tional finite volume methods are typically based on a dimension-by-dimension treatment
in using upwind discretizations. As a result of this inherently one-dimensional treatment,
the discontinuities which are oblique to the coordinate directions are not resolved well.
Developing genuinely multi-dimensional algorithms has been a topic of intense research
in the last decade and a half. The reader is referred to [1], [2], [3], [4] for some of the
developments in this topic.

In this paper, we construct genuinely multidimensional finite volume schemes based on a
discrete kinetic approximation for multi-dimensional hyperbolic systems of conservation
laws. Let u be a weak solution to the Cauchy problem,

∂tu +
m∑

α=1

∂xαgα(u) =0, (1.1)

u(x, 0) =u0(x). (1.2)

where u : Rm × R+ → U ⊂ Rn. The flux functions gα : U → Rn are locally Lipschitz
continuous. Let Aα = Dgα, be the flux Jacobian matrices. We assume that our system
of conservation laws is strictly hyperbolic, i.e., for any ω ∈ Rm, with |ω| = 1, the matrix
pencil Aα :=

∑m
α=1 ωαAα has real eigenvalues and a full set of right eigenvectors.
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We approximate the problem (1.1) by the following.

∂tf
ε +

m∑
α=1

Λα∂xαf ε =
1

ε
(F (uε)− f ε) (1.3)

f ε(x, 0) =f ε
0(x). (1.4)

Here ε is a very small positive number, Λα’s are diagonal L×L matrices, P is a constant
K×L matrix, the function uε is defined by uε := Pf ε. F (u) is a Lipschitz continuous
function defined on U . The above equation (1.3) looks like the Boltzmann equation of
Kinetic Theory of gases with the B-G-K model for the collision term, except that the
molecular velocity is replaced by discrete values. In this discrete velocity Boltzmann
equation, f represents the molecular velocity distribution function. F (u) represents the
local Maxwellian and is chosen in such a way that the following consistency conditions
are satisfied.

PF (u) = u,
PΛαF (u) = gα(u).

}
(1.5)

The discrete velocity Boltzmann equation as a Relaxation System was studied by Natalini
[5] and Aregba-Driollet & Natalini [6]. See Jin & Xin [7] for the idea of Relaxation
Systems and Relaxation Schemes. The conditions (1.5) imply the consistency of (1.3)
with the original non-linear conservation law (1.1). If we multiply (1.3) by P we obtain
a conservation law

∂tu
ε +

m∑
α=1

∂xα (PΛαf ε) = 0, (1.6)

which is satisfied by every solution of (1.3).
Fix now the initial function u0(x) in (1.2). Consider a sequence f ε of solutions to (1.3),
with f ε

0 = F (u0). Assume that the sequence {f ε} is uniformly bounded and there exists
a function f 0 such that

f ε → f 0, (1.7)

as ε → 0, in some strong topology. Then setting u0 = Pf 0 we have

uε → u0, (1.8)

in the same topology and the following identities holds.

f 0 = F (u0) (1.9)

∂tu
0 +

m∑
α=1

∂xα

(
PΛαf 0

)
= 0. (1.10)

therefore from (1.9) and the first condition of the consistency conditions (1.5) we can
obtain

PΛαf 0 = PΛαF (u0) = gα(u0), for α = 1, 2, · · · , m. (1.11)

Hence we conclude that u0 is a weak solution to the Cauchy problem (1.1)-(1.2).
The main motivation to introduce the relaxation model (1.3) comes from the work of
Jin and Xin [7]. For instance, consider a single non-linear conservation law in one space
dimension,

∂tu + ∂xg(u) = 0 (1.12)
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which the above authors replace by the following semi-linear relaxation equations.

∂tu + ∂xv = 0 (1.13)

∂tv + λ2∂xu =
1

ε
(g(u)− v) . (1.14)

In terms of the characteristic variables (f1, f2) the above relaxation equations (1.13)-(1.14)
can be recast into

∂tf1 − λ∂xf1 =
1

ε
(F1 − f1) (1.15)

∂tf2 + λ∂xf2 =
1

ε
(F2 − f2) (1.16)

Note that (1.3) is an extension of the above relaxation system to systems of conservation
laws in multi-dimensions. Our aim is to construct a genuinely multidimensional numerical
scheme to (1.3)-(1.4) in the zero relaxation limit ε = 0 so that we can eventually recover a
genuinely multi-dimensional numerical scheme to the non-linear conservation laws (1.1).
The main advantage of the model (1.3) is that it is in the diagonal form. It makes it very
easy to develop numerical schemes. Since (1.3) is a discrete velocity BGK Boltzmann
equation, the numerical schemes developed based on it will inherit most of the features
of the classical kinetic schemes.
It is well known that the relaxation system (1.3) must satisfy certain stability conditions,
for its solution to converge to a weak entropy solution of (1.1). This stability condition
is obtained using a Chapman-Enskog type expansion of kinetic theory and deriving a
first order viscous perturbation of (1.3). In two dimensions, the stability condition is
the well known subcharacteristic condition of T.P.Liu [8]. Under some strong conditions
such as the monotonicity on the Maxwellians F , for a scalar conservation law in multi-
dimensions Aregba-Driollet & Natalini [6] have proved the convergence of Pf ε to the
Kruzkov entropy solution of (1.1). To the best of our knowledge, no such convergence
result has been reported for systems in multi-dimensions.
The rest of this report is organized as follows. The details of the Chapman-Enskog
expansion is given in section-2. We derive the stability condition for a general discrete
kinetic system. In section-3 we give the construction of our discrete kinetic approximation.
We follow the approach of an orthogonal velocity method given in Aregba-Driollet &
Natalini [6]. The relaxation system we use was first derived by Manisha, Raghavendra &
Raghurama Rao [9] with the aim of obtaining an isotropic relaxation system and a multi-
dimensional numerical scheme based on such a system by using appropriate interpolations
to trace the foot of the characteristic for each of the equations of the relaxation system.
In section-4 we present our genuinely multi-dimensional finite volume scheme based on
characteristics. Section-5 is devoted to numerical experiments and results. Finally in
section-6 we give some conclusions and describe the future work to be done.

2 Chapman-Enskog analysis

In this section we discuss the stability conditions for the discrete kinetic approximation
(1.3). Since the local equilibrium to the system (1.3) is the original conservation law (1.1),
we derive a diffusive first order correction to (1.3) by a Chapman-Enskog type expansion.
This is analoge of the compressible Navier-Stokes equations in the kinetic theory. Our
expansion follows the work of Aregba-Driollet and Natalini [6]. For rigorous mathematical
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treatment of the same the reader is advised to refer Chen, Livermore and Liu [10].
Now onwards we drop the superscript ε from f ε for simplicity. Let f be a solution to
(1.3), with F as the local Maxwellian. Denote vα = PΛαf , α = 1, 2, · · ·m. From the
consistency conditions (1.5), we obtain,

∂tu +
m∑

α=1

∂xαvα =0,

∂tvα +
m∑

β=1

∂xβ
(PΛαΛβf) =

1

ε
(gα(u)− vα) . (2.17)

Consider the following expansion of f as a perturbation series

f = F + εf (1) + O(ε2). (2.18)

Then

vα = gα(u)− ε

(
∂tvα +

m∑
β=1

∂xβ
(PΛαΛβf)

)
+ O(ε2)

= gα(u)− ε

(
∂tvα +

m∑
β=1

∂xβ
(PΛαΛβF )

)
+ O(ε2)

Substituting this in (2.17) we obtain,

∂tu +
m∑

α=1

∂xαgα(u) = ε
m∑

α=1

∂xα

(
∂tvα +

m∑
β=1

∂xβ
(PΛαΛβF )

)
+ O(ε2). (2.19)

Again, we have

∂tvα = Aα(u)∂tu = −
m∑

β=1

Aα(u)Aβ(u)∂xβ
u + O(ε).

Then upto first order terms, from (2.19),

∂tu +
m∑

α=1

∂xαgα(u) = ε

m∑
α=1

∂xα

(
m∑

β=1

Bαβ(u)∂xβ
u

)
, (2.20)

where

Bαβ = PΛαΛβDF (u)− Aα(u)Aβ(u)

therefore, B = (Bαβ) is the viscosity matrix. For B to be admissible, we must have the
usual positive definiteness condition,

m∑
α,β=1

〈Bαβξα, ξβ〉 ≥ 0, (2.21)

for all ξα ∈ Rn, · · · , ξm ∈ Rn.
Under this criterion, (2.20) is parabolic and this is the required stability criterion.
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3 A new relaxation system

In this section we give a precise description of the construction of the relaxation sys-
tem. For any system of n conservation laws in m space dimensions of the form (1.1), we
construct relaxation models of the type given in (1.3). The most important is the con-
struction of the diagonal matrices Λα’s, the Maxwellians F , and the matrix P for taking
the moments. Following Aregba-Driollet and Natalini [6], we use a block structure for
obtaining Λα’s. Take L=Nn and P = (In, In, · · · , In), with N blocks of the identity matrix
In of Rn. Each matrix Λα is constructed using N diagonal blocks of size n×n.

Λα = diag
(
C

(α)
1 , C

(α)
2 , · · · , C

(α)
N

)
, (3.22)

where

C
(α)
β = λ

(α)
β In, λ

(α)
β ∈ R (3.23)

with this (1.3) can be written as

∂tfα +
m∑

β=1

λ(β)
α ∂xβ

fα =
1

ε
(Fα − fα) for α = 1, 2, · · · , N (3.24)

with

u =
N∑

α=1

fα (3.25)

The Maxwellians are taken as

Fα(u) = aαu +
m∑

β=1

bαβgβ(u). (3.26)

Where the coefficients aα and bαβ’s are to be chosen according to the consistency conditions
(1.5). In particular we use the orthogonal velocity method given Aregba-Driollet and
Natalini. We choose Λα’s in such a way that

Λα = diag (λβαIn) where 1 ≤ β ≤ N (3.27)

The coefficients λβα’s satisfy the following two conditions,

N∑
β=1

λβα = 0, for α = 1, 2, · · · , m, (3.28)

and
N∑

γ=1

λγαλγβ = 0, for α, β = 1, 2, · · · , m α 6= β. (3.29)

With the above choice of the discrete velocities, λβα, the Maxwellian F = (F1, F2, · · · , FN)
is obtained to be

Fα(u) =
u

N
+

m∑
β=1

gβ(u)

a2
β

λαβ, for α = 1, 2, · · · , N. (3.30)
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where a2
β =

∑N
γ=1 λγβ. For convenience of the reader, we give examples of the relaxation

systems for a single conservation law in one-dimension and two-dimensions.
The one dimensional case. Consider a single conservation in one space dimension,

∂tu + ∂xg(u) = 0 (3.31)

We introduce the following relaxation system,

∂tf + Λ∂xf =
1

ε
(F − f), (3.32)

where

Λ =

[
−λ 0
0 λ

]
(3.33)

and the Maxwellians are given by

[
F1

F2

]
=

 u
2 −

g(u)
2λ

u
2 +

g(u)
2λ

 (3.34)

The two dimensional case. Consider a single conservation law in two dimensions,

∂tu + ∂xg1(u) + ∂yg2(u) = 0 (3.35)

We propose the relaxation system,

∂tf + Λ1∂xf + Λ2∂yf =
1

ε
(F − f) (3.36)

where

Λ1 =


−λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 −λ

 and Λ2 =


−λ 0 0 0
0 −λ 0 0
0 0 λ 0
0 0 0 λ

 . (3.37)

In an analogous way as the one dimensional case, the Maxwellians can be obtained to be


F1

F2

F3

F4

 =



u
4 −

g1(u)
4λ

− g2(u)
4λ

u
4 +

g1(u)
4λ

− g2(u)
4λ

u
4 +

g1(u)
4λ

+
g2(u)
4λ

u
4 −

g1(u)
4λ

+
g2(u)
4λ


(3.38)

In this way one can construct a relaxation system for systems of conservation laws in
arbitrary space dimensions. The relaxation system for one dimension is exactly the same
as the one introduced by Aregba-Driollet and Natalini. But in two dimensions, we differ
from the model given by the above authors. The two dimensional relaxation system given
above in (3.36) was first introduced by Manisha, Raghavendra and Raghurama Rao [9] to
obtain a relaxation system such that the combination of the foot of the characteristic for
each equation of the relaxation system covers all the four quadrants in an isotropic way.
Our stability condition (2.21) for the case of (3.32) is simply

λ2 ≥ (∂ug(u))2 (3.39)
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This is the famous sub-characteristic condition of T.P.Liu (Liu 1987). For the two dimen-
sional relaxation system (3.36) the stability condition is

λ2 ≥ (∂ug1(u))2 + (∂ug2(u))2 (3.40)

Note that in the case of two dimensions, our stability criterion is very simple and it differs
significantly from that of Aregba-Driollet and Natalini. The condition (3.40) is a realistic
extension of the sub-characteristic condition.

4 A numerical scheme based on characteristics

The discrete velocity Boltzmann equation consists of convection terms and a stiff source
term. The convection terms are linear whereas the source term is non-linear. We split
these two terms via a splitting method. The discrete velocity Boltzmann equation is of
the form,

∂tf +
m∑

α=1

Λα∂xαf =
1

ε
(F − f) (4.41)

In the splitting method, the above equation (4.41) is solved in two independent steps. Let
us denote the convection terms by C(f) and the source terms by S(f). Then (4.41) can
be rewritten as

∂tf = C(f) + S(f). (4.42)

We solve the above equation in two steps as,

∂tf =c(f) (convection step) (4.43)

df

dt
=

1

ε
(F − f) (relaxation step) (4.44)

Suppose we have reached the nth iteration and have obtained fn. Then in the relaxation
step we need to solve an ordinary differential equation with the initial condition f =
fn. This step can be simplified further by assuming ε = 0. Then the relaxation step
gives fn = F n. In other words, the distribution function relaxes instantaneously to the
Maxwellian F n. With this restriction we need to solve only a system of linear advection
equations,

∂tf +
m∑

α=1

Λα∂xαf = 0. (4.45)

These equations are solved using a finite volume scheme using the evolution along the
characteristics as described below.
Let Ω be our computational domain and let fn

i be an approximation to the average of
f(x, tn) over a cell Ωi of measure |Ωi|. Then our scheme will be of the form,

fn+1
i = fn

i −
∆t

|Ωi|

∫
∂Ωi

m∑
α=1

(Λαf)n+ 1
2 ναds, (4.46)

Here (Λαf)n+ 1
2 is generated from a recovered approximation Rfn which has been evolved

to tn + ∆t
2

along the characteristics. The above formula (4.46) was obtained by integration
of (4.45) over (tn, tn + ∆t

2
)×Ωi and use of the Gauss theorem as well as the midpoint rule

in time on the flux term.
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The evolution to the half time step is accomplished through the characteristics constructed
at the quadrature points chosen for the integration of the fluxes over the cell interfaces.
The obvious quadrature points are the vertices of the cells but our results suggested that
this is not a right choice. So we have decided to use the midpoints of the edges also,
resulting in Simpson’s one third rule. Our algorithm consists of three steps: recovery of
a higher order approximation Rfn from the cell averages fn

i ; the evolution to tn + ∆t
2

to
calculate the fluxes; then an update of the cell averages by (4.46).
Since the exact solution of (4.45) is available, we use this solution to predict the value
of the solution at time level tn + ∆t

2
. But this representation requires the values of the

solution at non-grid points. In the recovery step, we calculate these values using the
recovery functions. In a first order scheme, we have used just piecewise constant data,
whereas in the second order scheme we have used a conservative discontinuous bilinear
recovery. We illustrate the numerical method for 1D and 2D scalar conservation laws.
One dimensional case
Consider the conservation law,

∂tu + ∂xg(u) = 0. (4.47)

We approximate the above conservation law by the relaxation system,

∂tf1 − λ∂xf1 =
1

ε
(F1 − f1) (4.48)

∂tf2 + λ∂xf2 =
1

ε
(F2 − f2) (4.49)

In the convection step we need to solve only

∂tf1 − λ∂xf1 = 0 (4.50)

∂tf2 + λ∂xf2 = 0 (4.51)

The finite volume update formula (4.46) for this system reads,

fn+1
1,i = fn

1,i +
λ∆t

∆x

{
f

n+1/2
1,i+1/2 − f

n+1/2
1,i−1/2

}
(4.52)

fn+1
2,i = fn

2,i −
λ∆t

∆x

{
f

n+1/2
2,i+1/2 − f

n+1/2
2,i−1/2

}
. (4.53)

Now, the exact solution of (4.50)-(4.51) is

f1(x, t + ∆t) = f1(x + λ∆t, t) (4.54)

f2(x, t + ∆t) = f2(x− λ∆t, t). (4.55)

Note that

f
n+1/2
1,i+1/2 = f1(xi+1/2, tn + ∆t/2)

= f1(xi+1/2 + λ∆t/2, tn). (4.56)

Similarly,
f

n+1/2
1,i−1/2 = f1(xi−1/2 + λ∆t/2, tn). (4.57)

Analogous expressions holds for f2 also. We now use our recovery functions to evaluate
the expressions (4.56)-(4.57). In the first order scheme, we use only piecewise constant
recovery functions,

f1(x, tn) = fn
1,i, in [xi−1/2, xi+1/2]. (4.58)
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Figure 1: Foot of the characteristic with a negative convection speed

In the second order scheme, we use conservative discontinuous linear recovery functions,

f1(x, tn) = fn
1,i + (x− xi)(∂xf1)

n
i , in [xi−1/2, xi+1/2]. (4.59)

For the derivatives, (∂xf1)
n
i , we use only the finite difference approximations,

(∂xf1)
n
i =

fn
1,i+1 − fn

1,i

∆x
. (4.60)

In the second order scheme, to prevent the oscillations developing, we have used limiters.
We have tested the common limiters such as minmod limiter, van Leer’s limiter and
superbee limiter. After calculating the fluxes we update the values of f1 and f2 using
(4.52)-(4.53). The value of the original conserved variable u is recovered as

un
i = fn

1,i + fn
2,i. (4.61)

In the relaxation step, we impose the conditions, f1 = F1 and f2 = F2 by virtue of the
instantaneous relaxation.
Two dimensional case
Consider a single conservation law in 2D

∂tu + ∂xg1(u) + ∂yg2(u) = 0 (4.62)

Recall that the relaxation system for the above conservation law is

∂tf1 − λ∂xf1 − λ∂yf1 = 1
ε
(F1 − f1)

∂tf2 + λ∂xf2 − λ∂yf2 = 1
ε
(F2 − f2)

∂tf3 + λ∂xf3 + λ∂yf3 = 1
ε
(F3 − f3)

∂tf4 − λ∂xf4 + λ∂yf4 = 1
ε
(F4 − f4).

 (4.63)

In the convection step we solve first the system of convection equations

∂tf1 − λ∂xf1 − λ∂yf1 = 0
∂tf2 + λ∂xf2 − λ∂yf2 = 0
∂tf3 + λ∂xf3 + λ∂yf3 = 0
∂tf4 − λ∂xf4 + λ∂yf4 = 0.

 (4.64)
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The finite volume update formula (4.46) for the individual equations reads,

fn+1
1,i,j = fn

1,i,j + λ∆t
∆x

{
f

n+1/2
1,i+1/2,j − f

n+1/2
1,i−1/2,j

}
+ λ∆t

∆y

{
f

n+1/2
1,i,j+1/2 − f

n+1/2
1,i,j−1/2

}
fn+1

2,i,j = fn
2,i,j − λ∆t

∆x

{
f

n+1/2
2,i+1/2,j − f

n+1/2
2,i−1/2,j

}
+ λ∆t

∆y

{
f

n+1/2
2,i,j+1/2 − f

n+1/2
2,i,j−1/2

}
fn+1

3,i,j = fn
3,i,j − λ∆t

∆x

{
f

n+1/2
3,i+1/2,j − f

n+1/2
3,i−1/2,j

}
− λ∆t

∆y

{
f

n+1/2
3,i,j+1/2 − f

n+1/2
3,i,j−1/2

}
fn+1

4,i,j = fn
4,i,j + λ∆t

∆x

{
f

n+1/2
4,i+1/2,j − f

n+1/2
4,i−1/2,j

}
− λ∆t

∆y

{
f

n+1/2
4,i,j+1/2 − f

n+1/2
4,i,j−1/2

}


(4.65)

The interface fluxes at the half time step are evaluated as follows. Consider the first
equation in (4.64). The exact solution of this convection equation is given by

f1(x, y, t + ∆t) = f1(x + λ∆t, y + λ∆t, t). (4.66)

Using this we can evaluate our fluxes in the following way,

f
n+1/2
1,i+1/2,j = f1(xi+1/2, yj, tn + ∆t/2)

= f1(xi+1/2 + λ∆t, yj + λ∆t, tn). (4.67)

Similarly,

f
n+1/2
1,i−1/2,j = f1(xi−1/2 + λ∆t, yj + λ∆t, tn). (4.68)

Figure 2: Foot of the characteristic falls isotropically around the point

Analogous expressions holds for the y-fluxes also. We now use the recovery functions to
evaluate the expressions on the right side of (4.67)-(4.68). In the first order scheme we
take

f1(x, y, tn) = fn
1,i,j, in [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]. (4.69)

and in the second order scheme,

f1(x, y, tn) = fn
1,i,j + (x− xi)(∂xf1)

n
i,j + (y − yj)(∂yf1)

n
i,j, (4.70)

in [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2].
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where, for the derivatives ∂xf1 and ∂yf1 at the point (xi, yj, tn) we have used just the
finite difference approximations,

(∂xf1)
n
i,j =

fn
1,i+1,j − fn

1,i,j

∆x

(∂yf1)
n
i,j =

fn
1,i,j+1 − fn

1,i,j

∆y

 (4.71)

The calculations for the other variables f2, f3, f4 are similar. After calculating the fluxes
we update the solution using (4.65). The value of the original conserved variable u is
recovered via

un+1
ij = fn+1

1,i,j + fn+1
2,i,j + fn+1

3,i,j + fn+1
4,i,j . (4.72)

With the instantaneous relaxation, the relaxation step is simply imposing the conditions

fn
1,i,j = F n

1,i,j

fn
2,i,j = F n

2,i,j

fn
3,i,j = F n

3,i,j

fn
4,i,j = F n

4,i,j.

 (4.73)

at the staring of the next iteration.

5 Numerical results

The new algorithm developed is tested on a few bench-mark problems for the Burgers
equation in 1-D and 2-D.
1-D test cases
These examples are taken from C. Laney [11].
Test Case 1

∂tu + ∂x(
u2

2 ) = 0,

u(x, 0) =

{
1 for |x| < 1

3
,

0 for 1
3

< |x| ≤ 1.

(5.74)

So the initial condition is a square wave. To review briefly, the jump from 0 to 1 at
x = −1/3 creates an expansion fan, while the jump from 1 to 0 at x = 1/3 creates a
shock. The analytical solution to this problem is given below.

uex(x, t) =


0 for −∞ < x ≤ −1

3
,

x+1/3
t

for − 1
3

< x ≤ t− 1
3
,

1 for t− 1
3

< x ≤ t
2

+ 1
3
,

0 for t
2

+ 1
3

< x < ∞.

(5.75)

where t < 4
3
. The solution is computed for t = 0.6. The numerical results are given Fig.5

and Fig.6.

Test Case 2

∂tu + ∂x(
u2

2 ) = 0,

u(x, 0) =

{
1 for |x| < 1

3
,

−1 for 1
3

< |x| ≤ 1.

(5.76)
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So the initial condition is again a square wave, but with a sonic point. To review briefly,
the jump from −1 to 1 at x = −1/3 creates an expansion fan, while the jump from 1 to
−1 at x = 1/3 creates a shock. The analytical solution to this problem is given below.

uex(x, t) =


−1 for −∞ < x ≤ −1

3
,

x+1/3
t

for − 1
3

< x ≤ t− 1
3
,

1 for t− 1
3

< x ≤ 1
3
,

−1 for 1
3

< x < ∞.

(5.77)

where t < 2
3
. The solution is computed for t = 0.3. The numerical results are given in

Fig.7 and Fig.8.

2-D test cases
These test cases are taken from Spekreijse [12]. On the square [0, 1]× [0, 1], we consider
the Burgers equation,

∂tu + ∂x

(
u2

2

)
+ ∂yu = 0.

The steady state equation is
∂yu + u∂xu = 0.

which is like the inviscid Burgers equation in 1-D. Two different sets of boundary condi-
tions have been considered.
Test Case 1
With the boundary conditions

u(0, y) = 1, for 0 < y < 1,

u(1, y) = −1, for 0 < y < 1,

u(x, 0) = 1− 2x, for 0 < x < 1,

the steady solution is given below (see the Fig.3).

Figure 3: Exact solution for test case 1

uex(x, y) = 1 if (x, y) in Region A,

uex(x, y) = −1 if (x, y) in Region B,

uex(x, y) =
1− 2x

1− 2y
if (x, y) in Region C.
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The regions A and B are separated by a shock, originating at (x, y) = (0.5, 0.5).
Computations have been carried out on 32×32, 64×64 and 128×128 grids. The contour
plots of the numerical solution are given Fig.9-Fig.14.

Test Case 2
With the boundary conditions

u(0, y) = 1.5, for 0 < y < 1,

u(1, y) = −0.5, for 0 < y < 1,

u(x, 0) = 1.5− 2x, for 0 < x < 1,

the steady solution is (see the Fig.4),

Figure 4: Exact solution for test case 2

uex(x, y) = 1.5 if (x, y) in Region A,

uex(x, y) = −0.5 if (x, y) in Region B,

uex(x, y) =
1.5− 2x

1.5− 2y
if in Region C.

The regions A and B are separated by an oblique shock, originating at (x, y) = (0.75, 0.5).
Again, the computations have been carried out on 32× 32, 64× 64 and 128× 128 grids.
The contour plots of the numerical solution is given in Fig.15-Fig.20.

6 Conclusions and future work to be done

A genuinely multi-dimensional relaxation scheme is developed, based on a new istropic
2-D relaxation system. The interface fluxes are evaluated in a multi-dimensional way
using the characteristics and appropriate piece-wise polynomial approximations in finite
volumes. The numerical methods is tested on some typical Bench-mark problems for in-
vscid Burgers eqution in 1-D and 2-D. This algorithms is presentely being tested for the
case of hyperbolic vector conservation laws, using Euler equations of Gas Dynamics in
multi-dimensions. Future work planned also includes the reduction in numerical dissipa-
tion, following the work of Raghurama Rao and Balakrishna [13] and detailed comparisons
with the grid-aligned upwind relaxation schemes using a traditional finite volume method.
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Figure 5: First order scheme with
200 grid points,CFL=0.75
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Figure 6: Second order scheme
with 200 grid points,CFL=0.15
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Figure 7: First order scheme with
200 grid points,CFL=0.75
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Figure 8: Second order scheme
with 200 grid points,CFL=0.15
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Figure 9: First order scheme with
32×32 grid points,CFL=0.45
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Figure 10: Second order scheme
with 32×32 grid points,CFL=0.1
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Figure 11: First order
scheme with 64×64 grid
points,CFL=0.45
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Figure 12: Second order scheme
with 64×64 grid points,CFL=0.1
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Figure 13: First order
scheme with 128×128 grid
points,CFL=0.45
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Figure 14: Second order
scheme with 128×128 grid
points,CFL=0.1
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Figure 15: First order
scheme with 32×32 grid
points,CFL=0.45

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Figure 16: Second order scheme
with 32×32 grid points,CFL=0.1
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Figure 17: First order
scheme with 64×64 grid
points,CFL=0.45
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Figure 18: Second order scheme
with 64×64 grid points,CFL=0.1



Genuinely Multi-dimensional Relaxation Scheme. Draft, April 17, 2007 19

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Figure 19: First order
scheme with 128×128 grid
points,CFL=0.45
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Figure 20: Second order
scheme with 128×128 grid
points,CFL=0.1


