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The one-dimensional transonic flow of an inviscid fluid, which at large values of the specific
heats exhibits both positive (T>0) and negative (T<0) nonlinearity regions

{T = (1/p)[3(pa)/dp],} and which remains in a single phase, is studied. By assuming that T
changes its sign in the small neighborhood of the throat of the nozzle where transonic flow
exists and introducing a new scaling of the independent variables, an approximate first-order
partial differential equation (PDE) with a nonconvex flux function is derived. It governs both
the steady transonic flows and the upstream moving waves near sonic point. The existence of
continuous and discontinuous steady transonic flows when the throat area is either a maximum
or a minimum is shown. The existence of standing sonic discontinuities and rarefaction shocks
in the transonic flow are noted for the first time. Unlike in the classical gas flows, there are two
sonic points and continuous transonic flows are possible only through one of them. The
numerical evolution of those transonic waves that have both positive and negative nonlinearity

in the same pulse is studied and some comments are made on the local stability of the

particular steady flows.

1. INTRODUCTION

The study of the thermodynamics of the real fluids at
large values of the specific heats ¢, and ¢, has attracted many
researchers due to the increasing applications found in the
recent advancements in chemical and nuclear technology. In
gasdynamics, it is customary to assume the fundamental de-
rivative'?

= _1_( d(pa) )

P\ p s

with the density 5, the velocity of sound @, and the entropy S
of the fluid, to be positive. But for most of the fluids of com-
mon practical interest with large heat capacity, this impor-
tant quantity becomes negative. In a fluid with negative T,
only expansion shocks appear. These shocks were encoun-
tered in the beginning of this century. Bethe® and Zeldovich*
observed that the expansion shocks violate the entropy con-
dition except for a fluid with the anomalous behavior for
which T <0. Since the fluids with T" <0 were uncommon
they did not give much importance to it.

An important study of the fluids with T <0 was con-
ducted by Thompson and Lambrakis.>? They have carried
out detailed computations with more accurate equations of
state to provide specific examples of fluids in which T be-
comes negative and noted the entropy increase across such
shocks. They have also noticed that I" vanishes in the single
phase of the fluid, and the T <0 region extends sufficiently
outside the two-phase region. Borisov et al.® have experi-
mentally observed the expansion shocks in the relatively
simple compound Freon-13. Also Kutateladze et al.® have
recently pointed out that water vapor also admits expansion
shocks at high pressures.

Further, recently, Cramer’ has given an impressive list
of seven commercially available fluorocarbons with the
Martin—Hou equation of state, which show clearly the exis-
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tence of negative nonlinearity regions in the single phase of
the fluid beyond doubt. Though our analysis is not meant for
such phenomena, we remark that these shocks quite fre-
quently connect the vapor and liquid phases of a fluid with
large heat capacity under phase transition.®

The fundamental derivative T’ changes from point to
point in a disturbance. Garreit® has shown experimentally
that finite amplitude fourth sound waves in *He-B exhibit
both T >0 and T <O values in the same disturbance. The
properties of these waves seem to be surprisingly different
from those for a wave with constant value of T, either posi-
tive or negative. Thompson and Lambrakis® have pointed
out that these may lead to the formation of finite amplitude
double sonic shocks. Borisov et al.’ have correctly indicated
that a partial disintegration of the shock may occur. Recent-
ly, Cramer and Kluwick'® have developed a weak shock the-
ory to study the propagation of the finite amplitude waves
exhibiting negative (T <0) and positive (T > 0) nonlinear-
ity in a single phase fluid whose undisturbed state lies in the
transition zone, a small neighborhood containing the state
across which T changes its sign. Cramer et al.!' have further
added viscosity and heat conduction to this model and stud-
ied the propagation of the dissipative waves with positive
and negative nonlinearity. Also Cramer and Sen'? have stud-
ied the propagation of finite amplitude waves in the negative
nonlinearity region for a van der Waals fluid. The phenome-
non of shock splitting in a single-phase fluid has been studied
by Cramer'® (see also the Ref. 13).

Thompson' has investigated the role of the fundamental
derivative in nozzle flows. He has found that the continuous
flows are possible for an isentropic fluid with either negative
(or positive) values of the fundamental derivative only if the
throat area is 2 maximum (or a minimum). Here we present
a study of the steady flows of a fluid whose fundamental
derivative changes its sign near the throat of the nozzle. We
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also study the propagation of nonlinear waves on these
steady flows in a small neighborhood at the throat of the
nozzle,

The propagation of a nonlinear pulse in the neighbor-
hood of a sonic point can be studied by the general theories of
Kulikovskii and Slobodkina'* and for two-dimensional
problems by the theories of Prasad'® and Ravindran.'® How-

ever these theories are valid only for usual fluids with posi- -

tive nonlinearity. We present here a new scaling of time,
length, and amplitude that gives the approximate equation
for the waves moving upstream with positive and negative
nonlinearity near the throat of the nozzle. This equation be-
longs to the class of conservation laws with nonconvex flux
function having an inhomogeneous source term. A theory
for conservation laws with nonconvex flux functions has
been developed by Ballou.!” The mathematical study of this
class of equations is still in progress (see Refs. 18, 19, and
20).

A ‘“singularity separating method” has been devel-
oped™ especially for the numerical solution of this type of
conservation laws. We have modified this scheme to incor-
porate the source term and used it in our model equation to
study the behavior of nonlinear waves on the steady flows.

il. BASIC EQUATIONS AND APPROXIMATION IN THE
NEIGHBORHOOD OF THE SONIC POINT

Let us consider one-dimensional flow of a single phase,
compressible, inviscid fluid through a nozzle of varying
cross section. We restrict our attention to the fluids for
which the fundamental derivative T = T(ﬁ,S’) changes its
sign in a small neighborhood close to the sonic point. For a
fluid for which T does not change sign, the sonic point where
the fluid changes from subsonic to supersonic or vice versa,
will occur only at the throat of the nozzle, where the area of
cross section is the maximum or minimum.' In order to
study the behavior of the steady flow and the propagation of
a nonlinear wave near the throat of the nozzle, we introduce
the following nondimensional variables:

- '; > - =
x-—_—_-i, [—_—.fz*_, V:L, p:-—p—, P= PZ’

L L Ay P Py Gy
IR P R R

ey Dy Ty Ty T

where ¥,p, P, S, , and T denote, respectively, the particle
velocity, density, pressure, entropy, specific enthalpy, and
temperature of the fluid and * denotes their values at the
sonic point. The x axis is chosen along the axis of the nozzie
with the throat at x = 0, and ¢ is time. Here, # is the velocity
of the shock in the flow, L is a characteristic length, and
a = (dP/dpls)'? is the velocity of sound. The governing
equations for the fluid motion in the nondimensional vari-
ables are

dp d ,

=4 —(pVA) =0, 1

E + (p ) (1

v HV 1 P

z —_———=0, 2

ot 8x o p dx 2)
428 Phys. Fiuids A, Vol. 3, No. 3, March 1991

as
(S )
where 4 = 4(x) is the nondimensional area of the cross sec-
tion of the nozzle. Across a shock discontinuity the follow-
ing Rankine-Hugoniot conditions should be satisfied:

ulpl = [p¥1, (4)
(u—V)(u—-V)=[Pl/Ilpl, (5)
[A] =4V +V)IP], (6)
[S]1>0, (7

where the subscripts / and # correspond to the state to the left
and to the right of the shock. Here, [Q ] denotes Q, — Q,.
For our analysis, we express all the state variables of the fluid
through p and S. In addition, we require the specific heat at
constant volume (C, ) and 3P /3pl ;- both to be non-negative
for the thermal and mechanical stability of the fluid.

Since the fundamental derivative changes its sign in a
neighborhood clese to the somic point, we set,
(Pp/a, )f(p* Sy ) = O(€), where € is a small non-negative
quantity. For the study of the local stability of the transonic
flow, we impose a perturbation (wave) whose amplitude is
of the order of the fundamental derivative. We shall find
later that this wave stays in the transonic region for the time
intervals of order €'/ and spreads over a distance of order
63'/2.

The compatibility conditions along the characteristic
curves dx/dt = ¥V + a, of the quasilinear, hyperbolic system
(1)-(3) are:

v p c?p)

Y vy L v 9P

AL+ el sd Lt vial
_ . [aVpd’ 7(ap)s] g
i[WA + 25/ (8)

where we have used

o (G WE)+ (5[5 mar -5
Ix dp/s a5 /p\ 8x dx

Since along the third family of characteristics
dx/dt = ¥ the entropy remains constant, it is clear that the
primary source of entropy gradient in the flow is due to the
variation in the strength of the shock. Cramer and
Kluwick,'? have shown that the jump in the entropy of such
a fluid across a shock is of the fourth order in the strength of
the shock,

In this paper, we study the behavior of the flow in a
small neighborhood of the throat where the steady flow is
almost sonic, i.e., ¥ — a=0. The growth and decay of per-
turbations in this neighborhood are determined by the waves
following the characteristics dx/dt = ¥V — a, i.e,, upstream
propagating waves. The downstream propagating waves
move with velocity ¥ 4 a, and hence quickly move away
from this neighborhood. They do not affect the nature of the
transonic flow.’*?' Hence we approximate Eq. (8) in a
small neighborhood of the characteristics dx/dtf = ¥V — a in
the (x,f) plane as in the work of Kulikovskii and Slobod-
kina.'* However, the method of Kulikovskii and Slobod-
kina' is not applicable when T changes sign. For a state
variable, say, for instance, the density, we write p = p, + o’
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with p, and p' representing the value of the density in the
steady flow and its perturbation, respectively. We expand
the steady solution and the perturbation in the following
form:

Po=1+€po + €po2 + €po; + O(€%),
p' =ep, + €py + €p3 + O(eh).

Hence the total perturbation expansions can be written as
p=1+€p+€Ep,+€ps+ 0,
V=14V, + &V, + eV, + 0(e"),
S=1+¢€S,+ 0,

where B, = po; + P1, P2 = Poz + P2 P3 = Pos + p3 etc. In
the expansion for entropy S, we make use of the fact that the
jump in the entropy is of the fourth order, for the fluid under
consideration.

As in Cramer and Kluwick,'® we can use (8) and the
shock relations (4)—(6) to argue that the changes in the
shock strength is noticeable only over propagation distances
and time scales of order € ~ 2. And so f§S, drevaluated ona
characteristic defined by (8) is of the order of [S], i.e., €* at
most. Thus for the present purpose we can neglect the en-
tropy gradient term appearing in Eq. (8).

Expanding the variables a, P, and Tina Taylor series
about the sonic point and using (10) we get

(9

(10)

a=1+e(—p) + (TP, + A5 +p —po) + O(eD),
(11)
P=1+515|+52(ﬁ2—/\2)
—Zp.pz]+0(e), (12)

— [y N A pi azf A2
[ =e(T 4+ Ap)) + €| Ap, + -] pi + 0(e?),
2a, \ dp” /&
(13)

L

where
f=P* Tp,.5,)and A =2 (ar>
ea, dp

We take an expansion for the ve1001ty of the shock in the
form

U= uy+ €u; + €u, + €u; + 0(e*). (14)

Using the shock relations (4)-(7), we get two values for u,:
uy = 0 and u, = 2. Since in the steady flow the shocks have
zero velocity, we choose u, = 0. Further

uy =4V, + Vi, + P +Puds
uy= —{T[p1] + (1 +3A) [A1] —2[pp.]
+ [ﬁ2](ﬁ11 +ﬁlr) _i[,bl](Vll - Vlr +ﬁll +p1r)
X (Ve — Vi +pu +p1) 120541
Using (10) and (11) in (3)~(7) we obtain
[lal_*_Vl]:O (15)
and
[V2—p1 +p2] =0. (16)
Equations (15) and (16) mean that the Riemann invariants
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P+ V and V2 — A} + p, are continuous across shocks. We
note that from Eq. (13) that the value of T in the transonic
region is of the order of the amplitude € of the perturbations.

We shall consider a perturbation to the steady flow,
which is bounded in space with its amplitude p,, of the order
of the fundamental derivative. A simple analysis of Eq. (8)
with (10)—(13) shows that, in order to incorporate the full
nonlinear effects of the perturbation and the effect of the
curvature of the nozzle, we need to scale the independent
variables x and 7 as follows:

%=x/6and 1 = €. 7n
From this it is clear that the perturbations that are of the
order of the fundamental derivative stay in the neighbor-
hood of the sonic point for a time interval of order € ~ /% and
extend over a distance of order €*2.

Expanding 4 = A(X) about the throat of the nozzle
where dA4 /d% = 0, we obtain

(dA) ﬁ(dzA
dx A\ d¥?
Using Egs. (10)—(13), (17), and (18) in the compatibility

condition (8) along the characteristic dx/dt =V + a and
equating the terms of various orders, we obtain

) 2+ 0(). (18)

IV 4P _gand L (P, +p,—p2) =0. (19
ax ax
Hence
V,+p=h() and ¥, =p? — p, + (D), (20)

where A(?) and g(?) are arbitrary functions of 1. From Eq.
(19) we see that the rate of change of V| + p, along the
downstream moving waves in a small neighborhood of the
characterlstlc dx/dt = V — ais zero. Also from Eq. (15) we
see that Vl +p,is contmuous across the shock waves in the
flow. In our approximation, the functions 4 and g, which do
not depend on %, represent the influence of the flow away
from the small neighborhood (of the order of €*?) of the
throat on the local waves. Since we are interested in the be-
havior of only the local waves that stay in this neighborhood
for sufficiently long time (of the order of € ~ /%), we can set
h(;) =0, g(;) = 0. It is now important to realize that the
variation of the throat area may also produce reflected or
cross waves, which, according to our approximation, are
negligible, i.e., smaller than quantities of grder €. Hence in
the small neighborhood considered, Vl +p,=0 and

Vz =pi —po
Now using Egs. (11), (20) and (10) we obtain

V—a= —&(Th, +4Ap3) +o(ed). (21)
Using Eqs. (10)—(13), (17), (18) and (21) in the compati-

bility condition (8) along the characteristics
dx/dt = V — a, we obtain

ap, (AA 1 nz)aﬁ, 1 (dzA) N

5 Py M= T\ ) P

Equation (22) is the required equation that governs the
propagation of the upstream moving waves in the neighbor-
hood of the sonic point. It may be noted, as in the case of the
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Kulikovskii and Slobodkina'4 equation for an ordinary gas,
this equation governs both the steady transonic flow and the
upstream moving disturbances.
In terms of a new set of variables p, X, 7 defined by
(A/l")f),?c = (A/l"z)x, and7=1%, Eq. (22) becomes

c?p_(— 23
a7 T

where k = ( I/A* ) (d?A4 /dX*), . In the characteristic form,
Eq. (23) can be written as

(23)

dp ot dX ( 1-2)
- = — K Xalong—== — 24
dt & & PP (24)
with K = kI'/2. The steady solutions are given by

(5o +5-7% B = KL 5, (25)

where gy, = (A/ f‘)pm. From Eq. (12) the shock velacity
can be written as

dxs 1/,  _ 1 == -2)
s = L 45 ). (26)
=2 — (45 G+ B P 26)

We note here that k = 0 reduces Eq. (22) to

E 3(1_2 1_3) .
G awm\2P ter)="

This equation governs the propagation of the waves in a
tube of constant area of cross section. A study similar to that
of Cramer and Kluwick'® can be made for the understanding
of these waves,

We would like to justify the physical validity of the mod-
el considered. As mentioned in the Introduction, the funda-
mental derivative may vanish at a particular thermodynamic

state in the single phase of a fluid with sufficiently high val-

ues of the specific heats ¢, and c,. Hence there exists a small
neighborhood of that state contammg the point across which
T = 0. This neighborhood is such that it does not contain the
critical point, but extends outside the two-phase region. In
the case of a van der Waals’ model this situation pre-
vails®'>!? near the two-phase region. When a nozzle is con-
nected to a reservoir with the gas at rest, the state of the fluid
in the reservoir can be so adjusted that the state of the fluid
obtained near the throat of the nozzle is in the above neigh-
borhood. In the region near the throat, T changes from point
to point and both T and its rate of change may either be
positive or negative. Hence to get a qualitative understand-
ing of the behavior of the fluid, one must consider all the
possible combinations of the signs of the parameters T and

A

ill. POSSIBLE STEADY FLOWS

The approximate equation (25) governs the steady'

transonic flows near the throat. Hereafter we use p, for pg,,
for convenience, For a nozzle with nonzero curvature &, the

behavior of the steady flow near the sonic point for different

values of the parameters A and T can be studied by consider-
ing the following cases:
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(27,

(D k#0, A=0, T30,
(II) k+#0, A#0, T =0, (28)
() k#0, A#0, [#0,

We discuss below the different steady flows arising out of the
different combinations of signs of the parameters, It is im-
portant to note that k <O corresponds to the maxzimum
throat area and k > O to the minimum throat area, The direc-
tion of the fluid motion is from left to right in all ensuing
figures. The significance of the arrows in the figures will be
explained in the next section.
Case (I): Setting A = 0in Eq. (25), we get

dpy _ ( AL )_:g

dx 2 Jpy

The integral curves p§ = (kT'/2)x* + C, with an arbi-
trary constant €, represent the one-parameter family of
steady flows.

(a)k>0and I' > 0: The dominant term of the order of ¢
in Eg. (13) shows that _[:(pO,SO) remains positive every-
where in the steady flow. Since the throat area is minimum,
the behavior of the fluid is similar to the well-known polytro-
pic gas flow through a nozzle. We may note that for a poly-
tropic gas with constant specific heats (¢, and ¢,), [ is
(a/p) iy + 1 )21, y= ¢,/c,. The intensive study of
Kantrowitz*' shows the extstence of standing shock waves in
the diverging or in the converging part of the nozzle. These
results can be seen in the phase plane of (29), as shown by
continuous lines in Fig, 1(a). A recent numerical investiga-
tion by Embid ez a/.,** of the approximate equation modeling
such flows, shows the existence of multiple steady states in a
nozzle with fixed entry and exit conditions. It may be noted
that the nonuniqueness in the position of the shock is due to
the local approximation of the equations near the sonic point
and in general the position of the shock can be defined
uniquely.?? Various steady flows obtained from the phase
plane have been described in the caption of the figure.

{b) k<0and T <0:8Since Eq. (29) remains unchanged,
the nature of the singular point is same as in (a). The phase
plane is represented in Fig. 1(b), We may note that T re-
mains negative everywhere in the steady flow and the throat
area is maximum as noted by Thompson ' for such fluids. It is
known that for a polytropic gas flow through 2 nozzle with
maximum throat area, the singular point is a center, near
which no continuous flows are possible, But for the fluid
under consideration; we notice the continuous supersonic,
subsonic, and transonic flows near the singular point. We
also see the existence of rarefaction shocks either in the con-
verging or in the diverging portion of the nozzle to match the
entry and the exit conditions of the nozzle,

(¢) k<0 and I‘>O (or) k>0 and F<:O Both these
conditions lead to a singular point that is a center for Eq.
(29) and hence there does not exist any continuous flow, For
an ordinary fuid this result is well known.??

Case (II): In this case Eq. (23) reduces to

(29)

dpo _ ( k ) x (30)

dx 3
and the integral curves are given by § p§ + C = (k/A)x%
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Subsonic

FIG. 1. (a) Flow through a nozzle with minimum throat area, A = 0 and
T > 0. ABC and 4,0,C, are continuous subsonic and supersonic flows, re-
spectively. 4,0,C), 4,0,C;, 4,0,C;, and 4;0,C, are continuous flows hav-
ing sonic transition. A,B,B,0,C|, A;B,B,0,C;, A,0,B;B,C;, and
A,0,B,B,C are flows with a single compression shock. The positions the
shocks are nonumque (b) Flow through a nozzle with maximum throat
area. A =0Oand T <0. The description is same as in Fig. 1(a), except that
the supersonic flows are replaced by subsonic ones and vice versa and a
compression shock is replaced by a rarefaction shock.

The characteristic velocity V-a is approximately equal to
— {Ap}. The integral curves are plotted in Fig. 2 for
k /A > 0; the same for k /A <0 can be obtained by reflecting
the curves about the x axis. It is seen that if the fluid starts
initially with a supersonic (subsonic) speed, it always re-
mains supersonic (subsonic). The nature of the flow being

FIG. 2. The nozzle may be of maximum or minimum throat area and F=o.
For a nozzle with minimum throat area and A > 0, all the flows are sub-
sonic. For a nozzle with maximum throat area and A <0, all the flows are
supersonic and the direction of the arrows are reversed in this case. All these
flows are stable.
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either supersonic or subsonic depends only on the sign of A.
Since the Rankine-Hugoniot points are complex conjugates,
there does not exist any flow with standing shock waves. It is
important to notice that whether the throat area is a maxi-
mum or minimum, continuous steady flows are always pos-
sible. There is a single flow that becomes sonic at the throat,
but continues to be in the same state \supersomc or sub-
sonic). From Fig. 2, it is seen that some of the flows starting
initially in a region with T < 0 (or T > 0) returns to the same
region after remaining in the region T>0(orT <0) overa
short distance.

Case (I11): Equation (25) can be integrated to give the
integral curves:

K% =15 +p2 + C, (31)
with an arbitrary constant C giving a one-parameter family
of steady flows near the throat. Figure 3 gives a plot of the

integral curves for k£ = 1.
For a steady flow we can easily derive the following:

(51 = [(eD)/6A 1 [Bol*[ 1+ 3(Pos +For) ], (32)

V—a= —&(T/A)?A@,+1753), (33)
and

T =eT'(1+5,) + 0. (34)

We note that (33) can be written as

(5] =i(i)2[ﬁ12[<v— @), — (V—a),].

Hence we see that the shock s

4201100 WU SLL il

sary for a discontinuity to be a

tabilitv condition (neces-

{he snock Viidvy S nainon (neces

n admissible shock),

. Subsonic (case (b))}
Sonic line
B2
T>o
Super sonic (case (b))

Feco
Subsonic (case(a)}

FIG. 3. Case III(a): A nozzle with minimum throat area k( > 0), T>0and
A>0. Arrows indicate the direction of motion of the perturbations.
L,0,S,5,5;R; and L,0,B,8,5:R, are flows with two sonic shocks. (0,5;,
O,B,—rarefaction and S,Ss, B,Bs—compression). L,0,5,5,R,,
B10,S,.5,R,, Bs B:B1oB11Re and BeB),1306 R are flows with a single stand-
ing shock (S,S,—compression shock in the diverging section of the nozzle,
the position of the shock is nonunique). L,0,8,85R, and By B8R, are
flows with a single sonic discontinuity (compression). Case III (b): A noz-
zle with maximum throat area (k<0), I’ <0, and A <O0. Perturbations
propagate in the opposite direction given by the arrows and the steady flow
is from right to left. R;S55,5;0;L; and R,Bs3,5;0,L, are flows with two
right sonic shocks. R,0,8, is a transonic flow, it cannot extend until the exit.
Closed loops do not represent any flow and no shock solutions are possible.
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(V—a)20=(V—a),, (35)

is sufficient to guarantee that the entropy does not decrease
across shocks. However, Eq. (35) is a stronger condition in
the sense that [.S' ] may be greater than zero even though Eq.
(35) is not satisfied. While dealing with the individual flows
through a nozzle we shall see later that (as in Cramer and

Kluwick'®) the equalities on both the sides in (35) can never

be satisfied simultaneously. Of course onie of the equalities
either on the left or right is possibly dependent on the sign of

A. If the sign of A is positive, the left equality is possible,

while for negative A the right equality is possible.

As pointed out earlier, there are many possibie combi-
nations of the signs of the parameters. We shall describe the
behavior of the flows in detail for a single combination and
the remaining combinations can be studied in the same way.

In this case we have a nozzle with a minimum area at the
throat. The fundamental derivative and its rate of change
along the isentrope at the critical point are positive. We can
study the steady flows with the help of the phase plane
shown in Fig, 3.

We may note that an increase in the value of 5, indicates
compression and a decrease in its value indicates expansion.
Also a sudden increase in p, corresponds to a compression
shock and a sudden decrease to a rarefaction (expansion)
shock.

We see that there
(0,0) and (0, — 2). In Fxg 3 the smgular pom (G,0) is
saddle point and other point (0, — 2) is a center. So, unlike
in the flow of an ordinary gas where either a single saddle
point singularity or a center is abserved, we notice here the
occurrence of both types of singularities. A steady flow can
attain a sonic state either when it meets the line 5, = G or the
line p, = — 2. The appearance of the second sonic state can
be attributed to the change in the sign of the fundamental
derivative T across the line 5 = — 1. The multivalued parts
of the integral curves in the phase plane cannot represent a
real flow and hence should be replaced by shock discontinui-
ties. The steady shocks must satisfy the Rankine~-Hugoniot
condition

Por + Por + :l;(l—’czwr + ,Eoﬁol +5éi) =0
and the stability condition (35).

We shall use the following definitions in classifying the
different discontinuities. If for a discontinuity both the in-
equalities in Eq. (35) [(u —a);>0> (4 —a)] are satis-
fied, then the discontinuity is a shock. If for a discontinuity
the left or right equality in Eq. (35) holds
[(u—a),=0>(u—a), or (u—a),;>0=(u—a),]
then the discontinuity is a left sonic shock or a right sonic
shock. If both the equality signs  hold
[ (u—a),
ble sonic shock. "’

Equation (36) represents an ellipse in the (Bo,20,)
plane as shown in Fig. 4. From the figure we see that steady
shocks or sonic shocks of either kind are possible only if

—3<py <l and — 3<p,, <1. The condition (35) shows

(36)
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FIG. 4. An ellipse connecting all the Rankine-Hugeniot points and indi-

cates the possible positions of the entropy increasing shocks for ease I (a).

that the value of g, must satisfy — 2<p,,<0 and for each
such value of p, there are two values of g,,, one in
~ 3<Py,< ~ 2 and the other in 0<p,, <1. Hence for a given
state py;, there is a nonuniqueness in the value of g, for a
shock or a sonic shock of either kind. In order to resolve the
nonuniqueness in the determination of the state to the right
of a discontinuity, we need to know the boundary conditions

at the exit and entrance of the nozzle. We consult Fig. 3,

where the integral curves are represented.

It is interesting to note (see also Fig. 3) that only a
compression sonic shock connects an upstreamstatein T <0
to a downstream state in T > 0 and only an expansion sonic
shock connects an upstream state with I >0 to a down-
stream state with T <0, It is also seen that only a compres-
sion sonic¢-shock or an expansion sonic shock is possible, if
the fluid remains in the same state with either T > Qor T <0.

Consider a state upstream represented by a point L on
an integral curve along which the flow continues until its
slope becomes infinite at the point O, After O, the flow
cannot be continued continuously, since the integral curve
folds itself, representing a multivalued solution. For discon-
tinuity, p,, must satisfy — 2<g,, <0 and hence the only pos-
sible value of p,, is zero at O,. For gy, = 0, the possible values
of po, are 0 and — 3, of which 0 must be omitted. Thus the
flow jumps to S; (with the same value of X) through 2 left
sonic shock [ (# — a), = 0]. It is important to note that S,
lies on the same integral curve, since Eq. (36) demands that
the value of C'in Eq. (31) should be the same. From S, the
flow is continuous up to S, then jumps to S through a left
sonic shock and reaches the exit of the nozzle as a subsonic
flow again.

Thus we note that given a state upstream say at L, the
fiow through the nozzle is uniquely determined. We may
note here that across the discontinuity 0,5, the density of
the fluid decreases discontinuously while across S,S; the
density increases discontinuously. It is interesting to note
that T changes its sign from positive to negative across 0,5,
and negative to positive across S,S;. Analogous to this case,

D. Chandrasekar and P. Prasad 432

Downloaded 22 Nov 2010 to 203.200.35.11. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



Cramer and Kluwick'® noticed the change of the sign of T
across a shock wave. In this flow the fluid speed remains
subsonic both at the entrance and the exit of the nozzle.

Consider another flow starting at L, in the phase plane,
a point near the entrance, such that the integral curve passes
through O,. The flow starts with a subsonic velocity and is
accelerated to the sonic speed at G,. From O, there are many
possibilities: in the first possibility it has a continuous sonic
transition and continues to be supersonic up to 3, finally
reaching R, through the jump from 5, to fs; in the second
one the flow may jump through an expansion sonic shock
from O, to 3;, then continues as a subsonic flow till £,, and
finally reaches the exit of the nozzle at R, through a com-
pression sonic shock 3, Bs. In the other possibilities the flow
continues with a continuous sonic transition at O, but does
not follow the curve up to the second sonic point 3,, instead
it jumps from an intermediate state at S| to that at S, and
finally reaches the exit at R,. The jump from S, to S, isnot a
sonic shock. As we remarked in case I(a) there is a nonuni-
queness in the position of the compression shock (S5;)
when we use the approximate Equation (25) in the neigh-
borhood of the throat. Had we used the original equations,
we might have fixed the position of the shock uniquely for
the given values of the density (or pressure) at the exit and
the entrance as in the case of a polytropic gas.”

From the phase plane in Fig. 3, we see that infinity of
purely subsonic flows are possible. An example of such a
flow is L,0,R,. In the case of a polytropic gas through a

nozzle mnh minimum area at the throat, there exist four

A0 ¥yitia aliziaziiiaa

distinct continuous flows that extend till the exit of the noz-
zle.?* Analogous to these we find near the saddle point singu-
larity O, four distinct flows: L,O,R,, L,0, B,, B,0,R,, and
8,0, B,. Here, L,0,R, remains subsonic, except at the sonic
point O,. Along L,0, f3,, the flow changes from subsonic to
supersonic at O,, but this flow cannot be continued continu-
ously till the exit of the nozzle as discussed above. 5,0,R, isa
flow that starts at a finite distance in the nozzle with a super-
sonic velocity, takes continuous sonic transition at O, and
reaches the exit of the nozzle as a subsonic flow. Here
5,0, B, is a purely subsonic flow that starts at a finite dis-
tance in the nozzle and ends at a finite distance as shown in
the Fig. 3. We note that though the value of the fundamental
derivative T changes from point to point in the fluid, when T
is positive everywhere, the fluid accelerates in the diverging
part of the nozzle, and decelerates in the converging part of
the nozzle, as in the case of a polytropic gas.

The family of integral curves with the parameter value
C <0 behave in a peculiar way. For each C there are two
distinct branches of the integral curve: one remains com-
pletely in the subsonic region (g > 0) representing a contin-
uous flow such as L;O.R, and the second is a closed loop
around the second sonic point (0, — 2). The closed loop,
being multivalued, cannot represent a flow. However, parts
of the upper or lower portions of the loop represent contin-
uous flows originating and terminating at finite distances,
and can be joined to the upper branch of the corresponding
integral curves (with the same value of C) through shocks or
sonic discontinuities; B B; 810 811 R represents a flow with
a compression shock, B, B, Bs BsR, represents a flow with a
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left sonic shock, etc.

Let us consider a flow starting at L, with subsonic veloc-
ity and, let the exit of the nozzle be at R,,. There exists several
possible ways of connecting the two boundary conditions:
(i) L,0,B:B,BsR,, (i) L,0,B,BsR,, and (iii)
L,0,S,S,R,. We have already described these flows, and a
ucscripuon of this is found in the captxcn of the figure. This
result shows the existence of multiple steady states of tran-
sonic flows in the nozzle, as observed by Embid et al.?* for a
perfect gas model. Also, this study clearly explains the exis-
tence of expansion shocks in the transonic region.

B. Case (b): k<0, '<0, and A <0

Since the product AT is positive, the phase plane is the
same asin case (a). We only note here that as X is related to x
byx = (A/ I‘z)x, the exit of the nozzle (which is on the left)
corresponds to X = — oo in the figure and the entry is at
X = + oo in the figure. Further, due to relation (33), the
supersonic regions are g,>0and — o <py< — 2 and the
subsonic region is the strip — 2 <p, <0. From Fig. 4, by
making the corresponding changes in the signs, we see that
steady shocks are possible only if either — 3<py< — 2 in
which case, — 2<p, <0 or 0<py <1, which requires
— 2<P,,<0. These shocks satisfy the stability condition
(35).

We can describe the individual flows as in case (a). We
note here that all shocks in the steady flows are the right
sonic shocks ((V —a), = 0) For example R3SSS4S O,L,
contains the sonic shocks SsS, \expansmn ) and 550; (com-
pression ). This analysis clearly shows the existence of con-
tinuous and discontinuous steady flows in a nozzle with
maximum throat area.

C.Case (c): k>0, f<0 and A>0

In this case we use p = — (A/F)p, (A/I,: )X, and
7=1. Then the equations corresponding to the Eqgs. (31),
(33), and (34) become

K% =153 — 72 + G, (37)

Vy—ay= — (T/A)2A( —po+ 152, (38)
and

T'= —el(1—p,) + 0. (39)

The integral curves given by Eq. (37) are plotted in Fig.
5. The sonic points are (0,2) and (0,0). Asin case (a) we can
describe various steady flows. We mention a few interesting
flows in the caption of the figure.

D. Case (d): k<0, I'>0, and A <0

In this case the phase plane is the same as that in the case
(c), except that the direction of the flow of the fluid is from
right to left. We mention the corresponding changes of the
supersonic and subsonic regions in the figure. We describe a
few interesting flows in the caption of the figure.

We have four more possible combinations of the signs of
the parameters k, F and A, leading to different types of
flows. They are (e) k<0, l"<0 and A>0; () k>0, 1">0

t
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Supersonic {case (d))
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Subsonic (case({c)) 5 Supersonic {case (d})

FIG. 5. Case II (c): k>0,T <0, and A>0.- L:S,5,0,8,R, and
L10,0:85,8:R, are flows with two sonic discontinuities one at the converg-
ing part (at the throat) and another at the diverging section of the nozzle.
L,0,5,8:R, is a flow with a single compression sonic discontinuity.
SeSeS 1002565 R y and S,8,5,,0.5,8R, are flows with a shock and a sonic
discontinuity or two shocks, respectively. Case I (d): k<O, f‘> 0 and
A <0. The steady flow is from right to left and the perturbations propagate
in the opposite directions indicated by the .arrow directions.
R8,0,8:8,L;, Ro85.5,0,L, are flows with two right sonic shocks and
R,0,5, is a transonic flow terminating before the exit of the nozzle. There
are no shock solutions and the closed loops do not represent any flow.

and A <0; (g) k<0, T'>0,and A >0; and (h) k>0, T <0,
and A <0. The phase planes for the cases (¢) and (f) are
depicted in Fig, 6 and those of cases (g) and (h) arein Fig. 7.
For the economy of space, we describe the flows in the cap-
tion of the figures.

The above study clearly shows the existence of transonic

flows in a nozzle irrespective of the nozzle having a maxi-

T>0 Subsonickase(e))

Sonic Jine

Supersonic {case ()}
F<o

Supersonic {case (e}

F<o

g
v

(=]
2

Subsonic {case ()} Supersonic (case(f}}

O
L2

L, Ry
R
i Ry 3

FIG. 6. Case I (e) k<0,T'<0 and A>0. L,0,5,5,5,R, and

L38,538:8,55 R, are flows with two left sonic shocks; S,S;, 0,5, are com-
pressions and S,S;, S,8, are rarefactions. LZOZS oS Ry and L,0,558,R,
are flows, respectively, with a a single expansion shock and an expansion son-
ic shock. Case I (f) k>0, T >0, and A <0. The steady flow is from right
to left and the perturbations propagate in the opposite direction indicated
by the arrows. There are no shock solutions possible and the closed loops do
not represent any flow. R,S,8,8,0,L, and R,8,5,S.8,S,L, are flows with
right sonic shock, S, 85, $55, are compression discontinuities and S,0,, $;S,
are expansion discontinuities.
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FIG. 7. Case HI (g) k<0,0'>0 and A>0. L,0,5.85R, and
L3568,00,5,5: R, are flows with left sonic shocks. Sg8,4, 0,8, are compres-
sion discontinuities and §,8,, $,8; are expansion discontinuities.
L£,0,8,,85R,, contains S, ,S|,, an expansion shock. Parts of the closed
loops can also represent discontinuous solutions as shown, Case III (h)
k>0, <0,and A <0. The steady flow is from right to left along the inte-
gral curves. R,5,5,5,0,L, and R3535,0,8),8:L; are-flows with a right son-
ic shock. No shock solutions are possible,

mum area or a minimum area at the throat. The above dis-
cussion of all possible flows also shows that a flow starting
with a supersonic (subsonic) velocity at the entrance of the
nozzle reaches the exit of the nozzle only with a supersonic
(subsonic) velocity, either continuously or jumping through
one or more discontinuities. This result is in contrast with
the results for an ordinary gas.

IV.LOCAL NONLINEAR STABILITY OF STEADY FLOWS

‘We can study nonlinear propagation, growth, and decay
of weak pulses on the steady flows with the help of the Eq.
(23), The characteristic ordinary differential equations
(24) of the partial differential equation (23), give the same
rate of change dg,/d¥ as that given by the steady equation
(25) and hence evolution of perturbations can also be stud-
ied in the phase plane of Eq. (25). Since we are considering
perturbations bounded in space, at any instant, a perturba-
tion of our steady solution can be represented by a closed
curve as shown in Fig. 8. In a perturbation, the space rate of
change of p as we move with the wave velocity — (6 + 1 5°)
is KX/(p + } p*), which is also the space rate of change of o
as we move along the integral curves of the characteristic
equations, Therefore, during the propagation, different
points of the boundary curve of the perturbation will move
along the integral curves of Eq. (25).

Let s be the area bounded by an arbitrary closed curve in
the (X,p) plane whose points move in accordance with Eq.
(24). As the divergence of the vector field given by the right-
hand side of Eq (24) is zero, i.e.,

8(a'x) é‘(dp) 1 ds
0»':—*—._,
I% +5t dt s dt

it follows that during its motion the total area s remains
constant and is equal to its initial value s, Thus we get the

(40)
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FIG. 8. Stability of the fluid flow through a nozzle with minimum throat
area. History of the perturbation of the steady flows for case II (a). This
clearly demonstrates the existence of the shocks and the local stability of the
flows with shocks.

important pulse area rule?' that the area occupied by a dis-
turbance in the (X,5) plane remains constant as the distur-
bance propagates. Following Kantrowitz?' we can easily see
that the pulse area is conserved even if a weak shock appears
in the pulse.'*?> Using the constancy of the pulse area, we
can get a qualitative idea of the history of the pulse in the
phase plane. But since Eq. (23) is nonlinear, in order to get
the complete history of the pulses, we have to resort to the
numerical solution of Eq. (23).

As pointed out in the Introduction, Eq. (23) can be
derived from a hyberbolic conservation law,

Tl -Gresr)- -5

Eri 2P %’ 2
with a nonconvex flux function having an inhomogeneous
source term. We use the singularity separating method,?® a
numerical scheme especially designed for such scaler conser-
vation laws with a modification to incorporate the source
term on the right.

Equation (23) can be rewritten, by using the steady so-
lution Eq. (25), as

9,

B, 1
% —~ ((Po +51) + B0+ 71) )a-

i
(Plpo +p+— pl)d’? (41)

X
Following the pulse area method of Kantrowitz,?' we can

derive an equation for the slope € = dp,/dx of the boundary
of the pulse along an integral curve of Eq. (25). In the char-
acteristic form this equation is

i3 () (B o)
P [(a?c e N TPt 5P

+ 2601 +50+50)(22) + €1 +hotp0)| @)
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along the characteristics give by

L —(Go+p) + o +5)7).

We select a steady flow given by p, and impose a pertur-
bation g, (X,0) on it. We study its evolution by numerically
integrating Egs. (41). The growth of the perturbation with
time means that the steady-state solution is unstable. On the
other hand, the decay of the solution does not imply stability,
since the cause of instability need not be connected with the
behavior of the flow near the critical point. Nevertheless we
shall call the solution to be stable in this case. The time of the
formation of a discontinuity and its subsequent position can
be obtained by solving®' Eq. (42) and Eq. (26), respectively.
The discontinuity must satisfy the stability conditions

dax dis dx

dt | dt

As we have seen in the case of the steady solution, the condi-

tion (43) is sufficient to guarantee the entropy increase
across shocks.

We shall now study the evolution of the perturbations
on each of the steady flows discussed in Sec. III. The direc-
tion of the arrow on a steady flow indicates the direction of
propagation of a perturbation.

Case I(a): The behavior of these steady flows are well
known since it corresponds to an ordinary gas. Kantrowitz*'
brought out many interesting features of these flows by his
pulse area method.'* Recently, Liu?® has rigorously proved
that a flow with a standing shock in the diverging section of
the nozzle is stable while the steady shock in the converging
section is unstable to perturbations. Successive positions of
the pulse on a steady flow have been shown by dotted lines in
Fig. 1(a).

Case I(b): This case corresponds to the flow of a nega-
tive T fluid through a nozzle of maximum throat area.
Successive positions of a few pulses have been shown by dot-
ted lines in Fig. 1(b). We see that the continuous accelera-
tion of the fluid through the speed of sound, is neutrally
stable to the compression and expansion pulses, since these
pulses finally attain a stationary triangular shape at the
throat. But for an ordinary fluid this flow is known to be
stable, since the pulses move away from the throat without
amplification. The continuous deceleration of the fluid
through the speed of sound is stable, unlike the neutral sta-
bility of such flows in an ordinary gas. We notice that the
flows with a standing rarefaction shock in the converging
part of the nozzle is stable.

Case I1: We get an equation for the unsteady perturba-
tion in the form

(43)

ap, (1 nz)aﬁl k%
9 (L1 Pr . _ KX 44
It 2 Api % 2 44

Since this equation is also nonlinear, we solve Eq. (44) nu-
merically. Irrespective of the fluid being in a supersonic
(A <0) or subsonic (A > 0) state, the amplitude of the per-
turbation created at any part of the flow decays while the
pulse spreads over larger distance. Hence all the flows are
stable, irrespective of the shape of the nozzle (k <O or k>0,
see Fig. 2).
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Case I1I (a): A large amount of computation for differ-
ent types of perturbations on different parts of the steady
flows was done to decide the local stability of the flows. We
sketch the successive positions of a few perturbations in Figs.
8,9, 10,and 11, :

L,0,R,: This subsonic flow is stable to all types of per-
turbations (expansion, compression, or with both phases).
Any perturbation to the flow moves upstream and disap-
pears in the flow field (see Figs. 8 and 9).

L,0,3,85sR,: The continuously accelerating transonic
flow L,0,83, through the speed of sound is stable to the per-
turbations. A perturbation either in L,0, or in 0,83, moves
away from O, with its amplitude decaying, signifying the
stability of the sonic state in the flow. Further, a perturbation
of 0,83, catches up with the standing right sonic shock 8,5;,
resulting in a complicated interaction; the later history of
this pulse is not known from our computations. Also any
perturbation of BsR, catches up with the sonic shock £,5;.
Hence the final stability of the flow can be determined only
after studying the stability of the right sonic shock (see Figs.
8 and 9). We note that an expansion or a compression pulse
on ;R attains a triangular form with the tail or the head of
the wave becoming a shock, respectively. A pulse with ex-
pansion and compression phases becomes an N wave, either
with a single shock connecting both phases if the pulse is
headed by an expansion or with leading and trailing shocks if
headed by a compression phase.

L,0,5,5,S5R;: From Fig. 8, we see that the complete
stability of the flow will be known only when the complicat-
ed interactions are studied in detail, since a perturbation of
R;S;and 5,8, move towards the sonic shocks 5,5, and 0,5;,
respectively.

B10,R,: As it was noted earlier, this flow is the only
continuous flow, starting at a finite distance in the nozzle,
and decelerating through the speed of sound. A compression
wave in the supersonic part 3,0,, moves towards the sonic
point O, and gets trapped there with the leading part estab-

FIG. 9. History of different types of perturbations of the various possible
steady flows in a nozzle with a minimum area at the throat.
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FIG. 10. The flow 8,0, R, is neutrally stable to perturbations. In a pertarba-
tion with both positive and negative values, the excess of the positive pertur-
bation attains a triangular form with a compression shock at the trailing end
of the wave. The amplitude of a negative perturbation of L,0, decays.

lishing the flow L,0, and the trailing end becoming a com-
pression shock. An expansion wave also attains a triangular
form with its leading edge becoming a shock (compression).
It is interesting to note that even if a part of the wave has
" <0, this does not show any significant effect on the propa-
gation of the perturbation. A wave containing both expan-
sion and compression phases shows an interesting behavior
(Figs. 10 and 11). If the wave is headed by a compression
phase, during propagation, both the compression and the
expansion phases tend to cancel each other. The excess of the
compression phase attains a triangular form, establishing

oI
w
=}

Ly ] Ry

-2;0 —".5 -1,? -0.‘8 ‘-0..4 .

’51 pz

FIG. 1. A perturbation with positive and negative values, becomes an ¥
wave near the sonic point 0,. A positive perturbation of L,0, moves away
from the throat and its amplitude decays.
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partly (up to O,) the flow L,0, ahead of the shock. A pulse
headed by an expansion phase results in an N wave with
shocks at the head and the tail of the wave and the pulse gets
trapped at O, where it decays. Hence we observe that as in
the case of an ordinary fiuid, the continuous deceleration
through speed of sound is neutrally stable to the perturba-
tions.'s

L,0,S,S,R,: Any perturbation of L,0, moves away
from the sonic point and decays. A perturbation of 0,S,
catches up with the shock and also perturbations of S,R,
move towards S,S,. Hence to know the further history of the
flow, we need to study the nonlinear interactions. However,
§ince the area of the perturbations remains constant (also
I" > 0 and the nozzle has minimum throat area), we expect

this shock solution to be stable.
TT

Case III (b): The history of the pulses impose
ferent parts of the flows has been plotted in Figs. 12, 13(a),
and 13(b). We note that the continuous supersonic flow
R,0,L, is stable to any perturbation. The flow £,0,L,, rep-
resenting the continuous acceleration of the fluid through
the speed of sound, is neutrally stable. From the above fig-
ures, it is clear that any perturbation of 3,0, moves toward
0,, with the expansion phases of the wave becoming shocks
and the pulse finally gets trapped at O,. Also a perturbation
of O0,L, moves towards O,. A pulse with both phases be-
comes an N wave and its description can be made as in case
III (a). Hence we notice that this continuous acceleration of
the fluid through the speed of sound is neutrally stable.

FIG. 12. Stability of the fiuid flow through a nozzle with maximum throat
area. History of the perturbations of possible steady flows for case III (b).
The continuous acceleration of the fluid through the speed of sound is neu-
trally stable.
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FIG. 13. (a) Both positive and negative perturbations of £5,0,L, attain
triangular form. Perturbations of 0,5, move away from the sonic point and
its amplitude decays. (b) A positive perturbation on 0,/3, attains a triangu-
lar form and catches up with main flow O,R,.

-

The flow 58,0,R, representing the deceleration of the
fluid through the speed of sound is stable, since the perturba-
tions move away from the sonic point, disappearing from the
flow field. We can also describe the stability of the flows with
the sonic shocks as in case III (a).

Finally, we notice that even though the negative values
of T changes from point to point in the fluid, the stability of
the flow is not very different from that of a fluid with con-
stant negative I'. We can easily compare the properties of the
flow in this case to that in case I (b). Since the negative T
behavior dominates over the positive T behavior, any pertur-
bation with both positive and negative T does not show a
behavior significantly different from that of a pulse with neg-
ative .

We also carried out numerical computations for the evo-
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lution of the perturbations on the various steady flows
shown in Figs. 5,6, and 7. We do not go into any further
detailed description. However, we only point out that even
though T changes sign, the stability results are similar to
those with constant T with positive or negative sign accord-
ing to whether the saddle point is in the region with positive
or negative sign of T.

V. CONCLUSIONS

The steady transonic flow of a real fluid through a noz-
zle and its local nonlinear stability to weak pulses has been
examined. The specific heat of the fluid has been taken to be
large enough to result in regions of both positive and nega-
tive nonlinearity, in the single phase of the fluid. We assume
that the fundamental derivative T of the fluid vanishes at a
state close to the sonic state and hence remains small at the
sonic point. The behavior of the flow near the throat (maxi-
mum or minimum area), based on a local approximation
near the sonic point has been studied for various possible
choices of the signs of the fundamental derivative and its rate
of change along the isentrope through the sonic point.

The behavior of the steady transonic flows is interest-
ingly different from those of a polytropic gas with constant
positive T. Continuous transonic flows have been found to
exist through nozzles of minimum as well as maximum
throat area. Unlike in a fluid with the same sign of T (posi-
tive or negative), when I' changes sign, there are two sonic
points, one at the throat and another close to the throat of the
nozzle. It is found that continuous transonic flows are Bossi-
ble only through one of the sonic points, at which T re-
mains positive. Sonic discontinuities (expansion or com-
pression) are found to connect the upstream and the
downstream states in regions with different signs of T. Also,
expansion (compression ) shocks exist in a nozzle with maxi-
mum (minimum) throat area, Unlike in the case of a regular
fluid or a Auid with T <0, if the flow starts with a subsonic
(supersonic) velocity at the entrance of the nozzle, it can
reach the exit only with subsonic (supersonic) velocity, ex-
cept in the case when the exit is not too far away from the
throat. This flow may be a continuous one or containing one
or more sonic discontinuities or shocks. But there is a single
continuous flow that may start (end) at a sufficiently short
distance from the throat of the nozzle with minimum (maxi-
mum) throat area that results in a supersonic (or subsonic)
velocity at the exit different from the initial subsonic (or
supersonic) velocity at the entrance.

Computations of the evolution of various possible per-
turbations of the steady flows have been made to study the
local stability of the flows for weak pulses, It is known for a
regular fluid that the continuous acceleration of the fluid
through the speed of sound is stable whereas the continuous
deceleration of the fiuid through the speed of sound is neu-
trally stable, For a flow with T <0 we find that the contin-
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uous acceleration is neutrally stable whereas the continuous
deceleration is stable. The stability of the steady flows main-
ly depends on the particular combination of the parameters
T, A, and k. For a flow starting with positive values of T and
with minimum throat area, we find that the nature of stabil-
ity of a continuous flow near the saddle point singularity
agrees with that of a regular fluid flow. Also for a flow
through maximum throat area and with T negative, the sta-
bility of the continuous flows does not differ from that of a
fluid flow with constant T < 0. The various flows containing
sonic discontinuities in both cases may be stable, but a pre-
cise statement about the stability can be made only if the
nonlinear interactions of the waves with the sonic shocks are
studied in detail. The perturbations quite often get trapped at
the throat and attain a triangular shape with a shock either at
the trailing end or at the leading end. Some of the perturba-
tions with positive and negative area tend to become N
waves.
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