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The one-dimensional transonic flow of an inviscid fluid, which at large values of the specific 
heats exhibits both positive (F > 0) and negative (f; < 0) nonlinearity regions 
{f; = (l/p) [J(pa)/@],] and which remains in a single phase, is studied. By assuming that i? 
changes its sign in the small neighborhood of the throat of the nozzle where transonic flow 
exists and introducing a new scaling of the independent variables, an approximate first-order 
partial differential equation (PDE) with a nonconvex flux function is derived. It governs both 
the steady transonic flows and the upstream moving waves near sonic point. The existence of 
continuous and discontinuous steady transonic flows when the throat area is either a maximum 
or a minimum is shown. The existence of standing sonic discontinuities and rarefaction shocks 
in the transonic flow are noted for the first time. Unlike in the classical gas flows, there are two 
sonic points and continuous transonic flows are possible only through one of them. The 
numerical evolution of those transonic waves that have both positive and negative nonlinearity 
in the same pulse is studied and some comments are made on the local stability of the 
particular steady flows. 

I. INTRODUCTION 

The study of the thermodynamics of the real fluids at 
large values of the specific heats c, and cp has attracted many 
researchers due to the increasing applications found in the 
recent advancements in chemical and nuclear technology. In 
gasdynamics, it is customary to assume the fundamental de- 
rivative’*2 

I;=_L apa 
p ( > fq 3 

with the densityp, the velocity of sound zf, and the entropy 3 
of the fluid, to be positive. But for most of the fluids of com- 
mon practical interest with large heat capacity, this impor- 
tant quantity becomes negative. In a fluid with negative r, 
only expansion shocks appear. These shocks were encoun- 
tered in the beginning of this century. Bethe’ and Zeldovich4 
observed that the expansion shocks violate the entropy con- 
dition except for a fluid with the anomalous behavior for 
which r< 0. Since the fluids with F;<O were uncommon 
they did not give much importance to it. 

An important study of the fluids with F < 0 was con- 
ducted by Thompson and Lambrakis.2 They have carried 
out detailed computations with more accurate equations of 
state to provide specific examples of fluids in which i= be- 
comes negative and noted the entropy increase across such 
shocks. They have also noticed that ?; vanishes in the single 
phase of the fluid, and the f; < 0 region extends sufficiently 
outside the two-phase region. Borisov et al5 have experi- 
mentally observed the expansion shocks in the relatively 
simple compound Freon- 13. Also Kutateladze et al6 have 
recently pointed out that water vapor also admits expansion 
shocks at high pressures. 

Further, recently, Cramer’ has given an impressive list 
of seven commercially available fluorocarbons with the 
Martin-Hou equation of state, which show clearly the exis- 

tence of negative nonlinearity regions in the single phase of 
the fluid beyond doubt. Though our analysis is not meant for 
such phenomena, we remark that these shocks quite fre- 
quently connect the vapor and liquid phases of a fluid with 
large heat capacity under phase transition.’ 

The fundamental derivative i? changes from point to 
point in a disturbance. Garrett’ has shown experimentally 
that finite amplitude fourth sound waves in ‘He-B exhibit 
both r > 0 and r < 0 values in the same disturbance. The 
properties of these waves seem to be surprisingly different 
from those for a wave with constant value of i=;, either posi- 
tive or negative. Thompson and Lambrakis* have pointed 
out that these may lead to the formation of finite amplitude 
double sonic shocks. Borisov et al5 have correctly indicated 
that a partial disintegration of the shock may occur. Recent- 
ly, Cramer and Kluwick” have developed a weak shock the- 
ory to study the propagation of the finite amplitude waves 
exhibiting negative (f; < 0) and positive (F > 0) nonlinear- 
ity in a single phase fluid whose undisturbed state lies in the 
transition zone, a small neighborhood containing the state 
across which r changes its sign. Cramer et al. ’ ’ have further 
added viscosity and heat conduction to this model and stud- 
ied the propagation of the dissipative waves with positive 
and negative nonlinearity. Also Cramer and Sen” have stud- 
ied the propagation of finite amplitude waves in the negative 
nonlinearity region for a van der Waals fluid. The phenome- 
non of shock splitting in a single-phase fluid has been studied 
by Cramer I9 (see also the Ref. 13). 

Thompson’ has investigated the role of the fundamental 
derivative in nozzle flows. He has found that the continuous 
flows are possible for an isentropic fluid with either negative 
(or positive) values of the fundamental derivative only if the 
throat area is a maximum (or a minimum). Here we present 
a study of the steady flows of a fluid whose fundamental 
derivative changes its sign near the throat of the nozzle. We 
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also study the propagation of nonlinear waves on these 
steady flows in a small neighborhood at the throat of the 
nozzle. 

The propagation of a nonlinear pulse in the neighbor- 
hood of a sonic point can be studied by the general theories of 
Kuiikovskii and Slobodkina’4 and for two-dimensional 
problems by the theories of Prasad” and Ravindran. I6 How- 
ever these theories are valid only for usual fluids with posi- 
tive nonlinearity. We present here a new scaling of time, 
length, and amplitude that gives the approximate equation 
for the waves moving upstream with positive and negative 
nonlinearity near the throat of the nozzle. This equation be- 
longs to the class of conservation laws with nonconvex flux 
function having an inhomogeneous source term. A theory 
for conservation laws with nonconvex flux functions has 
been developed by Ballou. I7 The mathematical study of this 
class of equations is still in progress (see Refs. 18, 19, and 
20). 

A “singularity separating method” has been devel- 
opedZO especially for the numerical solution of this type of 
conservation laws. We have modified this scheme to incor- 
porate the source term and used it in our model equation to 
study the behavior of nonlinear waves on the steady flows. 

II. BASIC EQUATIONS AND APPROXlMATlON IN THE 
NElGHBORliOOD OF THE SONIC POINT 

Let us consider one-dimensional flow of a single phase, 
compressible, inviscid fluid through a nozzle of varying 
cross section. We restrict our attention to the fluids for 
which the fundamental derivative F = ?;(,5,2) changes its 
sign in a small neighborhood close to the sonic point. For a 
fluid for which ?= does not change sign, the sonic point where 
the fluid changes from subsonic to supersonic or vice versa, 
will occur only at the throat of the nozzle, where the area of 
cross section is the maximum or minimum.’ In order to 
study the behavior of the steady flow and the propagation of 
a nonlinear wave near the throat of the nozzle, we introduce 
the following nondimensional variables: 

x=X, F 
L 

t=a*1, 
L 

v2, p’x> p=-, 
a* P* w: 

S=&, 
6’ 

/I=+, + *A!-, z a=--, 
a* * a* a* 

where p, & Ij,,!?, f;, and 7 denote, respectively, the particle 
velocity, density, pressure, entropy, specific enthalpy, and 
temperature of the fluid and * denotes their values at the 
sonic point. The x axis is chosen along the axis of the nozzle 
with the throat at x = 0, and t is time. Here, u is the velocity 
of the shock in the flow, L is a characteristic length, and 
a = (aP/apl,y2 is the velocity of sound. The governing 
equations for the fluid motion in the nondimensional vari- 
ables are 

ap 
dt* $y4 = 0, 
s+Vg +.-Lap=, 

pax ' (2) 

pT ( $f+ Jqo, ax (3) 

where A = A (x) is the nondimensional area of the cross sec- 
tion of the nozzle. Across a shock discontinuity the follow- 
ing Rankine-Hugoniot conditions should be satisfied: 

@[PI = [PV, (4) 
(u - V,)(u - V,) = IPl/Epl, (51 
Eh I =gvr -I- ~,)[Pl, (6) 

ts 1 x4 (7) 
where the subscripts I and rcorrespond to the state to the left 
and to the right of the shock. Here, [Q J denotes Q, - Q,. 
For our analysis, we express all the state variables of the fluid 
through p and S. In addition, we require the specific heat at 
constant volume CC, 1 andaP/+j T both to be non-negative 
for the thermal and mechanical stability of the ff uid. 

Since the fundamental derivative changes its sign in a 
neighborhood close to the sonic point, we set, 
(p.+ /a* )P(p, ,S, ) = O(E), where E is a small non-negative 
quantity. For the study of the local stability of the transonic 
flow, we impose a perturbation (wave) whose amplitude is 
of the order of the fundamental derivative. We shall find 
later that this wave stays in the transonic region for the time 
intervals of order 5”* and spreads over a distance of order 
c3/2 

The compatibility conditions along the characteristic 
curves dx/dt = V & a, of the quasilinear, hyperbolic system 
(l)-(3) are: 

p ~+tY*a)~)+a(~+(Y+a)ap) 
( 

= +?$L+&,, - ax (8) 

where we have used 

g=(g),(g)+(s),(s)andA’=$. 

Since along the third family of characteristics 
dx/dt = V the entropy remains constant, it is clear that the 
primary source of entropy gradient in the flow is due to the 
variation in the strength of the shock. Cramer and 
Kluwick,” have shown that the jump in the entropy of such 
a fluid across a shock is of the fourth order in the strength of 
the shock. 

In this paper, we study the behavior of the flow in a 
small neighborhood of the throat where the steady flow is 
almost sonic, i.e., Y- a=O. The growth and decay of per- 
turbations in this neighborhood are determined by the waves 
following the characteristics dn/dt = Y- a, i.e., upstream 
propagating waves. The downstream propagating waves 
move with velocity V+ a, and hence quickly move away 
from this neighborhood. They do not affect the nature of the 
transonic Bow.‘~.~’ Hence we approximate Eq. (8) in a 
small neighborhood of the characteristics dx/dt = V - a in 
the (x,t) plane as in the work of Kulikovskii and Slobod- 
kina.14 However, the method of Kulikovskii and Slobod- 
kinat is not applicable when F changes sign. For a state 
variable, sayI for instance, the density, we write p = p. + p’ 
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with p0 and p’ representing the value of the density in the 
steady flow and its perturbation, respectively. We expand 
the steady solution and the perturbation in the following 
form: 

po = 1 + Epo, + 2po2 + +03 + O(E4), 
p’ = Ep, + 2p, + E3p3 + O(E4>. 

(9) 

Hence the total perturbation expansions can be written as 

p = 1 + Eli, + E2/j2 + +, + O(E4), 
v= 1 + 2, + a2 + a3 + O(c4), (10) 
s= 1 + E4i4 + O(S), 

where /;, =pol +pl,p2 =po2 +p2,b3 =po3 +p3, etc. In 
the expansion for entropy S, we make use of the fact that the 
jump in the entropy is of the fourth order, for the fluid under 
consideration. 

As in Cramer and Kluwick,” we can use (8) and the 
shock relations (4)-(6) to argue that the changes in the 
shock strength is noticeable only over propagation distances 
and time scales of order E - 2. And so SAS, dr evaluated on a 
characteristic defined by (8) is of the order of [S], i.e., e4 at 
most. Thus for the present purpose we can neglect the en- 
tropy gradient term appearing in Eq. (82. 

Expanding the variables a, P, and l? in a Taylor series 
about the sonic point and using ( 10) we get 

a = 1+ d -/j,) + E2(?f% + i*: t-6: --&I + O(2), 
(11) 

p= l+@, +z@,-$:, 

+q&+$: +/;:(l +A/3) 

- q&l + O(E4), (12) 

r=dF+4%)+E2 *-+ [ ’ g-($)*/3] +o(E?, 
(13) 

where 

p=&- 
ea* 

f;(p,,S,) 

We take an expansion for the velocity of the shock in the 
form 

u = uo + EU, + &, + du, + O(E4). (14) 
Using the shock relations (4)- (7)) we get two values for uo: 
u. = 0 and u. = 2. Since in the steady flow the shocks have 
zero velocity, we choose u. = 0. Further 

UI = @,l + ^v,,, +/i,r t&L 

u2= -@[iz] + (l+:“)[p:] -2[hp21 

+ [/;,I (81, +P,r> -at/%1 CR,, - ^v,r +iL +p,rj 

x (k - ^v +F,, +p*r))~w,l. 
Using (10) and (11) in (3)-(7) weobtain 

[j?, + ?,I =o (15) 
and 

[F2 -p: +/j2] = 0. (16) 
Equations ( 15) and ( 16) mean that the Riemann invariants 

+, + ^v, and ^v, - ,CT + & are continuous across shocks. We 
note that from Eq. ( 13) that the value of r in the transonic 
region is of the order of the amplitude E of the perturbations. 

We shall consider a perturbation to the steady flow, 
which is bounded in space with its amplitudeb,, of the order 
of the fundamental derivative. A simple analysis of Eq. (8) 
with (lo)-( 13) shows that, in order to incorporate the full 
nonlinear effects of the perturbation and the effect of the 
curvature of the nozzle, we need to scale the independent 
variables x and t as follows: 

2 = x/2” and 1= &“t. (17) 
From this it is clear that the perturbations that are of the 
order of the fundamental derivative stay in the neighbor- 
hood of the sonic point for a time interval of order E - “’ and 
extend over a distance of order E~‘~. 

Expanding A = A (2) about the throat of the nozzle 
where dA /d? = 0, we obtain 

-p) = F(S)*2 + O(Z). (18) 

Using Eqs. (lo)-( 13), (17), and (18) in the compatibility 
condition (8) along the characteristic dx/dt = I’+ a and 
equating the terms of various orders, we obtain 

a^v, +p,, 
at? =Oand$(?z+p,-$) =o. (19) 

Hence 

?,+b,=h(i)and^V,=b: -b,+g(?), (20) 
where h(i) and g(3) are arbitrary functiozs of 3. From Eq. 
(19) we see that the rate of change of I’, +G, along the 
downstream moving waves in a small neighborhood of the 
charactef;lstic dx/dt = V - a is zero. Also from Eq. ( 15 ) we 
see that V, + /;, is continuous across the shock waves in the 
flow. In our approximation, the functions h and g, which do 
not depend on 2, represent the influence of the flow away 
from the small neighborhood (of the order of E~‘~) of the 
throat on the local waves. Since we are interested in the be- 
havior of only the local waves that stay in this neighborhood 
for sufficiently long time (of the order of E- “2), we can set 
h(l) = 0, g( “t) = 0. It is now important to realize that the 
variation of the throat area may also produce reflected or 
cross waves, which, according to our approximation, are 
negligible, i.e., smaller than quantities of grder E. Hence in 
t&e small neighborhood considered, V, + b1 = 0 and 
v, =p: -p2. 

NowusingEqs. (ll), (20) and (10) weobtain 

v-u= -2&,+j@:) +0(2). (21) 
Using Eqs. (lo)-( 13), (17), (18) and (21) in thecompati- 
bility condition (8) along the characteristics 
dx/dt = V - a, we obtain 

2. (22) 

Equation (22) is the required equation that governs the 
propagation of the upstream moving waves in the neighbor- 
hood of the sonic point. It may be noted, as in the case of the 
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Kulikovskii and Slobodkina’4 equation for an ordinary gas, 
this equation governs both the steady transonic flow and the 
upstream moving disturbances. 

In tyms of a new set of variables ijZ Z, ‘i defined by 
,i? = (A/r)& Z = ( A/p2)R, and 7 = t, Eq. (22) becomes 

5(p+#E= +, (23) 

where k = ( l/A, ) (d ‘A /G2), , In the characteristic form, 
Eq. (23) can be written as 

(I) k #O, A=O, ?#O, 

(II) k #O, A#O, ^r=O, 

(III) k #O, AfO, P#O. 
(28) 

We discuss below the different steady flows arising out of the 
different combinations of signs of the parameters. It is im- 
portant to note that k < 0 corresponds to the maximum 
throat area and k > 0 to the minimum throat area. The direc- 
tion of the fluid motion is from left to right in all ensuing 
figures. The significance of the arrows in the figures will be 

dzi 
-z= 

--K Xalong$= -(fi+$‘), (241 - - explained in the next section. 
Case (I): Setting A = 0 in Eq. (25), we get 

with K = kp/2. The steady solutions are given by 

1 --2 
+ -yPOl > 

Go, k? . 
-g=2x* (25) 

where /r,, = ( A/$?)p,,. From Eq. ( 12) the shock velocity 
can be written as 

fis --=-= dt > 
. (26) 

We note here that k = 0 reduces Eq. (22) to 

aP 1 -3 -=‘-- ;z $T+yP ( 
= 0. 

at > 
(27) 

This equation governs the propagation of the waves in a 
tube of constant area of cross section. A study similar to that 
of Cramer and Kluwick” can be made for the understanding 
of these waves. 

We would like to justify the physical validity of the mod- 
el considered. As mentioned in the Introduction, the funda- 
mental derivative may vanish at a particular thermodynamic 
state in the single phase of a tluid with sufficiently high val- 
ues of the specific heats c, and cP . Hence there exists a small 
neighborhood of that statecontaining the point across which 
?; = 0. This neighborhood is such that it does not contain the 
critical point, but extends outside the two-phase region. In 
the case of a van der Waals’ model this situation pre- 
vails4*‘2*‘3 near the two-phase region. When a nozzle is con- 
nected to a reservoir with the gas at rest, the state of the fluid 
in the reservoir can be so adjusted that the state of the fluid 
obtained near the throat of the nozzle is in the above neigh- 
borhood. In the regizn near the throat, f; changes from point 
to point and both I’ and its rate of change may either be 
positive or negative. Hence to get a qualitative understand- 
ing of the behavior of the fluid, one must consider all the 
possible combinations of the signs of the parameters f and 
A. 

III. POSSIBLE STEADY FLOWS 
The approximate equation (25) governs the steady 

transonic flows near the throat. Hereafter we usep, forpe,, 
for convenience. For a nozzle with nonzero curvature k, the 
behavior of the steady ffow neaLthe sonic point for different 
values of the parameters A and r can be studied by consider- 
ing the following cases: 

dP0 _ kji; x 

dx- ( > 
- Ye 

2 po 
129) 

The integral curves pg = (k^r/2)x’ f C, with an arbi- 
trary constant C, represent the one-parameter family of 
steady flows. 

(a) k > 0 and ? > 0: The dominant term of the order of e 
in Eq. (13) shows that -i;(po,SO) remains positive every- 
where in the steady flow. Since the throat area is minimum, 
the behavior of the fluid is similar to the well-known polytro- 
pit gas flow through a nozzle. We may note that for a poly- 
tropic gas with constant specific heats (c, and c,,), F is 
(a/p) [(Y+ 1)/2], y= cP/c,‘ The intensive study of 
Rantrowitz2’ shows the existence of standing shock waves in 
the diverging or in the converging part of the nozzle. These 
results can be seen in the phase plane of (29), as shown by 
continuous lines in Fig, 1 (a). A recent numerical investiga- 
tion by Embid et aZ.,22 of the approximate equation modeling 
such flows, shows the existence of multiple steady states in a 
nozzle with fixed entry and exit conditions. It may be noted 
that the nonuniqueness in the position of the shock is due to 
the local approximation of the equations near the sonic point 
and in general the position of the shock can be defined 
uniquely.23 Various steady flows obtained from the phase 
plane have been d?cribed in the caption of the figure. 

(b) k < 0 and l? < 0: Since Eq. (29) remains unchanged, 
the nature of the singular point is same as in (a). The phase 
plane is represented in Fig. 1 (b) . We may note that i= re- 
mains negative everywhere in the steady flow and the throat 
area is maximum as noted by Thompson’ for such fluids. It is 
known that for a poiytropic gas flow through a nozzle with 
maximum throat area, the singular point is a center, near 
which no continuous flows are possible. But for the fluid 
under consideration, we notice the continuous supersonic, 
subsonic, and transonic flows near the singular point. We 
also see the existence of rarefaction shocks either in the con- 
verging or in the diverging portion of the nozzle to match the 
entry and the exit ccnditions of the nozzleA 

(c) kc0 and T>O (or) k>O and r<O: Both these 
conditions lead to a singular point that is a center for Eq. 
(29) and hence there does not exist any continuous flow. For 
an ordinary Auid this result is well knownz2 

Case (II): In this case Eq. (23) reduces to 

(30) 

and the integral curves are given by 5 pi + C = (k /A).$. 
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FIG. 1. (a) Flow through a nozzle with minimum throat area, A = 0 and 
P > 0. ABC and A202C2 are continuous subsonic and supersonic flows, re- 
spectively. A,O, C,, A ,O,C,, A,O, C,, and A90,C, are continuous flows hav- 
ing sonic transition. A,B,B,O,C,, A,B,B,O,C,, A,O,B,B,C,, and 
A,O,B,B,C are flows with a single compression shock. The positions the 
shocks are nonu$que. (b) Flow through a nozzle with maximum throat 
area. A = 0 and I ~0. The description is same as in Fig. 1 (a), except that 
the supersonic flows are replaced by subsonic ones and vice versa and a 
compression shock is replaced by a rarefaction shock. 

The characteristic velocity V-a is approximately equal to 
- iA&. The integral curves are plotted in Fig. 2 for 

k /A > 0; the same for k/A < 0 can be obtained by reflecting 
the curves about the x axis. It is seen that if the fluid starts 
initially with a supersonic (subsonic) speed, it always re- 
mains supersonic (subsonic). The nature of the flow being 

-4 

-5 t 

FIG. 2. The nozzle may be ofmaximum or minimum throat area and ? = 0. 
For a nozzle with minimum throat area and A > 0, all the flows are sub- 
sonic. For a nozzle with maximum throat area and A < 0, all the flows are 
supersonic and the direction of the arrows are reversed in this case. All these 
flows are stable. 

either supersonic or subsonic depends only on the sign of A. 
Since the Rankine-Hugoniot points are complex conjugates, 
there does not exist any flow with standing shock waves. It is 
important to notice that whether the throat area is a maxi- 
mum or minimum, continuous steady flows are always pos- 
sible. There is a single flow that becomes sonic at the throat, 
but continues to be in the same state (supersonic or sub- 
sonic). From Fig. 2, it is seen that some of the flows starting 
initially in a region with F < 0 (or F > 0) returns to the same 
region after remaining in the region r > 0 (or f; < 0) over a 
short distance. 

Case (III) : Equation (25) can be integrated to give the 
integral curves: 

ki?Z2 =$5; +g; + C, (31) 
with an arbitrary constant C giving a one-parameter family 
of steady flows near the throat. Figure 3 gives a plot of the 
integral curves for k = 1. 

For a steady flow we can easily derive the following: 

[Sl = [(E~~/~A~I [&13[ 1 +#o, +&J], (32) 
V-a= -E~(IVA)~A(~~+@), (33) 

and 

r = EP( 1 +p,, + O(8). (34) 
We note that (33) can be written as 

[S] =+($)*[pl’[(v-a),- (V-a).]. 

Hence we see that the shock stability condition (neces- 
sary for a discontinuity to be an admissible shock), 

------- 
Supersonic ~cauw) 

fco 

Subronic kas~lh)) 

\\I I’ Sonic line 
PO--2 

f>O 

StJwrsonic (case w 

FIG. 3. Case III(a): A nozzle with minimum throat area k( > O), F > 0 and 
A> 0. Arrows indicate the direction of motion of the perturbations. 
L303S3S4S5R3 and L,O&I&R, are flows with two sonic shocks. (OJ,, 
Or&-rarefaction and S,S,, &&--compression). W’&S~R,~ 
/3,O,S,.S,R,, & &R,$, ,R,, and~~,&O,R, are flows with a single stand- 
ing shock (S&-compression shock in the diverging section of the nozzle, 
the position of the shock is nonunique). L,O&&R, and &&&J?& are 
flows with a single sonic discontinuity (compression) . Case III (b) : A noz- 
zle with maximum throat area (k < 0), I? < 0, and A < 0. Perturbations 
propagate in the opposite direction given by the arrows and the steady flow 
is from right to left. R&S&O,L, and R-J3gZB30ZLZ are flows with two 
right sonic shocks. R,O#, is a transonic flow, it cannot extend until the exit. 
Closed loops do not represent any flow and no shock solutions are possible. 
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(V- a),>O>( v- a),, (35) 
is sufficient to guarantee that the entropy does not decrease 
across shocks. However, Eq. (35) is a stronger condition in 
the sense that [S ] may be greater than zero even though Eq. 
(35) is not satisfied. While dealing with the individual flows 
through a nozzle we shall see later that (as in Cramer and 
Kluwick”) theequalities on bot.h the sides in (35) can never 
be satisfied simultaneously. Of course one of the equalities 
either on the left or right is possibly dependent on the sign of 
A. If the sign of A is positive, the left equality is possible, 
while for negative A the right equality is possible. 

As pointed out earlier, there are many possible combi- 
nations of the signs of the parameters. We shall describe the 
behavior of the flows in detail for a single combination and 
the remaining combinations can be studied in the same way. 

A.Case(a):k>O,A>O,and^r>O 

In this case we have a nozzle with a minimum area at the 
throat. The fundamental derivative and its rate of change 
along the isentrope at the critical point are positive, We can 
study the steady flows with the help of the phase plane 
shown in Fig. 3. 

We may note that an increase in the value ofp, indicates 
compression and a decrease in its value indicates expansion, 
Also a sudden increase in 30 corresponds to a compression 
shock and a sudden decrease to a rarefaction (expansion) 
shock. 

We see that there are two singular points of Eq. (25), 
(0,O) and (0, - 2). In Fig. 3 the singular point (0,O) is a 
saddle point and other point (0, - 2) is a center. So, unlike 
in the flow of an ordinary gas where either a single saddle 
point singularity or a center is observed, we notice here the 
occurrence of both types of singularities. A steady flow can 
attain a sonic state either when it meets the linep, = 0 or the 
line/Y, = - 2. The appearance of the second sonic state can 
be attributed to the change in the sign of the fundamental 
derivative F across the lineji = - 1. The multivalued parts 
of the integral curves in the phase plane cannot represent a 
real flow and hence should be replaced by shock discontinui- 
ties. The steady shocks must satisfy the Rankine-Hugoniot 
condition 

Pot + lsOl + : (PI% + &hPo, + & ) = 0 
and the stability condition (35). 

(36) 

We shall use the following definitions in classifying the 
different discontinuities. If for a discontinuity both the in- 
equalities in Eq. (35) [(u-~),>O>(U--aa)] are satis- 
fied, then the discontinuity is a shock. If for a discontinuity 
the left or right equality in Eq, (35) holds 
[(u-al,=O>(u-a). or (u-a),>O= (u-a),] 
then the discontinuity is a left sonic shock or a right sonic 
shock, If both the equality signs hold 
[(u---),=0= (ti-u),],thenthediscontinuityisadou- 
ble sonic shock. ’ ’ 

Equation (36) represents an elIipse in the (po,,iYo,) 
plane as shown in Fig. 4. From the figure we see that steady 
shocks or sonic shocks of either kind are possible only if 
- 3<jiol<l and - 3<&,,<1. The condition (35) shows 

FIG. 4. An ellipse connecting all the Rankine-Hugoniot points and indi- 
cates thepossiblepositionsoftheentropy increasingshocksforcaseII1 (a). 

that the value ofizi,, must satisfy - 2<,Zol<0 and for each 
such value of For, there are two values of PO,, one in 
- 3<por< - 2 and the other in O(po, < I. Hence for a given 

state PO,, there is a nonuniqueness in the value of &, for a 
shock or a sonic shock of either kind. In order to resolve the 
nonuniqueness in the determination of the state to the right 
of a discontinuity, we need to know the boundary conditions 
at the exit and entrance of the nozzle. We consult Fig. 3, 
where the integral curves are represented. 

It is interesting to note (see also Fig. 3) that only a 
compression sonic shock connects an upstream state in F < 0 
to a downstream state in F > 0 and only an expansion sonic 
shock connects an upstream state with f; > 0 to a down- 
stream state with 1; < 0. It is also seen that only a compres- 
sion sonic shock or an expansion sonic shock is possible, if 
the fluid remains in the same state with either ‘I; > 0 or F < 0. 

Consider a state upstream represented by a point L, on 
an integral curve along which the flow continues until its 
slope becomes infinite at the point 03. After 0, the flow 
cannot be continued continuously, since the integral curve 
folds itself, representing a multivalued solution. For discon- 
tinuity,p,, must satisfy - 2(,ZoL\<0 and hence the only pos- 
sible value of& is zero at U3. For&, = 0, the possible values 
ofp,, are 0 and - 3, of which 0 must be omitted. Thus the 
flow jumps to S, (with the same value of js) through a left 
sonic shock [ (U - a), = 01. It is important to note that S, 
lies on the same integral curve, since Eq. (36) demands that 
the value of e in Eq. (3 1) should be the same. From S, the 
flow is continuous up to S,, then jumps to S, through a left 
sonic shock and reaches the exit of the nozzle as a subsonic 
flow again, 

Thus we note that given a state upstream say at Lx, the 
flow through the nozzle is uniquely determined. We may 
note here that across the discontinuity O,S, the density of 
the fluid decreases discontinuously while across S,S, the 
density increases discontinuously, It is interesting to note 
that r changes its sign from positive to negative across Q,S, 
and negative to positive across S,S,. Analogous to this case, 

432 Phys. Fluids A, Vol. 3, No. 3, March 1991 D. Chandrasekar and P. Prasad 432 

Downloaded 22 Nov 2010 to 203.200.35.11. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



Cramer and Kluwick” noticed the change of the sign of F 
across a shock wave. In this flow the fluid speed remains 
subsonic both at the entrance and the exit of the nozzle. 

Consider another flow starting at L, in the phase plane, 
a point near the entrance, such that the integral curve passes 
through OZ. The flow starts with a subsonic velocity and is 
accelerated to the sonic speed at 0,. From 0, there are many 
possibilities: in the first possibility it has a continuous sonic 
transition and continues to be supersonic up to & finally 
reaching R, through the jump from & to &; in the second 
one the flow may jump through an expansion sonic shock 
from 0, to &, then continues as a subsonic flow till &, and 
finally reaches the exit of the nozzle at R, through a com- 
pression sonic shock & &. In the other possibilities the flow 
continues with a continuous sonic transition at 0, but does 
not follow the curve up to the second sonic point &, instead 
it jumps from an intermediate state at S, to that at S, and 
finally reaches the exit at R,. The jump from S, to S, is not a 
sonic shock. As we remarked in case I (a) there is a nonuni- 
queness in the position of the compression shock (SJ,) 
when we use the approximate Equation (25) in the neigh- 
borhood of the throat. Had we used the original equations, 
we might have fixed the position of the shock uniquely for 
the given values of the density (or pressure) at the exit and 
the entrance as in the case of a polytropic gas.23 

From the phase plane in Fig. 3, we see that infinity of 
purely subsonic flows are possible. An example of such a 
flow is L,O,R,. In the case of a polytropic gas through a 
nozzle with minimum area at the throat, there exist four 
distinct continuous flows that extend till the exit of the noz- 
zle.24 Analogous to these we find near the saddle point singu- 
larity 0, four distinct flows: L,O,R,, L,O, fi2, fi,O,R,, and 
/3,0Z &. Here, L,O,R, remains subsonic, except at the sonic 
point 0,. Along L,O, &, the flow’changes from subsonic to 
supersonic at O,, but this flow cannot be continued continu- 
ously till the exit of the nozzle as discussed above. p1 O,R, is a 
flow that starts at a finite distance in the nozzle with a super- 
sonic velocity, takes continuous sonic transition at 0, and 
reaches the exit of the nozzle as a subsonic flow. Here 
fl,02fi2 is a purely subsonic flow that starts at a finite dis- 
tance in the nozzle and ends at a finite distance as shown in 
the Fig. 3. We note that though the value of the fundamental 
derivative F changes from point to point in the fluid, when r 
is positive everywhere, the fluid accelerates in the diverging 
part of the nozzle, and decelerates in the converging part of 
the nozzle, as in the case of a polytropic gas. 

The family of integral curves with the parameter value 
C < 0 behave in a peculiar way. For each C there are two 
distinct branches of the integral curve: one remains com- 
pletely in the subsonic region (p > 0) representing a contin- 
uous flow such as L,O,R, and the second is a closed loop 
around the second sonic point (0, - 2). The closed loop, 
being multivalued, cannot represent a flow. However, parts 
of the upper or lower portions of the loop represent contin- 
uous flows originating and terminating at finite distances, 
and can be joined to the upper branch of the corresponding 
integral curves (with the same value of C) through shocks or 
sonic discontinuities; &, ,8, p ,. 0, ,R, represents a flow with 
a compression shock, & p ,* & &R, represents a flow with a 

left sonic shock, etc. 
Let us consider a flow starting at L, with subsonic veloc- 

ity and, let the exit of the nozzle be at R,. There exists several 
possible ways of connecting the two boundary conditions: 
(i) L2°2p3 @2&R29 (ii) L202P2P5R2, and (iii) 
L202S,S2R2. We have already described these flows, and a 
description of this is found in the caption of the figure. This 
result shows the existence of multiple steady states of tran- 
sonic flows in the nozzle, as observed by Embid et ai.** for a 
perfect gas model. Also, this study clearly explains the exis- 
tence of expansion shocks in the transonic region. 

B. Case (b): k-c 0, f.c 0, and A < 0 

Since the product k? is positive, the phase plane is the 
same as in case (a). We only note here that as 2 is related to Ji 
by j2 = (A/f;*)% the exit of the nozzle (which is on the left) 
corresponds to X = - 03 in the figure and the entry is at 
2 = + 03 in the figure. Further, due to relation (33), the 
supersonic regions are Ji, > 0 and - 00 <jT, < - 2 and the 
subsonic region is the strip - 2 <&, < 0. From Fig. 4, by 
making the corresponding changes in the signs, we see that 
steady shocks are possible only if either - 3<Por < - 2 in 
which case, - 2+,,(0 or O<~ol(l, which requires 
- 2+,,<0. These shocks satisfy the stability condition 
(35). 

We can describe the individual flows as in case (a). We 
note here that all shocks in the steady flows are the right 
sonic shocks (( I’-- a), = 0). For example R,S,S4S303L3 
contains the sonic shocks S,S, (expansion) and S,O, (com- 
pression). This analysis clearly shows the existence of con- 
tinuous and discontinuous steady flows in a nozzle with 
maximum throat area. 

C. Case (c): k> 0, f-co, and A > 0 
In this case we use @ = - ( A/^r )b, 12 = (A/f;*)& and 

7 = ;. Then the equations corresponding to the Eqs. ( 3 1 ), 
(33), and (34) become 

ki%‘=:p; -$J +C, (37) 

Vo-uo= -2@/A)*A( -po+#$), (38) 
and 

F= -EF(l -p,, +o(I?). (39) 
The integral curves given by Eq. (37) are plotted in Fig. 

5. The sonic points are (0,2) and (0,O). As in case (a) we can 
describe various steady flows. We mention a few interesting 
flows in the caption of the figure. 

D. Case (d): k< 0, ?> 0, and A < 0 
In this case the phase plane is the same as that in the case 

(c), except that the direction of the flow of the fluid is from 
right to left. We mention the corresponding changes of the 
supersonic and subsonic regions in the figure. We describe a 
few interesting flows in the caption of the figure. 

We have four m?re possible combinations of the signs of 
the parameters k, I, and&, leading to different tyEs of 
flows.T,heyare (e) k<O, RO,andA>O; (f) k>O, l?>O, 

433 Phys. Fluids A, Vol. 3, No. 3, March 1991 D. Chandrasekar and P. Prasad 433 

Downloaded 22 Nov 2010 to 203.200.35.11. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



Subsonic (case(c) v//L Supersonic (case(d)) 

wy\d- _ E KS&@&cm Cd)) 

Subsonic (case(c)) 

-.. 
i=>o si 

Supersonic (case(d)) 

FIG. 5. Case III (c): k>O, P ~0, and A > 0. L,S,S,O,S,R, and 
L,O.,O$&R, are flows with two sonic discontinuities one at the converg- 
ing part (at the throat) and another at the diverging section of the nozzle. 
L,O,S&R, is a f low with a single compression sonic discontinuity. 
S6S$,,,0&S5R~ and S&,Sf,,02S7SKRZ are flows with a shock and a sonic 
discontinuity or two shocks, respectively. Case III (d): k  < 0, F > 0 and 
A < 0. The steady flow is from right to left and the perturbations propagate 
in the opposite directions indicated by the arrow directions. 
R,S,O&S,L,, R,SsS,01L2 are flows with two right sonic shocks and 
&O&is a transonic flow terminating before the exit of the nozzle. There 
are no shock solutions and the closed loops do not represent any flow. 

andA<O; (g) k<O,p>O,andA>O;and(h) k>O,?<O, 
and A ~0. The phase planes for the cases (e) and (f) are 
depicted in Fig. 6 and those of cases (g) and (h) are in Fig. 7, 
For the economy of space, we describe the flows in the cap- 
tion of the figures. 

The above study clearly shows the existence of transonic 
flows in a nozzle irrespective of the nozzle having a maxi- 

----- 
Supersonic (cosete)) 

-------- 
Subsonic Raw(t)) 

Suporsmic (cauff)) 

FIG. 6. Case III (e) k<O, ^r <O and A> 0. L;,O ,S,S,S,R, and 
L,S.+!$S&S5R, are Rows with two left sonic shocks; S$a, 5zS., are com- 
pressions and .S&, SJ, are rarefactions. L.,O,S,J, ,R, and L,O&S, R, 
are flows, respectively, with a^single expansion shock and an expansion son- 
ic shock. Case III (f) k  > 0, I’ > 0, and A < 0. The steady flow is from right 
to left and the perturbations propagate in the opposite direction indicated 
by the arrows. There are no shock solutions possible and the closed loops do 
not represent any flow. R,S,S&Q2L, and R&S&S.&L, are Rows with 
right sonic shock, S,S,, S&S, are compression discontinuities and S,O,, S,S, 
are expansion discontinuities. 

fPi\ 5uc%rsmic~caso(h)~ 

---EL!“-- 
Subsonk kasath)) 

” II ! 

IQ!? 

Sonic h* 
2 1 I sa 1% 

FIG. 7. Case III (g) k<O, ?zO and A> 0. L,O,S,S,S,R, and 
L,S$,,O,S,SaR, are flows with left sonic shocks. SJIOr O,S, are compres- 
sion discontinuities and S,S,, S,Sa are expansion discontinuities. 
L,O,S, ,SIZRZ, contains S, ,Stz, an expansion shock. Parts of the closed 
loops c_an also represent discontinuous solutions as shown. Case III (h) 
k  > 0, l- < 0, and A < 0. The steady flow is from right to left along the inte- 
gral curves. R2S2S,S302L2 and R,S&O,S,&,L, are flows with a right son- 
ic shock. No shock solutions are possible. 

mum area or a minimum area at the throat. The above dis- 
cussion of ail possible flows also shows that a flow starting 
with a supersonic (subsonic) velocity at the entrance of the 
nozzle reaches the exit of the nozzle only with a supersonic 
(subsonic) velocity, either continuously orjumping through 
one or more discontinuities. This result is in contrast with 
the results for an ordinary gas. 

IV. LOCAL N ONLiNEAR STABILITY OF STEADY FLOWS 
We can study nonlinear propagation, growth, and decay 

of weak pulses on the steady flows with the help of the Eq. 
(23 ), The characteristic ordinary differential equations 
(24) of the partial differential equation (23)) give the same 
rate of change @d&Z as that given by the steady equation 
(25) and hence evolution of perturbations can also be stud- 
ied in the phase plane of Eq, (25 ) . Since we are considering 
perturbations bounded in space, at any instant, a perturba- 
tion of our steady solution can be represented by a closed 
curve as shown in Fig. 8. In a perturbation, the space rate of 
change ofj? as we move with the wave velocity - (p + 4 p’) 
is KX!/ (p t $ p”), which is also the space rate of change ofp 
as we move along the integral curves of the characteristic 
equations. Therefore, during the propagation, different 
points of the boundary curve of the perturbation will move 
along the integral curves of Eq. (25). 

Lets be thk area bounded by an arbitrary closed curve in 
the (X,p) plane whose points move in accordance with Eq. 
(24). As the divergence of the vector field given by the right- 
hand side of Eq. (24) is zero, i.e., 

(40) 

it follows that during its motion the total area s remains 
constant and is equal to its initial value s,. Thus we get the 
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along the characteristics give by 

FIG. 8. Stability of the fluid flow through a nozzle with minimum throat 
area. History of the perturbation of the steady flows for case III (a). This 
clearly demonstrates the existence of the shocks and the local stability of the 
flows with shocks. 

important pulse area rule*’ that the area occupied by a dis- 
turbance in the (23) plane remains constant as the distur- 
bance propagates. Following Kantrowitz*’ we can easily see 
that the pulse area is conserved even if a weak shock appears 
in the pulse. “*25 Using the constancy of the pulse area, we 

As pointed out in the Introduction, Eq. (23) can be 

can get a qualitative idea of the history of the pulse in the 

derived from a hyberbolic conservation law, 

phase plane. But since Eq. (23) is nonlinear, in order to get 
the complete history of the pulses, we have to resort to the 
numerical solution of Eq. (23). 

h 
+ z+$ - +pz+bp3 [ ( )I =.-FE 

with a nonconvex flux function having an inhomogeneous 
source term. We use the singularity separating method,” a 
numerical scheme especially designed for such scaler conser- 
vation laws with a modification to incorporate the source 
term on the right. 

Equation (23) can be rewritten, by using the steady so- 
lution Eq. (25)) as 

46 -;-- (fso+/s,, ++(~o+p,,2 2 at ( > 

( 
1 -7. = P90+PI+~p, > 

@J sx. (41) 

Following the pulse area method of Kantrowitz,*’ we can 
derive an equation for the slope E = $,/G’Z of the boundary 
of the pulse along an integral curve of Eq. (25). In the char- 
acteristic form this equation is 

de _ 
;=P’ 

-t 

[(fgy+(L$J)(l +Fo++%) 
-Ml +p,+p,)($$)+e?l +p,+p,)] (42) 
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6x z=- ((Po+P,, ++(po+pI)*). 
We select a steady flow given by p, and impose a pertur- 

bation pi (Z,O) on it. We study its evolution by numerically 
integrating Eqs. (41). The growth of the perturbation with 
time means that the steady-state solution is unstable. On the 
other hand, the decay of the solution does not imply stability, 
since the cause of instability need not be connected with the 
behavior of the flow near the cqitical point. Nevertheless we 
shall call the solution to be stable in this case. The time of the 
formation of a discontinuity and its subsequent position can 
be obtained by solving2’ Eq. (42) and Eq. (26)) respectively. 
The discontinuity must satisfy the stability conditions 

(43) 

As we have seen in the case of the steady solution, the condi- 
tion (43) is sufficient to guarantee the entropy increase 
across shocks. 

Case I(a): The behavior of these steady flows are well 
known since it corresponds to an ordinary gas. Kantrowitz*’ 

We shall now study the evolution of the perturbations 
on each of the steady flows discussed in Sec. III. The direc- 
tion of the arrow on a steady flow indicates the direction of 

brought out many interesting features of these flows by his 

propagation of a perturbation. 

pulse area method.14 Recently, Liuz6 has rigorously proved 
that a flow with a standing shock in the diverging section of 
the nozzle is stable while the steady shock in the converging 
section is unstable to perturbations. Successive positions of 
the pulse on a steady flow have been shown by dotted lines in 
Fig. l(a). 

Case I(b) : This case corresponds to the flow of a nega- 
tive r fluid through a nozzle of maximum throat area. 
Successive positions of a few pulses have been shown by dot- 
ted lines in Fig. 1 (b) . We see that the continuous accelera- 
tion of the fluid through the speed of sound, is neutrally 
stable to the compression and expansion pulses, since these 
pulses finally attain a stationary triangular shape at the 
throat. But for an ordinary fluid this flow is known to be 
stable, since the pulses move away from the throat without 
amplification. The continuous deceleration of the fluid 
through the speed of sound is stable, unlike the neutral sta- 
bility of such flows in an ordinary gas. We notice that the 
flows with a standing rarefaction shock in the converging 
part of the nozzle is stable. 

Case II: We get an equation for the unsteady perturba- 
tion in the form 

ah -_ 
a? ( > 

$@f !g= +. (4.4) 

Since this equation is also nonlinear, we solve Eq. (44) nu- 
merically. Irrespective of the fluid being in a supersonic 
(A < 0) or subsonic (A > 0) state, the amplitude of the per- 
turbation created at any part of the flow decays while the 
pulse spreads over larger distance. Hence all the flows are 
stable, irrespective of the shape of the nozzle (k < 0 or k > 0, 
see Fig. 2). 
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Case III (a) : A large amount of computation for differ- 
ent types of perturbations on different parts of the steady 
flows was done to decide the local stability of the flows. We 
sketch the successive positions of a few perturbations in Figs. 
8,9, 10, and il. 

L,O,R,: This subsonic flow is stable to all types of per- 
turbations (expansion, compression, or with both phases). 
Any perturbation to the flow moves upstream and disap- 
pears in the flow field (see Figs. 8 and 9). 

L20J3$35R,: The continuously accelerating transonic 
ff ow L20& through the speed of sound is stable to the per- 
turbations. A perturbation either in L202 or in O&, moves 
away from 0, with its amplitude decaying, signifying the 
stability of the sonic state in the flow. Further, a perturbation 
of O&I2 catches up with the standing right sonic shock &&, 
resulting in a comphcated interaction; the later history of 
this pulse is not known from our computations. Also any 
perturbation of &R2 catches up with the sonic shock &&, 
Hence the final stability of the Row can be determined only 
after studying the stability of the right sonic shock (see Figs. 
8 and 9). We note that an expansion or a compression pulse 
on&R, attains a triangular form with the tail or the head of 
the wave becoming a shock, respectively. A pulse with ex- 
pansion and compression phases becomes an N wave, either 
with a single shock connecting both phases if the pulse is 
headed by an expansion or with leading and trailing shocks if 
headed by a compression phase. 

L,0&S4S5R,: From Fig, 8, we see that the complete 
stability of the flow will be known only when the complicat- 
ed interactions are studied in detail, since a perturbation of 
R& and S,S, move towards the sonic shocks S,S, and 03S3, 
respectively. 

j?,O,R,: As it was noted earlier, this flow is the only 
continuous flow, starting at a finite distance in the nozzle, 
and decelerating through the speed of sound, A compression 
wave in the supersonic part /3,02, moves towards the sonic 
point 0, and gets trapped there with the leading part estab- 

FIG. 9. History of different types of perturbations of the various possible 
steady flows in a nozzle with a minimum area at the throat. 

-1.6 
-2.0 -1.6 -1.2 -0.8 -0.4 0.4 0.8 1.2 1.6 2.0 
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‘i=j 1:; \, 
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FIG. IO. The fl~w&O,R~ is neutrally stable to perturbations. In a perturba- 
tion with both positive and negative values, the excess of the positive pertur- 
bation attains a triangular form with a compression shock at the trailing end 
of the wave. The amplitude of a negative perturbation of L&J2 decays. 

lishing the flow L,O, and the trailing end becoming a com- 
pression shock. An expansion wave also attains a triangular 
form with its leading edge becoming a shock (compression). 
It is interesting to note that even if a part of the wave has 
T < 0, this does not show any significant effect on the propa- 
gation of the perturbation. A wave containing both expan- 
sion and compression phases shows an interesting behavior 
(Figs. 10 and 1 I ) + If the wave is headed by a compression 
phase, during propagation, both the compression and the 
expansion phases tend to cancel each other. The excess of the 
compression phase attains a triangular form, establishing 

p yz.0 

- 1.6 
'72 

1.2 

11-1-....1.- 

0.8 
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.4 0.8 1.2 1.6 2.0 

FIG. 11. A perturbation with positive and negative values, becomes an N 
wave near the sonic point 0,. A positive perturbation of I& moves away 
from the throat and its amplitude decays. 
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partly (up to 0,) the flow L,O, ahead of the shock. A pulse 
headed by an expansion phase results in an N wave with 
shocks at the head and the tail of the wave and the pulse gets 
trapped at 0, where it decays. Hence we observe that as in 
the case of an ordinary fluid, the continuous deceleration 
through speed of sound is neutrally stable to the perturba- 
tions. I5 

L,O,SJ,R,: Any perturbation of L,O, moves away 
from the sonic point and decays. A perturbation of O,S, 
catches up with the shock and also perturbations of S,R, 
move towards S,S,. Hence to know the further history of the 
flow, we need to study the nonlinear interactions. However, 
@ice the area of the perturbations remains constant (also 
r > 0 and the nozzle has minimum throat area), we expect 
this shock solution to be stable. 

Case III (b): The history of the pulses imposed on dif- 
ferent parts of the flows has been plotted in Figs. 12, 13 (a), 
and 13 (b). We note that the continuous supersonic flow 
R ,O,L, is stable to any perturbation. The flow &O,L,, rep- 
resenting the continuous acceleration of the fluid through 
the speed of sound, is neutrally stable. From the above fig- 
ures, it is clear that any perturbation of &02 moves toward 
O,, with the expansion phases of the wave becoming shocks 
and the pulse finally gets trapped at 0,. Also a perturbation 
of O,L, moves towards 0,. A pulse with both phases be- 
comes an N wave and its description can be made as in case 
III (a). Hence we notice that this continuous acceleration of 
the fluid through the speed of sound is neutrally stable. 

FIG. 12. Stability of the Ruid flow through a nozzle with maximum throat 
area. History of the perturbations of possible steady flows for case III (b). 
The continuous acceleration of the fluid through the speed of sound is neu- 
trally stable. 
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FIG. 13. (a) Both positive and negative perturbations of &OzLz attain 
triangular form. Perturbations of OS, move away from the sonic point and 
its amplitude decays. (b) A positive perturbation on 02/j2 attains a triangu- 
lar form and catches up with main flow 0,R2. 

The flow P,O,R, representing the deceleration of the 
fluid through the speed of sound is stable, since the perturba- 
tions move away from the sonic point, disappearing from the 
flow field. We can also describe the stability of the flows with 
the sonic shocks as in case III (a). 

Finally, we notice that even though the negative values 
of ‘; changes from point to point in the fluid, the stability of 
the flow is not very different from that of a fluid with con- 
stant negative r. We can easily compare the properties of the 
flow in this case to that in case I (b). Since the negative i= 
behavior dominates over the positive i? behavior, any pertur- 
bation with both positive and negative i= does not show a 
behavior significantly different from that of a pulse with neg- 
ative ri. 

We also carried out numerical computations for the evo- 
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lution of the perturbations on the various steady flows 
shown in Figs. $6, and 7. We do not go into any further 
detailed description. However, we only point out that even 
though i= changes sign, the stability results are similar to 
those with constant ‘f with positive or negative sign accord- 
ing to whether the saddle point is in the region with positive 
or negative sign of T;. 

V. CONCLUSIONS 
The steady transonic flow of a real fluid through a noz- 

zle and its local nonlinear stability to weak pulses has been 
examined. The specific heat of the fluid has been taken to be 
large enough to result in regions of both positive and nega- 
tive nonlinearity, in the single phase of the fluid. We assume 
that the fundamental derivative i= of the fluid vanishes at a 
state close to the sonic state and hence remains small at the 
sonic point. The behavior of the flow near the throat (maxi- 
mum or minimum area), based on a local approximation 
near the sonic point has been studied for various possible 
choices of the signs of the fundamental derivative and its rate 
of change along the isentrope through the sonic point. 

The behavior of the steady transonic flows is interest- 
ingly different from those of a polytropic gas with constant 
positive F. Continuous transonic flows have been found to 
exist through nozzles of minimum as well as maximum 
throat area. Unlike in a fluid with the same sign of i= (posi- 
tive or negative), when F changes sign, there are two sonic 
points, one at the throat and another close to the throat of the 
nozzle. It is found that continuous transonic flows are p^ossi- 
ble only through one of the sonic points, at which klY re- 
mains positive. Sonic discontinuities (expansion or com- 
pression) are found to connect the upstream and the 
downstream states in regions with different signs of’T. Also, 
expansion (compression) shocks exist in a nozzle with maxi- 
mum (minimum) throat area. Unlike in the case of a regular 
fluid or a fluid with i? < 0, if the flow starts with a subsonic 
(supersonic) velocity at the entrance of the nozzle, it can 
reach the exit only with subsonic (supersonic) velocity, ex- 
cept in the case when the exit is not too far away from the 
throat. This flow may be a continuous one or containing one 
or more sonic discontinuities or shocks. But there is a single 
continuous flow that may start (end) at a sufficiently short 
distance from the throat of the nozzle with minimum (maxi- 
mum) throat area that results in a supersonic (or subsonic) 
velocity at the exit different from the initial subsonic (or 
supersonic) velocity at the entrance. 

Computations of the evolution of various possible per- 
turbations of the steady flows have been made to study the 
local stability of the flows for weak pulses. It is known for a 
regular fluid that the continuous acceleration of the Ruid 
through the speed of sound is stable whereas the continuous 
deceleration of the fluid through the speed of sound is neu- 
trally stable. For a flow with f; < 0 we find that the contin- 

uous acceleration is neutrally stable whereas the continuous 
deceleration is stable. The stability of the steady flows main- 
ly depends on the particular combination of the parameters 
r, A, and k. For a flow starting with positive values off: and 
with minimum throat area, we find that the nature of stabil- 
ity of a continuous flow near the saddle point singularity 
agrees with that of a regular fluid flow. Also for a flow 
through maximum throat area and with f; negative, the sta- 
bility of the continuous flows does not differ from that of a 
fluid flow with constant F < 0. The various flows containing 
sonic discontinuities in both cases may be stable, but a pre- 
cise statement about the stability can be made only if the 
nonlinear interactions of the waves with the sonic shocks are 
studied in detail. The perturbationsquiteoften get trapped at 
the throat and attain a triangular shape with a shock either at 
the trailing end or at the leading end. Some of the perturba- 
tions with positive and negative area tend to become N 
waves. 

The authors sincerely thank the referees whose valuable 
comments led to significant improvement of the paper. 
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