## THE CLASS-NUMBER OF REAL QUADRATIC FIELDS

By N. C. Ankeny, E. Artin, and S. Chowla

Communicated by Marston Morse, June 4, 1951

Let h=h(d) denote the class-number of the real quadratic field F=R  $(\sqrt{d})$  of fundamental discriminant d; let  $\epsilon=\frac{t+u\sqrt{d}}{2}>1$  be its fundamental unit. Further let  $\chi(\nu)$  denote the character belonging to F, and d=pm where p is an odd prime, and m is an integer. Further [x] denotes the greatest integer contained in x, and  $\left(\frac{n}{p}\right)$  is Legendre's symbol of quadratic residuacity.

Then we have the following results.

THEOREM 1. If p > 3, m > 1,

$$-2h\frac{u}{t} \equiv \sum_{0 \le v \le d} \frac{\chi(v)}{mv} \left[ \frac{v}{p} \right] \pmod{p}.$$

In the case p = 3 there is an additional factor (1 + m) on the left side of this equation.

A special case of Theorem 4 is

THEOREM 2. If  $d = p \equiv 5(8)$ , we have

$$+ 4\frac{u}{t}h \equiv -\sum_{1}^{p/4} \frac{1}{n} \left(\frac{n}{p}\right) \pmod{p}.$$

Write

$$\chi(\nu) = \left(\frac{\nu}{\rho}\right) X(\nu),$$

so that X(v) is a real primitive character (mod m). Then we have Theorem 3. If

$$\sum_{n=1}^{\infty} \frac{C_n x^n}{n!} = \frac{\sum_{t=1}^{m} X(t) e^{tx}}{e^{mx} - 1}.$$

Then if p > m,  $p \neq 3$ ,

$$-2h_{\overline{t}}^{\underline{u}} \equiv C_{(p-3)/2} \pmod{p}.$$

Finally let A denote the product of all the quadratic residues of p lying between 0 and p, B the product of the quadratic non-residues of p lying between 0 and p. Then

THEOREM 4. If  $d = p \equiv 1(4)$ , then

$$2h\frac{u}{t} \equiv \frac{A+B}{p} \pmod{p}.$$