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Generalized pencils of rays in statistical wave optics
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Abstract, The recently introduced generalized pencil of Sudarshan which gives an
exact ray picture of wave optics is analysed in some situations of interest to wave
optics. A relationship between ray dispersion and statistical inhomogeneity of the
field is obtained. A paraxial approximation which preserves the rectilinear propaga-
tion character of the generalized pencils is presented. Under this approximation the
pencils can be computed directly from the field conditions on a plane, without the
necessity to compute the cross-spectral density function in the entire space as an inter-
mediate quantity. The paraxial results are illustrated with examples. The pencils
are shown to exhibit an interesting scaling behaviour in the far-zone. This scaling
leads to a natural generalization of the Fraunhofer range criterion and of the classical
van Cittert-Zernike theorem to planar sources of arbitrary state of coherence. The
recently derived results of radiometry with partially coherent sources are shown to
be simple consequences of this scaling.

Keywords. Generalized pencils; paraxial approximation; partial coherence; radio-
metry; diffraction ; interference; wave optics.

1. Introduction

Radiative transfer problems of interest in astrophysics have been conventionally
treated by a phenomenological theory (Chandrasekhar 1950) which is built on the
notion of pencils of rays. The strength of these pencils as a function of position and
direction has been termed the specific intensity. In free space these pencils are
assumed to travel in straight lines, and hence the specific intensity is constant along
straight lines. In a scattering medium the specific intensity is assumed to obey a
transport equation whose structure is similar to Boltzmann’s transport equation.
The implications of this phenomenological radiative transfer theory have been studied
in great detail (Chandrasekhar 1950). , :

Since Maxwell’s theory is the fundamental theory of electromagnetic phenomena
at the classical level, to the extent that the phenomenological radiative transfer theory
and the notion of pencils of rays are valid, they should be derivable as an approxi-
mation from Maxwell electrodynamics. We note that according to the second
fundamental theorem of quantum optics due to Sudarshan (1969, 1979b), at the level
of the two-point correlation function classical electrodynamics and quantum electro-
dynamics lead to indistinguishable results. Since our interest here is in two-point
correlation functions, in view of the above mentioned theorem we may formally
restrict our treatment to the classical level.
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Following the pioneering work of Wolf (1976), there have been several attempts by
Sudarshan (1979b, 1980, 1981) and others (Zubairy and Wolf 1977; Fante 1981;
Zubairy 1981) to clarify the relationship between the phenomenological radiative
transfer theory and electrodynamics. Clearly, the basic problem is to identify a
linear functional of the two-point correlation function of the electromagnetic field
which possesses all or almost all the properties attributed to the phenomenological
pencils. In the phenomenological theory, the pencils due to different frequencies add
without interference. Since absence of interference between different frequency
components in the two-point correlation function corresponds to time stationarity
(Born and Wolf 1970), it becomes clear that what is to be looked for is a linear
functional of the cross-spectral density function of a time stationary ensemble. Two
such functionals have been studied by Wolf and Sudarshan respectively. Each of
these functionals, for a field of arbitrary state of coherence, satisfies only some of the
properties of the phenomenological pencils. For instance, the linear functional
studied by Sudarshan is not positive definite whereas the phenomenological specific
intensity is. Now it is generally believed that there exists no linear functional of the
cross-spectral density function which satisfies all the properties of the phenomeno-
logical pencils.

Sudarshan (197%a) has shown that by generalizing the notion of pencils of rays to
include both pradipa rays (pencils with positive strength) and tamasic rays(pencils with
negative strength), time stationary free space wave fields of arbitrary state of coherence
can be described in an exact way as collection of generalized pencils o f rays travelling
in straight lines, thus obtaining an exact ray picture of wave optics. He has inter-
preted the well-known far-field solutions of typical diffraction and interference con-
figurations in terms of these generalized pencils. However, this powerful geometric
picture has so far not been exploited in optics tescarch. A probable reason is that to
compute the generalized pencils the cross-spectral density in the entire space must be
known. We show that under a paraxial approximation the generalized pencils can
be computed directly from the field conditions in the ‘source plane’ without the neces-
sity to compute the cross-spectral density in the entire space as an intermediate
quantity, _

In many problems of interest in optics, the wave field (in the form of the complex
field amplitude or the cross-spectral density function) is given in a plane, which one
may take without loss of generality to be the plane z=0; and one is interested in
calculating the wave field in the half space 23>0, satisfying the Sommerfeld radiation
condition at infinity. We note that this kind of geometry includes the entire range
of diffraction problems, beam propagation and radiometry with sources of arbitrary
state of coherence. It should also be noted that for most of these problems the
paraxial approximation yields adequate results. . :

. In the present paper, we study a paraxial approximation which greatly simplifies
the computation of the generalized pencils, and leads to an interesting scaling be-
haviour of the pencils in the far-zone. Section 2 starts with the definition of the
generalized pencils. The pencils corresponding to the interference of a pair of
plane waves are computed. A direct relationship between ray dispersion and
statistical inhomogeneity of the field is derived. In § 3, we present a paraxial
approximation to the generalized pencils. This approximation preserves the straight
line propagation character of the exact pencils. Both pradipa and tamasic rays
survive this approximation. Under this approximation;. the generalized pencils. in
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the half space z>>0 can be computed directly from the field conditions in the plane
z=0, without the need to compute the wave field in the entire space as an inter-
mediate quantity. To be specific, the strength of the generalized pencils through
points in the plane z = 0 is shown to be related to a two-dimensional Fourier
transform of the cross-spectral deasity function in that plane; these pencils are
shown to travel in straight lines into the half space z > 0. Thus the pencils
through an arbitrary point in z > 0 can be constructed using simple geometry. And
then, the quantities of interest in wave optics can be readily computed from the pen-
cils so constructed; thus making the generalized pencils a practical tool for wave-
optical computations. Conditions for the validity of the paraxial approximation
are given. In § 4, these paraxial results are applied to some typical situations of
interest in elementary wave optics.

_In § 5, the pencils are shown to exhibit an interesting scaling behaviour in the far-
zone. This scaling behaviour leads to a natural generalization of the Fraunhofer
range criterion to sources of arbitrary state of coherence. A generalization of the
classical van Cittert-Zernike theorem (van Cittert 1934; Zernike 1938; Klauder and
Sudarshan 1968) to sources of arbitrary state of coherence is obtained as a direct
consequence of this scaling. It is also shown that the well-known results of radio-
metry of partially coherent sources, which are usually derived using wave-optical
methods, can be obtained in an elegant and easmr way as simple consequences of
this scaling behaviour.

A scalar treatment ignoring polaiization is presented for simplicity.

2. The generalized pencils and ray dispersion in free space
In a time-stationary ensemble different frequency components do not interfere. Such

an ensemble can be conveniently described through the:hermitian cross-spectral
density function (Born and Wolf 1970) I'(x,, r, w) defined by

($ha) b )y =T G msw)d(w—w)" 7 )
where ¢,, (r) is the analytic signal at r due to radiation of frequency w. The angular

brackets denote ensemble average. The parametric dependence on w will be sup-
pressed henceforth. The cross-spectral dens1ty in a plane z = constant will be de-

noted by F (P4, P2), where

Pi=xuy) i=12 S @
is the transverse two-vector part of the three-vector

r,=(P, z).

It is convenient to work with sum and difference variables defined through ..

r=%@;+r), Ar=r —r, 3
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The Jacobian of this transformation is unity. We denote
T (s, rzj =TI, Ar). 4)

The generalized pencils corresponding to r (t;, rp) can now be defined as (Sudarshan
1979a)

W(r,p)=(2-i—)§fl“(r,Ar)exp(—ip'Ar)d3Ar° | (5)

W (r, p) is called the Wolf function. From (1) and (5), W (r, p) is easily seen to be
real; but in general it is not non-negative. It is interpreted to represent the strength
of the pencil at the point r going in the direction of p. lpl is related to dispersion
[¢f. (17)]. Pencils with positive strength have been called pradipa (shining) rays and
pencils with negative strength have been called tamasic (dark) rays [Sudarshan
1979a, b]. From the free space wave equations for I (r;, rp) it can be shown that
(Sudarshan 1981)

P-VW@p =0, (6)
and
Gvi+k—p)Wap) =0, @)

where the differential operator acts on the r dependence. Equation (6) means that
in free space the generalized pencils travel in straight lines. That is, for a given p,
the density W is constant in ordinary r-space along lines parallel to p. Equation (5)
can be inverted to obtain the cross-spectral density function from a knowledge of the
generalized pencils:

TwAD= [ WEpexp(p-andp. B

Note that in both (5) and (8) one has to perform a three-dimensional integration.
If we now set Az =0, so that both r; and r, lic on the same plane for some given
z, we get .

L. (P.APY= | W(,pexp (ip - A P)d*p dp. ©
where _ '
P.L = (.pxs py): p= (p.L, pz)- - (10)

Equation (8) with A r = 0 gives the intensity at any point r as the integrated strength
of all the pencils through that point: '

16 = [ Wap dp. | : an

As an elementary illustration, we compute the pencils corresponding to the
superposition of two plane waves a exp (—iK;, r) and b exp (—iK, * r) of common
frequency w. Clearly,

Ky [? = (K2 = k3 = wejer, (12)
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One obtains from (1)
T (r,r,) = {|al|®> exp [iK; * (r; — ry)]
+ 2] exp [[ Ky - (ry — 1p)]
+a* by exp [i(Ky 1y — Ky o 1))
+ {ab*> exp [i (Ky 1, — K; - 1)1, | (13)

where we have assumed that the ensemble average refers only to the amplitudes a,b
and not to the vectors K;, K,. Now the pencils can be computed from eq. (5);

W,p) = {Jaf>8(—K) + {5 (p — Ky
+ 2] (a* b)]cos [(By —Kp) 'r+ €] 8 [p — 3 (K, + Ky)J (14)

where ¢ is the phase of ( a* b ). We can now interpret this expression as follows:
Through every point r there is one pencil of strength < |a}2 ) going in the direction
of K;, and another of strength {|5|* going in the direction of K,. The strength
and direction of each of these two pencils equal the intensity and direction of the
respective plane wave. These pencils consist of only pradipa rays, and have |p| = k&,
There is an additional pencil whose strength depends on the correlation between the
two plane waves, as shown by the factor (a* b). At every point this pencil is in the
direction of the bisector of the angle between K, and K,, as can be seen from figure 1.
The strength of this pencil is not positive definite, and it has a sinusoidal variation in
space in the direction of (K; — Kj,), i.e. perpendicular to (K; + K,). The special
frequency, fspatial’ of this sinusoidal variation is |K1 —K,|. We note that dark
rays are absent if and only if the two plane waves are mutually incoherent,
ie., {a*b) =0.
From figure 1, it is seen that

fspatial =K, - K2l = 2k, sin 6, (15)

Figure 1. Interference of a pair of plane waves.
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where @ is the half angle between K, and K,. We also note that for the last pencil

Ip| =

K + X, ;— Kzll = ky cos 8, (16)

so that
2
spatlal

+lplr=R an

The last equation is trivially satisfied by the pencils in the first two terms of (12).
Further. note that for the third pencil the intensity integrated over the entire space
is zero, showing that it consists of pradipa and tamasic rays in equal amounts.

Given an arbitrary free space field, we can Fourier analyse and express it as a super-
position of plane waves. The diagonal elements of the cross-spectral density in the
plane wave representation will correspond to the strength of the various plane wave
components (similar to the first two terms on the right side of (13)), and the off-dia-
gonal elements will correspond to correlation between pairs of plane waves (similar
to the last two terms in (13)). The diagonal elements will give rise to pencils of the
type in the first two terms on the right side of (14), and the off-diagonal ones will
give pencils of the type in the last term of (14). Our analysis following (14) remains
valid for these pencils. In particular, pencils of both types respect (17). Thus, (17)
becomes an identity for free space pencils. This can also be seen by Fourier trans-
forming (7) with respect to r.

Equation (17) is an important result of our analysis. It fixes the range of values for
lpl a‘ndfspatial to be

0 f2 spatial < < 4k . (18)

<[pP <K (19)

Deviation of [ p ] from k, has been called ‘ray dispersion’ (Sudarshan 1980). Equa-
tion (17) relates ray dispersion directly to the spatial variation of the pencils, or, from
(8), to the statistical inhomogeneity of the field. From (17) it is clear that absence
of dispersion implies and is implied by statistical homogeneity of the field. This is
the content of the well-known (Fante 1981 ; Zubairy 1981) counter argument of Col-
lett et al (1977) to Tatarskii. Equation (17) goes beyond the argument presented by
Collett et ol in that it relates ray dispersion to the spatial spectrum of the field inhomo-
geneity in a quantitative manner. If I' (r, A r) as a function of r is slowly varying
(the scale being set by ki), then f 5 € ko, and from (17) |p|? =~ k2.

Returning to (14), we see that each plane wave in the field amplitude is mapped
into a non-dispersive generalized pencil, while correlations between pairs of plane
waves give rise to dispersive generalized pencils. It also follows from (14) that absence
of dispersion is both the necessary and the sufficient condition for absence of dark
rays.

The results of our analysis following (14) can bc summarised as follows: Absence
of dispersion or absence of dark rays on the one hand, and absence of statistical

inhomogeneity or absence of correlation between plane wave pairs on the other, are
mutually equivalent.
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Finally, we see that the pencils in (14) when used in (1 1)-give the familiar intensity
distribution corresponding to interference of a pair of plane waves:

I(r) = {|a [ + |5
+ 2 |<a* b | cos [(Ky — Ky) - r + €. (20)

This, of course, is non-negative.

3. The paraxial approximation

From the general theory, given the cross-spectral density function in the entire space,
the exact generalized pencils can be computed from (5) and vice versa:

cross-spectral density _
ion i i exac cils.
function in the entire space = exact pencils

However, with a view to make this picture applicable to practical situations, in this
section we show that under a paraxial approximation which preserves the straight
line propagation character of the exact pencils, namely (6), the pencils can be com-
puted in'a simple way from a knowledge of the cross-spectral density function in the
source plane alone.

Consider the geometry of interest in diffraction problems, beam propagation aand
physical radiometry: The cross-spectral density function (or the complex field ampli-
tude) of a time stationary field is given on a plane, which we can take without loss of
generality to be the z = 0 plane, as

To (01, P2) = {$* (1, 2, = 0) ¢ (P, 2, = O)), 1)

and one is interested in computing the generalized pencils assuming that the field
propagates into the region z > 0 (obeying the Sommerfeld radiation condition).

It is useful to construct the double angular spectrum of plane waves A (415 92)
defined through

(2{17‘)4L f —I:o (pl’ ‘02) exp [—i(q," pl"‘lz . Pz)] dzpl d2P2,
| 22)

A @ q) =

where _ ;
qi = (qim qiy)s i = 15 2' (23)

Equation (22) can be inverted to obtain
E) (Pla Pz) = f Z (‘11, q) €xp [i (‘114‘ Pl — Q- pz) "dz q, d° q,. (24)

f-f(ql, q,) can be interpreted to represent the corfelation between a pair of plane waves
with propagation vectors (q;, q,.) and (q,, q;;) respectively, where q,, and g, are
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fixed by the fact that these plane waves obey the free space Helmholtz equation and
the Sommerfeld radiation condition:

qiz = [kzo - lql ‘2]112a l q: ‘2 < k?,,
(homogeneous plane waves)

qizz_i[|qil2“k%]1/25 ‘qilz >kg’
. (inhomogeneous plane waves). 25
Hence from (24)

Tlpr) = f 4@ e e [@ P~ Pl
exp [i (g3 2, — 0az 22)] 4° 4y a? qs. (26)
Transforming to sum and difference variables q, ¢; and Aq, Ag; one obtains,
I Ar)=T(P,2z; AP, A2)

éjA(q, AQexpli(q- AP + Aa-[)

expli(q; Az+ Ag. z)d2qd? Agq, 2N
and ‘
L@ AP = [A@ADep (@ AP +AQ P dqdAg ()

Substitution of (27) in (5) yields an expression for the generalised pencils:
W p)=W(P,z;p,P)
= [4@Adep i (Ag-P + Ag. 2.

5(q—p)d(g —p)d®qdAg (29)

The last equation is an exact statement of (5) in the angular spectrum representa-
tion, and yields the exact pencils.

If the angular spectrum is narrow, i.e. if A (a,» @) is appreciable only when
(6] < kg |@|® < kG (30)

then |q[* € &} and |A q > < k3, and we can simplify (29) by making the paraxial
approximation to ¢. and Agq;:

o (o ST o 3T e o

.1/2 ‘
qu=[k3—(q + 2T - [ (a- Aqﬂm ~ 12




Generalized pencils of rays in statistical wave optics ' 113

Under this approximation (29) becomes

W(p: z, plapz) = S(ko—pz)fA(pla Aq)

pliAg.(p -2 e Aq

0

=8(k0—pz) WO(P —1%3 p.l.)’ (32)
0

where we have defined

Wy (Pp)=[A®,AQexp (P A dAq | (33)
When (28) is used in the last equation one obtains

W, (P,l)l) :-(—Zi—TjéfI"o(P,Ap)exp(*z‘pl-Ap dzA P). (34)

The pair (32) and (34) forms a very useful result of our analysis as will be shown
in the subsequent scctions. We can give an elegant geometrical interpretation of
this result: The strength of the pencils through point @ in the z = 0 plane going in
the direction (p K k,) is given by Wy(P, p 1)? the Fourier transform of T, (P, A @)
with respect to A @. These pencils then travel in straight lines as shown by (32).
Thus given the boundary condition, namely I'y (P, A P) in the z = 0 plane, one
computes W, (Q,p l) using (34), and then the generalized pencil through an arbitrary
point in the region z > 0 is constructed ‘by drawing straight lines’ as shown by (32),

without the necessity to compute I' (r;, r;) in the entire space as an intermediate
quantity. We note that the only approximation made in deriving this result is the
paraxial approximation stated in (31). It is interesting to observe that the straight
line propagation character of the exact pencils is preserved under this approximation.
This can be seen either from the

(%)

factor in (32), or through substitution of (32) into (6).- .

“Once the pencils are constructed using (34) and (32), the intensity, the cross-spectral
density and other field quantities of interest could be readily computed from the pen-
cils, thus making the generalized pencils a practical tool in wave-optic computations.
Naturally, the field quantities so computed will reflect the paraxial approximation.

Equation (34) is essentially the definition of a Wigner distribution. Wigner dis-
tribution in the context of optics has been extensively studied by Bastiaans (1978,
1979). We also note that (34) has a close resemblance to Walther’s first definition
of radiance (Walther 1968). ‘ L
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The paraxial approximation is stated in (31). Clearly,
[q[* < &2 and[Aq]‘=<(c§ 395)

form sufficient conditions for its validity. If the angular spectrum is narrow, then
(35) is satisfied and the paraxial approximation will yield accurate results. Then it
can be seen from the 3(q — p _L) factor in (29) that W(r, p) will be appreciable only
when | p;L |2 € kZ, which means only paraxial rays will be present. Even if the angular

spectrum is not narrow, we can still satisfy (35) provided we restrict to paraxial rays
and if the angular correlation is small, i.e. if 4 (q, A q) is appreciable only when

|Aq* < K2
For later reference it is useful to define
P,z '
Wz(P:PL = W, (P“T’PJ_)- (36)
0

From (32) and (9) one obtains

W, (p’ pJ. = j W(P, Z; pJ.’ P2 dpz

1

e frz (P, AP)exp (—ip, - A P) dA P, (37

which correctly reduces to (34) when z=0. The last equation can be inverted to read

TP AP) = [ W. (0, p)exp(ip, -AP)dp,. 38)

The angular distribution of the pencils at a point will be termed the ray pattern at
that point. Some simple features of this pattern can be seen as follows. Let us
assume a planar incoherent source of linear dimension d. From the straight line
propagation character of the pencils it is clear that the angular width of the ray
pattern at a point (0, z) will be of the order of d/z, which means the width of W, P,
P l) as a function of p N will be of the order of kod/z. Then from the Fourier transform

relationship in (38), it follows that the width of I", (9, AP) as a function of A P (the
transverse coherance length) will be of the order of z/k,d. This means that as the
field propagates farther and farther away from the source the transverse coherence
length increases or in other words coherance builds up through the process of propa-
gation! This result, which is in essence the content of the well-known van Cittert-
Zernike theorem, is shown here to be a direct consequence of the straight line propa-
gation character of the generalized pencils. The generalized pencils have more light
to throw on the van Cittert-Zernike theorem as will be shown in the subsequent
sections.

4. Examples

In this section we illustrate the paraxial results of the last section by applying them
to some typical configurations of interest in wave optics. Four configurations are
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considered, the first three corresponding to configurations studied earlier by Sudar-
shan (1979a). Our treatment is different from Sudarshan’s in that we compute the
generalized pencils in the entire domain in the paraxial approximation, in contrast
to computing them in the Fraunhofer region. The fourth configuration corresponds
to a model source which has recently attracted much interest in the theoretical study
of radiometry with partially coherent sources. The planar source can be either
primary or secondary, and is assumed to be located in the plane z = 0.

4.1 Incoherent planar source
We assume the cross-spectral density function to be of the form (Sudarshan 1979 a)
TP, AP)=CaL(P)SAP). (39

This gives vanishing transverse coherence length in the source plane and does not
correspond to physical incoherent source. (The physical incoherent source should
have a transverse coherence length of the order of kj* (Beran and Parrent 1964)).
We also note that the model source in (39) does not satlsfy the conditions for the
validity of the paraxial approximation namely (35). However, it serves to give a
qualitative picture of the nature of the pencils generated by an incoherent planar
source. We get results in agreement with wave optics if we restrict observation to
paraxial points, so that only pencils with | p N |2 < k9 contribute. Using (39) in (34)
one obtains

W) =L (P | (40a)
and from (32) |
WP, z=0p=3@.— kL@ (40b)

This means that, for directions pointing to the region z>0, the strength of the
pencil at every point in the source plane is independent of direction; we have an
isotropic ray pattern. The strength of the ray pattern at @ equals I, (). Since
I, (P) is non-negative, we note that all the pencils in this case consist of pradipa
rays only. From (32) the pencil at any point in the region z > 0 in direction p is

WGeB) =30, — k) b (P - %) @1)

It is-instructive to compute the cross-spectral density in the paraxial region in a z-
plane sufficiently far away from the source plane, so that only the paraxial pencils
centribute. From (36), (38) and (40) one obtains

rz(P,AP)—-——f (P— )exp(zpl AP)dzpl
kg

?eﬁp(vi?p.Ap)J'Io(‘p.’)exp(-—z—P AP)d2P (42)

Z
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Transforming P and A @ back to and [, this becomes
— kg .ko o o
L (P P9 = Semp(i5!) (P = PD

R exp(—i’fz-‘-’(pl—-pg-p') & p-. @)

This is the celebrated van Cittert-Zernike theorem for planar incoherent sources. It
relates the far-zone cross-spectral density to the Fourier transform of the source plane
intensity. The usual derivation of this theorem’ employs wave-optic methods, while
we have here obtained this result as a direct consequence of the straight line propa-
gation character of the generalized pencils and of the isotropic nature of the ray pat-
tern in the source plane. It is amusing to note that Sudarshan (1979b) in his pioneer-
ing work conjectured that the van Cittert-Zernike theorem was a consequence of the
straight line propagation character of the generalized pencils. In § 5, we will genera-
lize this theorem to planar sources of arbitrary state of coherence.

4.2 Coherently illuminated double slit

We assume that the two slits are located parallel to the y-axis at x =-+a and x=—a
respectively. Here again the conditions for the validity of the paraxial approxi-
mation are not met, hence observation must be restricted to paraxial regions. In the

source plane
T, (0, AP)=T,(x, y; Ax, AY)
— [8(x — a) + 8(x + @)] 8(A x)
+ 8(x) [5(Ax —20) + (A x +2a)]. (44)

From (34) and the last equation

W, (x, 73 P P5) = 5.1; 3¢ — d) 8(p,) + 3G+ a) 3(p,)

+ 8(x) 2 cos 2ap, 3(p,)]- ~ (45)

The first two terms-on the right side-correspond to isotropic cylindrical pencils from
either slit. - These two pencils consist of pradipa rays only. There is a third pencil
originating from the line midway between the two slits. The strength of this pencil
is sinusoidal as a function of direction in the x-z plane. This pencil is due to the
correlation between the illumination at the two slits, and is responsible for the for-
mation of the familiar two slit interference pattern. It is easy to see that the strength
of this third pencil decreases as the correlation between the two slits is reduced and
that it disappears when the two slits become uncorrelated. Substitution of (45) in
(32) gives the pencil through an arbitrary point in the region z > 0:

-
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W ) =38 (p; — ko) 8 (5) [a (x _1’7:0_2~ a)

+ 8 (x MP]: ZL a) + S(x‘ *l%f) 2 cos 2apx]. (46)

0 0

There is some similarity between this expression and the pencil corresponding to
superposition of a pair of plane waves, namely (14). However, there are some essen-
tial differences: In the present case, the direction of the pencil at a point is a
function of that point and the ray pattern has an inverse dependence on z through
the factor z/k,.

The intensity distribution corresponding to the .pencil in-(46) can be computed
using (11): '

I(®)= ,fi’[?. + 2 cos (2kozax)]
z

= 450 cop (2 “"). @”)
z z

This is the two-slit interference pattern well-known in elementary wave optics.
4.3 Coherently illuminated single slit

We assume that the slit is of width 2a and occupies the region —a<<x<(a parallel to
the y-axis, and that the slit is uniformly illuminated with coherent light. Thus

Lo (x, 7; Ax, Ay) = 2m. rect [-2—(-5%-;[;-]—) ] rect (x/a), 48)
where ‘ ‘ '
rect(x/a) =1 if|x[<a

—~0  otherwise. @9

If the slit width a is large compa.réd to k;Y, then the angular spectrum is narrow
and the condition for the paraxial approximation is satisfied. Substitution of (48)
in (34) results in

W, (5, 73 P py) = 252 12 (“p" [ 2D o] oy (’.;) () (60)

The pencil pattern at each point x in the slit has a sine function dependence on p,
with a characteristic width 1/(a — [x|) in p, hence the ray pattern at x has a charac- .
teristic angular width 1/k,[a— |x|]. When x is well insids the slit several wave lengths
away from the edge, the ray pattern becomes narrow and needle-like aboat the
z-direction. As x moves towards the edge, the ray pattern broadens. The pencil
through every point consists of both pradipa rays and tamasic rays depending on p,.
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The pencil through an arbitrary point in the region z>>0 can be constructed using (50)
in (32). It will be shown in the next secticn (cf. (73)) that the peacils so constiucted
produce an intensity distribution in the far-zone which agrees with the well-known
Fraunhofer diffraction pattern of a slit.

4.4 Quasihomogeneous source

Quasihomogeneous sources are model sources of great interest in radiometry with
partially coherent sources (Carter and Wolf 1977; Collett and Wolf 1980). For these
sources, the cross-spectral density in the source plane is separable in the form

TP, APYy=15L(P)g(AP), (51)

where I, (Q) is a slowly varying function compared to g, (A @). For instance, if
both I, and g, are Gaussian, we have a Ga.u331an-correlated Ga.ussnan quasihomo-
geneous source. Clearly, the condition for the validity of the paraxial approxi-
mation is satisfied if the effective width of g, is large compared to k;'. From (34)
we obtain for the present case ‘

WO (pa p_L)=I0 (P) Eo (p.L)’ . | (52)

where g, is the Fourier transform of g,. It is seen that the ray pattern is the same at
every point in the source plane and is given by g, The strength of the ray pattern at
P is given by I, (@) and is a slowly varying function of @. If g, is such that its
Fourier transform is a non-negative function, then the pencils will consist of pradipa
raysonly. This is the case for example when we have Gaussian correlation..

The pencils through an arbitrary point can be constructed using (52) in (32):

w G, p)—@(p,~ko)1(p~— )g(,(pg e

The right side of (53) ceases to be separable in the form of (52) and hence the field
in an arbitrary z-plane, generated by a quasihomogeneous source in the plane z=0,
ceases to be quasihomogeneous, except in the case when I(Q)=constant.

5. Far zone and scaling

Equation 34 expresses WO(P P, ) as Fourier transform of I‘O( P, AP) with respect to
AP Once Wy(P, p ) is known, substltutlon into (32) construots the pencil through an

arbitrary point. We examine the nature of the pencil in the far-zone and show that,
as a consequence of the straight line propagation character of the pencils, the ray
pattern in the far-zone exhibits an interesting radial scaling property. This scaling
property leads to a natural generalization of the Fraunhofer range criterian to sources
of arbitrary state of coherence. It also gives a natural generalization of the van
Cittert-Zernike theorem The -well-known results of radiometry w1th partlally
eoherent sources are shown to follow from this scahng behaviour. -
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The effective width of I'y(@, AP) as a function of AP cannot be greater than the
source dimension or the transverse coherence length in the source plane, whichever
issmaller. The smaller of these two lengths will be denoted by a characteristic length.
y. Then from the Fourier transform relationship in (34) it follows that the effective
width of W(P, p ) as a function of p |, cannot be less than 1/y. Equivalently, the
effective angular width of the ray pattern at 0 in the source plane cannot be less than
Vkyy. ' ' o

From the straight line propagation character of the pencil as shown by (32), it is
clear that the angular width of the ray pattern at the point (P, z) cannot be greater
than d|z, where d is the source dimension. The geometry is shown in figure 2. Ifat
no point in the source plane W (P2, p _L) as a function of P, varies appreciably over
this range, then we can replace p N in (32) by a typical value, namely pj’_ = P ky/z
corresponding to the radial direction of ({2, z) as shown in figure 2. ~ Equation (32)
now becomes

P,z
WP, 2D, ) ~ 8 (0. — ky Wo(p -8 (54)
0
For this equation to be valid, the sufficient condition on z is easily seen to be
dlz < Ukyy, o
or

dy < z[k, (55)

The right side of (54) has an interesting radial scaling property. To see this, we
rewrite it as -

WP,z p,p:) =8p, — k).

z [k, °
o [kj,(—z‘ - "l)’ "1]

T P 1 L e

0

Figure 2. Geometry for the scaling behaviour.
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This means that in the far-zone as the point of observation is moved along a radial

line Pz = constant the ray pattern scales retaining its functional form, the scale
factor being z/k, It should be noted that this scaling behaviour is again a direct
consequence of the rectilinear propagation of the pencils. This property of the ray

pattern in the far-zone has several interesting consequences. _
We can use this scaling to identify the far-zone. Then (55) gives the far-zone

range criterion. For fully coherent sources y=d, and (55) becomes

d? < z/k, (5D

which is the usual Fraunhofer range criterion for coherent sources. Thus (55)

becomes the natural generalization of this criterion to sources of arbitrary state of

coherence. Equation (55) implies that as the source becomes more and more inco-
herant, the far-zone comes closer and closer to the source. For incoherent sources

(thermal source) y = k31, and the far-zone range criterion becomes

d<z, | | | (58)

Using wave optic methods Leader (1978) has derived the far-zone range criterion for
quasi homogeneous sources, and our result, namely (55), agrees with his result for
such sources. However, we have obtained this result as a general condition for the
scaling behaviour, and we have not placed any quasi-homogeneity restriction on the

source. _ .
As another consequence of the scaling of the ray pattern in the far-zone, we derive

a generalization of the van Cittert-Zernike theorem to planar sources of arbitrary state
of coherence. We start with substitution of (36) in (38):

neap=[wme-2in)wan apern  ©

where we have assumed that we are in the scaling region. Introducing the change of
integration variable

' B
(59) becomes 3
Fz<P=AP)=§§exp(f§’P-AP)fWo<p',pp
'EXP(“i%P"AP)dzp" (61)

After a transformation from @ and AP to 0, and 2,, the last equation becomes
T . ko (oo 2
F:(pl»PZ)“—_‘EéeXp l-i;(Pl"Pz)

(g 0 .
f W, (P’,p-—-—————“ 5 p“) exp [—i(p), — 3 LT P (62
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where we have defined

k ..
P, = Pi;}-’, i=1,2 (63)

Equation (62) is a generalization of the van Cittert—Zernike theorem and applies
to every planar source. It agrees with the result of Wolf and Carter (1976) derived
by a different procedure. Here we have obtained this generalized van Cittert-Zerniek
theorem as a direct consequence of the far-zone scaling of the ray pattern which in
turn is a consequence of the rectilinear propagation of the pencils.

Classical radiometry deals with far-zone properties of ficlds generated by inco-
herent sources. Recently there has been enormous interest in the far-zone fields
produced by sources of arbitrary state of coherence (Wolf 1978, Baltes ez al 1978), and
many useful results have been established. Since the far-zone properties of the field
are contained in the scaling behaviour, these now well-known results can be more
easily deduced from the scaling property, thus giving a geometric picture of these
results. We will consider only a few of these results for illustration.

We start by computing the intensity distribution in the scaling region. Substituting
AP = 0 in (61) one obtains

k2 , ,
I(psz):'ggWo(p’pi)dZPa (64)
where 0 =p ko (65)
p L 'E' *
‘Equation (64) is a useful result; it explains the inverse square-law radial scaling of

the intensity distribution in the far-zone. The far-zone angular distribution of the
Intensity is called the radiant intensity and is defined as

JP)= Lt 2I(P,2). (66)

Z >0

From (64) we obtain for the radiant intensity
TPy =K [ W, (P, @& . (67)

The right side is positive definite for it is the diagonal element of 4 (gy, g5). It is
interesting to note that each point in source emits either pradipa or tamasic ray in
direction 0 /z, but they will all definitely add up to a positive radiant intensity!

From (34) we have

rmer =L Flp e o

exp (—ipl.o)d?a. (68)
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If we define S
Foy= [T{p" +2, '_.‘.’.)d‘z '

= [T(p+5 p=F)ep, (69)

it follows from (67) and (68) that all sources having the same F (¢) have the same far-

zone intensity distribution. -This is the well-known equlvalence theorem of Collett
and Wolf (1979).

If Ty is of the special form - _ , | .
To (P P2 = [, ’(pg'f%!arf PN g (P — P, (10)

then we have a Schell-model source (Schcll 1961), which has recently attracted much
interest. Deﬁnmg the source amphtude auto-correla,tlon function as

e ) R

and using (68) and (67) one obtains for Schell-model sources. -

IP,2) = . 122 0f "y (0) & (a) exp (— 120 -, ) . (7;)

This is Schell’s Fourier transform theorem.

The results contained in (64) through (72) are well-known results of radiometry
with partially coherant sources. Here they are shown to be consequences of the scal-
ing property. . - : : o

. If the source dunensxon 1s ﬁnlte 1n the x—dlrectlon and 1nﬁ111te 1n the y dxrectlon,;_
the far-zone range criterion cap, be satisfied for the x-dimension only, and conse-:
quently, the sca.hng property of the pencils can be realised for the p, dependence only
In such cases p? 1 in (54) and the subsequent equatlons should be replaced by (% py)-
Consequently, the change of integration variable from p , to P can be effected for the

x-component only. For instance (64) will become

IP,2)= ko Wo(x’,y——v. f’ ”Z.,;p?c, py) dx’ dp,, : (64")
z A
where

)= x ky/z. S , (657

As an mterestlng application of (64’), we compute the far-zone intensity due to the
pencils of the single slit case. Substituting (50) in (64') one obtalns )

I(P Z)= "f 2.sin [2 (a ‘_plox‘ D p"] rect ( ) 5 (py) dx; dP? ‘

3 0 : ;
_Koy (Sm “Px)z. | | 73)
z v LN o . :
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This is the well-known Fraunhofer diffraction pattern due to a coherently-illuminated
Slit."" N - . .. ERSEON . - .

6. Conclusions

The present formalism gives an elegant geometrical picture of wave optics through
the generalized pencils. The paraxial approximation used greatly simplifies the
computation of the pencils, while retaining the rectilinear propagation character
of the exact pencils. It should be emphasised that the results derived in the present
paper depend on the rectilinear propagation character of the pencils in an essential
way.

The pencils under the paraxial approximation do not respect the dispersion restric-
tion, namely (19). This, however, does not pose any serious problem (Sudarshan
1980). <

The description in terms of the generalized pencils has the advantage of possessing
the simplicities of geometrical optics, while staying exact in principle. It treats
coherent, incoherent and partially coherent wave fields on the same footing. In this
paper we have studied many familiar situations in this new language so as to gain
experience with the formalism and illuminate earlier results from a new point of view.
It is further hoped that the present approach has a pedagogic advantage.

We have also used the present formalism to study the focussing of partially coherent
fields and polarization in scattering. We intend to report these results in a subse-
quent paper.
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