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Nonequilibrium dynamics in an amorphous solid
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Abstract

The non-equilibrium dynamics of an amorphous solid is studied with a soft-spin type model. We

show that the aging behavior in the glassy state follows a modified Kohlrausch-Williams-Watts

(KWW) form similar to that obtained in Phys. Rev. Lett. 95, 055702 (2005) from analysis of

the dielectric loss data. The nature of the fluctuation-dissipation theorem (FDT) violation is also

studied in the time as well as correlation windows.
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In the glassy state, the liquid behaves like a frozen solid with the motion of its constituent

particles being localized around randomly distributed sites. Analysis of the dynamics in this

non equilibrium glassy state reveals a variety of phenomena like aging and memory effects

[1, 2]. Important progress in understanding the non equilibrium dynamics of disordered

systems has been made in recent years from study of simple mean field spin glass models. In

the multi-spin interaction models, the non-linearities in the Langevin dynamics give rise[3]

to a ergodic-nonergodic transition. The basic mechanism for this transition is very similar

to that present in the models for the dynamics of supercooled liquids[4]. The seminal work

of Ref. [5] dealt with the problem of weak ergodicity breaking[6] in a spherical p-spin (p > 2)

interaction model[7] over the asymptotic time scales. Here the crossing over of the dynamics

from a regime of time translational invariance to that of aging behavior was demonstrated

analytically. Low temperature properties of glassy systems, e.g., thermal conductivity and

specific heat, have also been studied with models [8] for the structural glass in terms of a

standard Hamiltonian involving spins. In the present paper, we study a soft-spin type model,

which is defined in terms of the displacements of the particles around a corresponding set

of random lattice points. We show that the aging behavior in the nonequilibrium glassy

state follows a modified KWW form similar to that obtained in Ref. [9] from analysis of the

dielectric loss data for several materials below the glass transition temperature Tg.

We consider a model Hamiltonian, which has a translationally invariant form in terms of

the displacement variables ui around an amorphous structure.

H =
∞

∑

p=2

∑

i6=j

J
(p)
ij (ui − uj)

p . (1)

For the amorphous solid, the interaction matrix J
(p)
ij is assumed to be random following a

gaussian probability distribution of zero mean and variance J2
p/N . The microscopic basis

for such a model for an amorphous solid is discussed further below. The time evolution of

ui(t) is given by the dissipative Langevin equation,

Γ−1
0

∂ui

∂t
= − β

δH

δui
− z(t)ui + ξi(t). (2)

Γ0 is the bare kinetic coefficient related to the variance of the gaussian white noise ξi through

the fluctuation-dissipation relation < ξi(t)ξj(t
′) > = 2β−1Γ0δijδ(t−t′). z(t) is a Lagrange’s

multiplier used enforcing the constraint N−1
∑

i < u2
i (t) >= 1. This in the present context
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is equivalent to having a constant Lindemann parameter at a fixed temperature T . The

simplest form of the nonlinear Langevin equation (2) is obtained by keeping in H the con-

tributions from the p = 2 and 3 terms of the expansion (1). In the present work, we focus

on the corresponding nonlinear model for the dynamics and refer this as the p23 model from

hereon.

We formulate a standard Martin-Siggia-Rose (MSR) [10] field theory to compute the time

correlation and response functions of the displacement variable ui. The field ûi conjugate to

ui is introduced in this regard to average over the gaussian noise ξi. The two time correlation

and response functions are respectively defined as : C(t, tw) = N−1
∑N

i=1 〈ui(t)ui(tw)〉, and

R(t, tw) = N−1
∑N

i=1 〈ûi(t)ui(tw)〉, where the overbars stand for averages over the random

bonds {J (p)
ij }’s and the angular brackets represent mean over the gaussian white noise ξi’s.

The dynamics of the correlation and response functions are obtained from the equations

[∂t + z(t)] C(t, tw) =

∫ t

0

dsΣ(t, s)C(s, tw) +

∫ tw

0

ds Ξ′(t, s)R(tw, s) (3)

[∂t + z(t)] R(t, tw) = δ(t − tw) +

∫ t

tw

dsΣ(t, s)C(s, tw), (4)

where we denote Ξ′(t, t′) = 2δ(t− t′)+Ξ(t, t′). The kernels are obtained from a perturbative

summation as Ξ(t, t′) =
∑

p apC
p−1(t, t′), and Σ(t, t′) =

∑

p(p − 1)apC
p−2(t, t′)R(t, t′) in

terms of a set of coupling constants {ap}, which depend on nonlinearities in the dynamic

equations. For the p23 model, we obtain up to one loop order a2 = 2(βJ2)
2 and a3 =

18(βJ3)
2. The necessary boundary conditions for C and R are respectively chosen as[5] :

R(t, t−) = 1 and ∂tC(t, t±) = ±1. The Lagrange’s multiplier z(t), which ensures C(t, t) = 1,

is obtained as z(t) = 1 +
∫ t

0
ds {Ξ(t, s)R(s, t) + Σ(t, s)C(t, s)}.

The analysis of the asymptotic dynamics of C(t, tw) for both t and tw → ∞ is divided[5]

into two main regimes. First, for (t − tw)/t → 0 the time translational invariance (TTI)

holds. At this stage C and R are related through the fluctuation dissipation theorem (FDT)

RI(t) = −Θ(t)∂tCI(t), where we denote C(t+ tw, tw)≡CI(t) and R(t+ tw, tw)≡RI(t). Second,

for (t− tw)/t ∼ 1, i.e., for widely separated t and tw there is aging behavior. The correlation

and response functions, respectively denoted by CA and RA in this case, are assumed to be

functions of tw/t ≡ λ (0 < λ < 1). We define CA(t, tw) = qC(λ) and RA(t, tw) = t−1R(λ). In

the limit, λ → 1, C(λ) → 1 and R(λ) 6= 0. The solutions in the FDT and the aging regimes

2



agree if the long time limit of CI(τ) is q termed as the non ergodicity parameter (NEP). In

the FDT regime, both the eqns. (3) and (4) reduce to a single equation

(∂t + 1)CI(t) +

∫ t

0

dsΞF (t − s)∂sCI(s) = z∞[CI(t) − 1]. (5)

The kernel ΞI [CI] reduce to a2CI +a3C
2
I in case of the p23 model. Except for the linear term

on the RHS, eqn. (5) is same as the basic dynamical equation in the self-consistent mode-

coupling theory of the structural glass. The latter represents the asymptotic dynamics for

the time correlation of the equilibrium density fluctuations in a supercooled liquid. However,

in the present case the nontrivial renormalization contribution to the transport coefficient

comes from the dissipative nonlinearities in (2), while in the MCT for compressible liquids

the relevant nonlinearity is in the reversible pressure term. From the t → ∞ limit of eqn.

(5) we obtain the following relation

∑

p

ap(p − 1)qp−2 + (1 − q)2 = 0 . (6)

for the NEP q in terms of the coupling constants ap .

In the aging regime, the FDT violation is denoted in terms of a parameter m, which is de-

fined through the relation RA(t) = −mΘ(t)∂tCA(τ) or equivalently R(λ) = −mq(∂/∂λ)C(λ).

We obtain analyzing eqns. (3) and (4) in the aging regime, the following equations for m

and q,

m = (1 − q)

∑

p ap(p − 2)qp−2

∑

p apqp−1
(7)

At the transition m = 1. The critical coupling constants {a∗
2, a

∗
3} for dynamic transition point

of the p23 model is obtained from the solution of eqns. (6) and (7) as a∗
2 = 2/λ0 − 1/λ2

0

and a∗
3 = 1/λ2

0, where λ0 = 1 − q. The ergodic-nonergodic transition line is given by

a∗
2 = 2

√
a∗

3 − a∗
3. This is identical to the line of dynamic transition in the φ12 model[11, 12]

of the mode coupling theory of structural glass transition. Along the line of transition the

parameter λ0 changes from 0 to 0.5 as the NEP changes from 1 to 0. In the ergodic phase,

the NEP q = 0 and the FDT holds with m = 1. Close to the transition line, the relaxation

behavior follows several regimes crossing over from power law decay to a final stretched

exponential form. The corresponding stretching exponent βE
α is approximated[12] with the

empirical relation
∑

p apqp
−1/βE

α = 1.
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To get a better understanding of the time scales associated with the aging dynamics in

the intermediate time regime and the corresponding FDT violation, we solve the eqns. (3)

and (4) numerically. This requires integrating the equations (3) and (4) for both t and tw

extending over several time decades. We use the adaptive integration technique [13], which

starts with smaller sized grids for integration over shorter time scales of fast relaxation and

correspondingly increases the step size for longer time scales of slow dynamics. In the ergodic

state, at long waiting times tw the correlation function approaches its equilibrium value and

time translational invariance is eventually reached. In the approach to the equilibrium, the

waiting time dependence of C(t+ tw, tw) is displayed w.r.t. t in fig. 1 for a2 = 0.82 and a3 =

2.02. In the final stage, the decay follows the stretched exponential form exp[−(t/τNE
α )βNE

α ]

with characteristic relaxation time τNE
α and stretching exponent βNE

α . The inset of fig.

1 shows βNE
α corresponding to different waiting times tw. At large tw, it approaches its

equilibrium value βE
α , which is determined in terms of a2 and a3 using the empirical relation

discussed above.

In the non-ergodic state, the numerical solution of eqns. (3) and (4) displays both FDT

and aging behavior. In fig.2, the time dependence of C(t+ tw, tw) corresponding to a2 = 0.5

and a3 = 6.0 deep in the glassy state are shown for different values of tw. Initially the

correlation decays from 1 to q and at this stage time translational invariance holds. The

dynamics is strongly dependent on tw at a later stage. The corresponding correlation and

response functions for large tw are scaled with the ansatz : C(t+ tw, tw) = C[h(t+ tw)/h(tw)]

where h(t) is a monotonically ascending function of t. The simplest possibility h(t) = tγ

is termed as the simple aging and implies C(t, tw) ≡ C(t/tw). We adopt here the more

general form[14, 15] h(t) = exp[t1−κ/(1 − κ)]. The limit κ→0 implies time translational

invariance while κ→1 represents simple aging. The case 0 < κ < 1 is termed as sub-aging.

The dynamics almost conforms to simple aging behavior as shown in the inset of fig.2 in

which different tw data overlap on a single master curve having κ = 0.96. For every tw,

the correlation C(t + tw, tw) decays to zero at sufficiently long t. This is termed as weak

ergodicity breaking in the aging regime.

We now focus on the aging time dependence of the relaxation. For a set of tw’s, the

fourier transform of the correlation function C(t + tw, tw) with respect to t is obtained

numerically. Since the correlation function in the aging regime is approximately function of

t/tw (κ = .96), the corresponding fourier transform C(ω, tw) is a function of ωtw ≡ t̃w. For
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comparison with experimental data, we define the response function χω(t̃w) ≡ ωC(ω, tw).

The waiting time (t̃w) dependences of χω(t̃w) for different frequencies do not fit with a simple

stretched exponential form exp[−(t/τ)β ] with constant τ over the whole time range and a

frequency independent β. The data is fitted with the modified KWW in a manner similar

to that of Ref. [9].

χω(t̃w) =
[

χst
ω − χeq

ω

]

exp
[

−(t̃w/τ(t̃w))β
]

+ χeq
ω (8)

where the subscripts ”st” and ”eq” respectively refer to the limits t̃w → 0 and ∞ for χω.

The aging time dependence of τ is chosen as

τ(t̃w) = {τst − τfn} f(t̃w) + τfn , (9)

where τst and τfn are fit parameters independent of frequency ω. The normalized function

f(s) is chosen to have limiting values 1 and 0 for s → 0 and ∞ respectively. In particular,

we make the choice[16] f(s) = ao/[1 + exp {s/τ(s)}β] where a0 = 2β is a normalization

constant. Using this form of the τ(t̃w) we have fitted χω(t̃w) for all the different frequencies

with a single ( frequency independent ) stretching exponent β. In fig. 3, a scaled plot of the

different frequency data with respect to t̃w is displayed. The data sets for all the frequencies

merge on a single master curve with β = 0.55 and is shown as a solid line. For the dielectric

loss data, Lunkenheimer et. al. in Ref. [9] use a somewhat different fitting scheme with

the f(s) in eqn. (9) being a stretched exponential function exp[−(s/τ(s))β ]. But these

authors adopt the parametrization of eqn. (9) not for the time dependence of the relaxation

time τ(t̃w) in the modified KWW formula, but for the corresponding frequency defined as

ν(t̃w) = 1/{2πτ(t̃w)}. Relaxation data when fitted with this scheme obtain the exponent

(also frequency independent) β = 0.53. In the inset of fig.4, the τ ’s from both of the above

described fitting schemes are displayed. The stretching exponent values are close although

the relaxation time τ(t̃w) are in fact quite different in the two schemes.

We now consider the FDT violation in the nonequilibrium state. The FDT is generalized

in terms of a quantity X(t, t′) ( for t > t′ ) as kBTR(t, t′) = X(t, t′)∂C(t, t′)/∂t′. In the

limit t, t′ → ∞, it is assumed that X(t, t′) ≡ x[C(t, t′)] representing FDT violation in the

correlation windows rather than time windows. For convenience of discussion, an integrated

response function F (t, t′) is defined
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F (t, t′) ≡
∫ t

t′
dsR(t, s) =

1

kBT

∫ 1

C

x(C̄)dC̄ . (10)

If the FDT holds, x = −1 and the above relation reduce to kBTF (t) = C(t) − 1, using

C(t, t) = 1. An effective temperature Teff for the nonequilibrium state is defined in terms of

the ratio of the fourier transforms, kBTF (ω, tw)/C(ω, tw). If the FDT holds, Teff = 1. Using

the relation (7), we obtain that the choice a2 = 0.5 and a3 = 3.0 in the p23 model makes

Teff close to the experimental result of Ref. [17]. More importantly, the time scale of t̃w

over which the cross over from the FDT to the aging regime occurs according to the present

model is comparable with experimental observations as shown in fig. 4. We also display in

the inset of this figure, the FDT violation corresponding to the case of fig. 2 as seen from

the correlation windows. This is similar to results[18] from molecular dynamics simulations

of the binary Lennard-Jones mixtures.

The present model for an amorphous solid can be justified from a semi-microscopic basis.

The potential energy is expressed as a Born von Karman type expansion of the coordinates

{ri} of the N particles,

H =

′
∑

ij

J
(2)
ij uiuj +

′
∑

ijk

J
(3)
ijkuiujuk + .. + G(ui), (11)

where ri = r0
i + ui. The primes in the summations in the RHS indicate that the terms

having all the corresponding running indices i, j, k etc. being same are absent. In case of

the amorphous solid, {r0
i } constitute a random structure corresponding to a local minimum

of potential energy and ui is the displacement of the i-th particle from its parent site.

The expansion in terms of ui’s is valid over the time scale of the structural relaxation.

The single site potential G(ui) [8] in the RHS of (11) is being included to stabilize the

system. We will approximate U =
∑

i<j φij as a sum of two body potentials and write

the potential energy in the translationally invariant form given by eqn. (1) by assuming

J
(3)
ijk = J

(3)
ij δjk + J

(3)
jk δki + J

(3)
ki δij and J

(p)
ji = (−1)pJ

(p)
ij etc. For reaching the expression

(1) the coefficients of the single site term G(ui) =
∑

i{w2iu
2
i + w3iu

3
i + ...} are chosen as

: w2i = −
∑′

j J
(2)
ij , w3i = −

∑′

j,k J
(3)
ijk , etc. The semi-microscopic interpretation described

above is useful in linking the model with thermodynamic parameters[19]. This will test

further the possibility of using the mode coupling approach to study the complex dynamics

of the non-equilibrium state of an amorphous solid. CSIR, India is acknowledged for financial
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62, 313 (2003).

[9] L. Lukenhemier R. Wehn U. Schneider and A. Loidl, Phys. Rev. Lett. 95, 055702 (2005).

[10] P.C. Martin, E.D. Siggia and H.A. Rose, Phys. Rev. A 8, 423 (1973); R. V. Jensen, J. Stat.

Phys. 25 183 (1981).
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FIG. 1: The correlation C(t + tw, tw) vs. t for a set of waiting times tw’s in the ergodic phase,

a2 = .82 and a3 = 2.0. Inset shows the exponent βα for final stretched exponential relaxation w.r.t.

tw. Dashed line is the corresponding equilibrium value of stretching exponent.
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FIG. 2: The correlation C(t + tw, tw) vs. t for a set of waiting times tw’s in the nonergodic phase,

a2 = 0.5 and a3 = 6.0. Inset shows scaling of different C(t+tw, tw)’s as a function of h(t+tw)/h(tw).

Here h(t) ≡ exp[t1−κ/(1 − κ)] with κ = .96.
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