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Abstract. The three dimensional ferromagnetic spin-half Ising model with an ar-
bitrary external magnetic field is considered in the spatial continuum limit and under
a certain tempering condition to be imposed on the pair-wise spin-spin interaction. An
expression for the partition function has been obtained for a tempered RKKY type
interaction. The solution predicts the classical mean-field behaviour above a critical
temperature below which the spontaneous magnetization jumps discontinuously from
zero to the saturation value.
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1. Introduction

'I"he theoretical problem of order-disorder transitions in general and of phase tran-
sﬂiqn in ferromagnetic systems in particular has often been treated in terms of the
statxst?cal mechanics of Ising Model (Ising 1925) which is, in a certain sense, the sim-
plest idealization of the underlying physical situation (Newell and Montroll 1953).
Exai.ct solutions of the classical spin-half Ising model with nearest neighbour inter-
actions are however, known only for the one-dimensional (non-zero field) and the
two-dimensional (zero field) lattices (Newell and Montroll 1953, Onsager 1944, Yang
1952). From these exact solutions as also from some very general statistical mechani-
cal considerations, it follows that there exists an important relationship between the
occurrence of the order-disorder phase transition and the dimensionality and the range
of 1n.teraction for the system in question. Thus, the one-dimensional Ising system with
a ﬁnzte‘ range of interaction shows no transition to the ordered phase because of the
offsetting effect of statistical fluctuations. The two- and the three-dimensional Ising
systcr‘n.s, on the other hand, do exhibit an order-disorder transition (second order phase
transx.uon in the absence of external fields). The question of phase transitions in a
Onc—dxme.nsmnal system of spins interacting via a long range potential, decreasin
;};ioncnnally with distance, has been treated intensively in the recent past’ (Kac 1959g
dimzrn ;22;{ 1963,1Kac and Helfand 1963). The partition function for such a one:
P de::; Cedhis'bfen evaluated exactly by Baker (1961, 1962) following the
mteracting vis 031; y Kac .(1959) for d}e case of a one-dimensional gas of molecules
o 1o a2 e:;pontfnha.lly decreasing inter-molecular potential. In this for-
eting o §Ch mo;le i u1:11ncr:1on is express?d as an average over a set of stochastic fields
€ as a result of inter-molecular interactions, and advantage is
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taken of the fact that the correlation function for a stationary, Gaussian, Markoff
process is an exponentially decreasing function. The one-dimensional system con-
sidered by Baker indeed shows a second-order phase transition, akin to the lambdo
transition of liquid He? in the limit of infinite range of interaction. Extension of the
above programme to higher dimensionality is limited by the fact that the Markoff
process is intrinsically one dimensional. The two-dimensional problem could, how-
ever, be treated by assuming the inter particle potential to be factorisable row- and
columnwise (Kac and Helfand 1963). This is of course, highly unphysical. Thus,
the three-dimensional classical Ising problem has remained unsolved.

Attempts have been made to modify the three-dimensional Ising model so as to
make it mathematically tractable and presumably more physical. Thus, in the ex-
actly solvable spherical model of Berlin and Kac (1952), one replaces the dichotomic
nature of the spin variables g, (==1) by the sphericalisation condition )z'}pv’}:.N .

In the Gaussian model] (Berlin and Kac, 1952) on the other hand, one introduces a
Gaussian probability measure for the spin space. In the present paper, we
report a treatment of the Ising model in the fluid (continuum) limit, wherein
the dichotomic nature of the spin variables is retained, but the spatial discrete-
ness (lattice) is replaced by a continuum. We shall refer to this as the Ising fluid.
An essential simplification follows from a certain tempering condition to be imposed
on the pair-wise spin-spin ‘ exchange’ interaction, namely, that its spatial Fourier
transform should have a finite support in the reciprocal space. This tempering condi-
tion is, of course, much more restrictive than is necessary. It holds for the RKKY
type long-range interactions but obviously rules out the nearest neighbour (derivative
of the delta function type) interactions. We believe that inasmuch as the discreteness
of the spin variables is more essential than the discreteness of the spatial lattice, and
that the RKKY type interactions do obtain in magnetic alloys and magnetic semi-
conductors, the solution obtained here should be of considerable interest. The solu-
tion is asymptotically exact (in the thermodynamic limit) above a critical temperature
T,. Below T,, however, no such exactness is claimed.

2. The model

We will consider a system of V (=n?) spins denoted by the dichotomic variables p, =1,

distributed over the vertices R; of a simple cubic lattice of lattice constant 2 and in-
teracting through the pair-wise potential 7, =7(|[R;—R,,|). The system is placed
in an external magnetic field of strength H (measured in the units of energy). The
partition function {(N, T, H) can be written as

J(N, T,H)== Trexp( —BIt)

~f f KBS 2 o by OH Ze) X i)y (1)

Here p(u) is the probability measure in the spin (w) space given by p(u) =28(p2—1),
and other symbols have their usual significance. The delta function ensures the
dichotomic nature of the spins.

The bilinear exponent occurring in eq. (1) can now be diagonalized by the following
unitary transformation (in analogy with the diagonalization procedure of the tight-
binding scheme with one Wannier orbital per site):

X = QN 2wy cos (6-Ry), 1 =@IN) Zpysin (6 R) (@)
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for K #0, and
-1/2
X{('v=0 :N 1 21'[14[

along with the allowed values of the reciprocal vector K(=x, ks, Kk3) given by the
cyclic boundary condition, i.e.,

Kys Koy Ky = (2m[na) my, Mg, ms,
with My, m2=03 j:ls iQ’“'a,:I: (71_‘1)/2, and
my=0, 1, 2,..., (n—1)/2.

This corresponds to K lying in the upper half of the first Brillouin zone. Thus, in
terms of these orthonormalized real variables we get

+eo o
RN, T, H) = [ o [ exp (D47Y (A2 + (224 8HV N X)) x

xp ({2, ¥} }) Dax) az), (3)
where 7V =% FIR—R,]|) cos x (R;—R,,)
(t—m)

Here ;({Xiv, 2"":« }) is the transformed joint probability measure in the {Xiv, T:’ }

space. The Jacobian of the transformation is unity. .

We shall now consider the continuum limit of the above expression in the asymptotic
sense. The continuum limit, i.e., a—0, Na®*= Q 5 (=the volume), and the thermo-
dynamic limit ( Q) y—0) can, however, be combined in an essential way as suggested
by the theory of lattice spaces (Gitterraum) of Bopp (1958). Accordingly, we write
for the direct lattice

s~ n L, A~aRL, I~ L3 Ay (4)
l
and for the reciprocal lattice

3 3
b~2mn Y2 [l BAu2mnil2 I7L, andz~”’L f d3x (5)
(2m)3

such that the number of lattice points in the direct as well as in the reciprocal lattice
is (4/a)*=(B[b)3=N. Here L is some characteristic length of the system. Also,

Fin~n312 7N (Xr), and ]f,\, (E)af TN (Ar) eixr d3r (6)

K

where the factor n73/2 has been introduced so as to retain the proper intensive and the
extensive nature of the physical quantities involved. Here 7V (Ar) is the interaction
function, and A has the dimension of reciprocal of length. Inasmuch as there is no
other characteristic length in the fluid limit, the scale is set by A™1. We can, therefore,
take L=A"1 without loss of generality.

Now, we turn to the tempering condition to be imposed on 7V (Ar). We require it
to have a finite support (to within an additive constant) in the reciprocal space, i.e.,

jiv= 0 (or a constant) for k > &, where k, is independent of W, or grows sufficiently
slower than N as N->c0. More specifically, we take an RKKY type interaction:

3

FN(Xry ~ 0732 [ j (M) (.1_)

Ar
for which
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N <
jx NI”2(1—3>\2) +IC for IKI (7)
~ IC for | k| >,
where C is a constant. Here J is an interaction constant and j;(x) is the spherical
Bessel function of order one. This interaction is of a shorter range than the true

RKKY interaction [notice the factor (Ar)7%] and satisfies the tempering condition
stated above.

Now, the exact solvability follows from the following considerations. We note
that the set of dichotomic variables p, is a set of identically distributed statistically
independent variables with mean zero and variance unity. X’ {(V, r ,{V are linearly inde-
_pendent (but not statistically independent) combinations of p;, and can be arranged ac-
cording to some assigned ordinality (e.g., according as ]ﬁ > ],ch > ]KN: >... .>]ﬁrN).

It follows from the well-known extension of the central limit theorem (Feller 1972)
that the set of variables XN Y, N forms the so-called triangular array having the pro-

perty that for a given «x=:x,, the truncated set ‘.XN Y N} k<K

a set of statistically independent Gaussian varlables, with mean zero and variance
unity, in the limit M~oo. This asymptotic statistical independence can be expressed
mathematically in the present case as

p({x) ) g (X% oM SCXY 1YY o) (8)

where (%) is the normalized Gaussian distribution function, and f ( {X‘,?r, Y J: } > Kc)

is the joint probability measure of the remaining variables normalised to unity.

Now, all we have to do is to combine the tempering condition (Eq. (7)) and the
asymptotic statistical independence (Eq. (8)) by setting «,=A, and substituting them
in Eq. (3). We get

tends asymptotically to

400 _
2N, TH>~e"’Nﬂfo jexp[ ArN—%) (M2 (2252) 4+ VNBHEY | x
K
N N
4 (£)
“<A \Vor ) \Vor

With  TN=ypa2 (1 - _2)
3N

Thus the problem is reduced to evaluating a set of Gaussian integrals. We note at
once that for (I‘{cv——%)<0 for all «, or T>T,=n%kp, the Gaussian integrals can at
once be performed. For T < T,, we get divergence and the partition function 1s
ordinarily not well defined. We shall presently identify T, with the critical tempera-
ture of phase transition, and then extend the treatment to temperatures below T as
well.

3. Results and discussion

Case ] T>T,=In*lkp (paramagnetic region)
Using the relation f e eax’+bxdy = /\/ I e—b%4a for Re a<0,
—00 —a

we get directly the Gibbs thermodynamic potential as
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. NikgT\ r° xZ
GN, T,H)y=—kgTInZ(N, T,H) ==( 2.2 )foln ( e— (1 —¢) 5—) x2dx —
N2
— tant 10
T (T—T) -+ constan (10)
where € = 1 —T_fT.

From this, one gets the isothermal magnetic susceptibility x(77) (per spin basis) as
1 (82G 1 1
T) = 21— = ('— ) ~ ah
() =2~ 3\ om ) ~ BT —T,)
the well-known classical Curie-Weiss law.

Also the zero-field specific heat Cg—q (per unit volume basis) is seen to behave as

Crr—o — Pt — _,1__(32(;) ~(T—T,) * for T~>T,* (12)
N—>co QN oT? H=0

This confirms that T is to be identified with the critical temperature. Spontaneous
magmnetisation is, of course, identically zero for T > T,.

Case 11 T < T, = In?[kg (Ferromagnetic region)

Here we have to note that the integrand in eq. (9) diverges as exp (x?) as x—>_f 0.
However, the limits of integration can no longer be set as infinity. In point of fact,
these must be replaced by the maximum and the minimum values of the variables
involved, i.e., by (_X,va-)maX = (T‘Z)max —+4-aV N for «# 0, and (x‘]g=0)max =+VN>

min min

min
where 0<<a<<1l. The explicit numerical value of a is of no interest at the mom_er‘lt-
When this is done, we get meaningful expressions for the thermodynamic quantities
such as the spontaneous magnetisation per spin and the specific heat per unit volume.
We will first consider the spontaneous magnetisation. For this we have to compute
the field dependent contribution to the Gibbs thermodymnamic potential
Gricld (N, T, H) given by

_M/RT Nye v NeHxY
> 2 - ~ —_—
GField)(N, T, H) ~ —kpT In (fc < LX) VANERE, de,"/\/zﬂ)
CVN

or

i - ¢ 1 ol el N+ BHN
iel)(N, T, H) ~ — ! 5 N N
(Field)( ) kg7 In h/g,.,( 2| e| A/ NEBHA/N

ele | N—BHN 13
"‘2\61\/%5}1\/?)} 19

where we have used the asymptotic form for the error function

1 122
lsz—ioo erf (Z)N—‘\—/—; 26 ,for‘arg z\<3n/4o_

Thus the spontaneous magnetisation per spin (m,) is given by
1 {6G 4

This shows that the spontanecus magnetisation jumps discontinuously at T =7, to its
saturation value of one per spin.

dimensional Ising ferromagnet

Such a jump was of course predicted for the one-

by Anderson and Yuval (1969) and was later
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established more rigorously by Dyson (1971) for interactions varying as R, “, where
l<a<2.

Next, we shall consider the zero-field specific heat Cyy—o (per unit volume basis).
Again, recalling that the limits of integration are J-a+4/, we get,

G(N, T, H=0) ~— (W)fl lhex‘b(”Q“zN (GHI = ?))

] 2
472 0 n 2 x2dx

e+(l—-e)—§

+constant (15)

From eq. (15), the zero-field specific heat per unit volume Cg—q can be directly
obtained as

C = Pt i.(iq) =(kB/\3T 32 11 [ %2 2
H=0 Ve QA \8T?) =0 e )3T2f0n e—}—(l—-e)3 | x3dx (16)
Thus, the critical behaviour of the specific heat Cr—g (per unit volume) below T,is
given by
Ca=0 ~ (T,—T)7* for T >T, (17)
We find the critical index to be symmetrical about T, in respect of specific heat Cgr—g
At the end we would like to make a few clarifying remarks. It must be noted that
below 7, the spontaneous magnetisation jumps to the full saturation value and stays
constant, whereas the specific heat is still non-zero. This seems paradoxical. The
explanation 1s that the specific heat is computed on the per unit volume basis while the

magnetisation on the per spin basis. The volume () M however, varies as N'¥ in the pre-

sent case. Thus a spin fluctuation of the order of N'1/2 per spin can give rise to non-
~ zero finite specific heat on the per unit volume basis.

In conclusion, we would like to point out that the tempering condition used here is
sufficient but not necessary. Also, the present results have been derived on the basis
of the central limit theorem (cf. Eq. 8). It is, however, well known that this theorem
breaks down in the tail of the distribution where the statistical independence no longer
holds. The latter introduces no error above T, in the asymptotic limit as N ->o0.
The behaviour below T, is, however, expected to get modified.
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