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Experimentation in Biology of Plant Abiotic Stress Responses
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During the course of growth under natural field conditions, crop plants are exposed to a number of different abiotic
stresses (such as water stress, temperature stress, salt stress, flooding stress, chemical stress and oxidative stress). These
stresses exert adverse effects on metabolism, growth and vield of the crops. The intensity of the abiotic stresses is on
therise,implying that various possible solutions for mitigating the damage caused by such stresses must be combined
for future increase in crop production. At the level of plant genetics, there are indications that it may be possible to
improve plants against such stress factors. However, the practical success in this regard depends on how well we
understand the biochemistry, physiology and molecular biology of the plant abiotic stress responses. The cellular
response of plants to abiotic stresses is of complex nature involving simultaneous interplay of several mechanisms.
Although thereisagreat deal of progressin cataloguing the biochemical reactions that are associated with plant abiotic
stress responses, precise understanding of the defense reactions leading to acquisition of stress tolerance remains a
challenge. A number of different experimental systems including lower and higher plants as well as microbes have
been analyzed for examining the plant abiotic stress responses. The molecular analysis of the stress response has been
carried outat the level of stress proteins, stress genes, stress promoters, trans-acting factors that bind to stress promoters
and signal transduction components involved in mediation of stress responses. The functional relevance of the stress-
associated genes isbeing tested in different trans-systems including yeast as well as higher plant species. In this article,

wediscuss selective features of experimentation in biology of plant abiotic stress responses.
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Introduction

Green revolution nearly doubled food production.
However, world population will touch the 8 billion
mark in about 25 years from now. As per predictions,
by 2020 we will need 40% more grains than what we
produce today (Chrispeels 2000). That too from the
agricultural land that is shrinking every passing day
due to increased urbanization and excessive use and
abuse. This means it is not just production but
production per unit area that must increase. Will we
be able to increase the genetic capacity of the crops to
yield the desired increased output? But before we ask
for the increased future agricultural output, it is rather
an uneasy feeling to learn that we harvest only a small
proportion of the present-day genetic capacity.
Detailed studies have shown that we lose between
10 to 90% of the existing genetic capacity in most of
the crops (Boyer 1982, Widawsky & O'Toole 1990).

The tapping of the genetic potential in crops is
determined to a large extent on the prevailing
environmental factors. The genotype x environment
interaction (G x E) is thus a key factor controlling the
growth performance of the crops. The term
environmental factors in this context includes both
the climatic and the soil attributes. The irregularity
in circadian and seasonal perturbations of these
factors is often a rule and not an exception. When
environmental perturbations are rapid and
unpredicted, there is hardly an opportunity for plants
to adjust to the changed conditions. This causes onset
of stress regimes. The abiotic stresses (such as drought
stress, water stress or desiccation stress caused by
paucity of water for long periods; flooding, water-
logging or hypoxia/anoxia stress caused by excess
water; salt stress caused by increased level of salts in
the soils; temperature stress which is both due to low
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and high ranges of the ambient temperatures caused
due to sudden atmospheric heating or cooling; metal
stress caused by excessive levels of heavy metals such
as arsenic and cadmium and finally, oxidative stress
caused by combination of different stress conditions
with high light stress) cause appreciable reduction in
biomass production and grain yield in most crops
(readers may kindly refer Grime et al. 1989, Jones et
al. 1989, Bohnert et al. 1995, Nilsen & Orcutt 1996,
Busk & Pages 1998, Khanna-Chopra & Sinha 1998,
Lerner 1999 for details on general aspects of plant
abiotic stress biology).

Different crop ecosystems are affected by
different abiotic stress factors and to a differential
extent. Let us consider here an example of rice. This
crop species constitutes the mostimportant food crop
in the world (Widawsky & O’Toole 1990, Khush &
Toenniessen 1991, Khush & Baenziger 1998,
Shimomoto 1999). Globally speaking, India is the
second largest producer of rice and ranks first in
terms of area under rice cultivation (IRRI Rice
Alamanac 1993). The world rice-growing areas are
divided in four different ecosystems namely irrigated
rice, upland rice, lowland rice and deep-water rice.
These ecosystems differ appreciably with respect to
the grain production levels. The abiotic stresses that
prevail in different rice ecosystems are shown in
figure 1. These stresses have a large bearing on
differential production levels of the different rice
ecosystems (Widawsky & O"Toole 1990, Khush &
Toenniessen 1991, Khush & Baenziger 1998). The
assessment of rice economists is that abiotic stresses
affect rice more than the biotic stresses (Hossain
1995). Any improvement made for the tolerance to
abiotic stresses in rice would therefore have large
economic gains. The abiotic stresses have been
reported to cause significant losses in almost all crops
including wheat, maize, barley, sorghum, chickpea,
pigeonpea and cotton.

The conventional breeding methods such as those
based on genetic variations, inter-specific or inter-
generic hybridization, induced mutations and
somaclonal variations have played a major role in
increasing crop production. Systematic screening of
plant germplasm has shown that there are excellent
stress tolerant types locally available. For instance,
rice types “FR13A” and “FR43B” of India,
“Kurkaruppan” of Sri Lanka and “Goda Heenati” of
Indonesia have notably higher level of flooding
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Figure 1 Different world rice ecosystems. The percentage-wise
harvested rice area for different ecosystems is as follows:
Irrigated- 45%, Rainfed lowland-33%, Upland-15% and Flood
prone-7%. The major abiotic stress factors that prevail in
different rice ecosystems are shown. D, drought stress;
E flooding stress; S, salt stress and T, temperature stress.

tolerance (see Mohanty et al. 2000). The genetically-
superior collection of germplasm has been made for
several other abiotic stresses in rice (i.e. “Pokkali” and
“Nona bokra” for salt stress response) as well as for
different crops (i.e. “Kharchiya” for salt stress in
wheat and “Atylosa albicans” for salt stress in
pigeonpea). In recent years, the conventional
breeding methods have been fortified with the
addition of molecular breeding approach which
banks on the application of different molecular
markers for assisting in the genetic selection process
(Mohan et al. 1997, Knapp 1998). Apart from the
conventional and molecular breeding methods,
production of transgenics has emerged as a powerful
approach for altering genetics of crops. Research on
production of transgenic plants has made great
strides during the past 15 years (Hiatt 1993, Galun &
Breiman 1997, Geneve et al. 1997). Tools and
techniques for improvement of different crops
through genetic engineering approach have been
perfected to a great extent in several international as
well as national laboratories. There are umpteen
reports showing that crops tolerant/ resistant to
herbicides, insect pests and viral and bacterial and
fungal pathogens have been produced by employing
transgenic technology.

In spite of the above progress, stress-tolerant,
high-yielding crop cultivars are yet to find place in a
common usage in the farmer’s field. The success in
generation of abiotic stress tolerant crops through the
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conventional breeding methods has only been partial
(refer Mohanty et al. 2000 for discussion on
production of flooding tolerant rice by conventional
and unconventional approaches). The application of
molecular markers for mapping abiotic stress
tolerance is far from fruition. The transgenic
approach is yet to produce abiotic stress tolerant plant
with high level tolerance that combines well with
increased yield (Grover & Minhas 2000). Considering
the wide-reaching implications of producing abiotic
stress tolerant crops particularly for developing
countries which have far-less organized agriculture
than the West, incessant research on interactions of
abiotic stresses and crops is a must. Our group has
discussed the diverse issues that are involved in
production of abiotic stress tolerant crops in several
recent reviews (Grover et al. 1993, Grover et al. 1995,
Singla etal. 1997, Pareek etal. 1997, Groveretal. 1998a,
Grover et al. 1998b, Grover 1999, Grover et al. 1999,
Minhas & Grover 1999, Katiyar-Agarwal et al. 1999,
Grover & Minhas 2000, Grover et al. 2000, Grover
2000, Grover et al. 2001, Katiyar-Agarwal et al. 2001,
Dubey & Grover 2001). From these as well as host of
other reports published on this theme (Khanna-
Chopra & Sinha 1998, Dhaliwal et al. 1998, Bajaj et al.
1999), it can be noted that a number of different
biological systems are being employed for the study
of abiotic stress responses in crops. These include
microbial systems, fish as well as several lower and
higher plants for the isolation of requisite genes and
yeast and several higher plant systems for testing the
relevance of the candidate genes (Grover et al. 1998a,
Grover et al. 1999). In this article, we provide details
on (i) the experimental systems that have been
exploited for understanding the molecular biology
and biotechnology of plant abiotic stress responses
as well as (ii) the details on molecular parameters that
have accrued through the analysis of such systems.
It is important to debate on these aspects for making
further in-roads into the science of producing abiotic
stress tolerant transgenics.

Experimental Systems for Analyzing Molecular
Responses of Plants to Different Abiotic Stresses
The experimental work on responses of crops to stress
has been carried out using stress conditions that
prevail in field as well as induced stress conditions
in the laboratory set-up. The most favoured approach
has been to experimentally subject the control plants
to stress conditions simulated in the laboratory (or

191

greenhouse). This simplified route is practiced to
minimize the experimental variations invariably
involved in field-conditions. However, the responses
of plant to the stress conditions mimicked in the
laboratory may not entirely match with those in the
field conditions. In natural habitats, onset of stress is
often a gradual process. On the other hand, stress
imposition is relatively rapid in laboratory-based
experiments where small petri dishes or pots are often
used. With respect to salt stress, constantly fluctuating
positive as well as negative interactions amongst
different salts can potentially alter the cell response
in natural habitats as against in laboratory-media that
have defined and fixed salt compositions. The plant
response to stress conditions also shows variations
with respect to the degree of stress. Against lethal
levels of stress, the metabolic responses mostly
represent the events associated with cell senescence
or death. On the other hand, the imposition of sub-
lethal stress provides certain beneficial effects in
adapting the system to stressful regimes (however,
under certain circumstances, even the cell senescence
or death associated with lethal or sub-lethal stress
levels is the component of the adaptive strategy).
Notably, plants exposed to sub-lethal stress prior to
lethal stress are often more tolerant to lethal stress
than the plants which are directly transferred from
control to lethal stress regimes (Lin et al. 1984, Singla
et al. 1997). The sub-lethal stress level has therefore
emerged as the choicest approach for the analysis of
adaptive stress responses. Apart from the sub-lethal
stressed systems, there are strong indications that
changes that follow in the recovery phase are directly
correlated with tolerance mechanisms. The samples
harvested at various intervals during recovery
from stress have served as useful materials for
understanding the tolerance mechanism.

The stress effects have been examined at canopy
level, whole-plant level and at the level of organs,
tissues and individual cells. At all these levels, plant-
abiotic stress interactions have been scored using
morphological (such as change in growth pattern of
the roots etc.), physiological (such as root-shoot
partitioning, photosynthesis and nitrogen
metabolism) and biochemical (such as enzyme
activities and macromolecular changes) parameters
(Pareek et al. 1997, Singla et al. 1997, Grover 1999).
As the basis of all plant metabolic adaptations are the
events that take place at the molecular level (i.e. gene



192

expression changes in terms of altered patterns of
RNA and protein synthesis), molecular events are the

targets when aim is to alter the genetics of crops for

improved stress tolerance. The understanding of the
RNA and protein alterations induced by different
stresses has thus turned out to be a key objective in
stress-related studies.

The research work on plant-abiotic stress
interactive responses has been carried out employing
a number of different plant species. This selection is
often made on the basis of relative sensitivity/
tolerance as well as economic importance. Rumexhas
been exploited as a model system to study the
relationship between flooding resistance and plant
distribution (Arteca 1997). Detailed studies using this
genus have provided valuable information on the
role of root physiology in determining flooding
tolerance. Upon exposure to dehydration stress,
Craterostigma plantagineum, a resurrecting moss, is
noted to lose almastup to 99% of its total water content
and yet upon rehydration revives and turns to the
normal growth patterns (Bartels et al. 1990). This
system has been intensively analyzed for examining
water stress responses. Tortula ruralis has been
much-analyzed system for understanding the
reasons underlying stability of ribosomes under
extreme water stress conditions (Dhindsa & Bewley
1978). Mesembryanthemum crystallinum, the
common ice plant, has been studied to a great detail
for examining salt stress responses (Cushman et al.
1990). When stressed by addition of salt to the medium,
or by drought or cold, Mesembryanthemum plants
reproducibly change their primary mode of carbon
assimilation from C, to CAM (Cushman et al. 1990).
The weedy dicotyledonous species Arabidopsis
thalianahas been extensively employed for the studies
on abiotic stress responses. A large number of mutants
have been generated in this species which have proven
to be of enormous help in characterization of stress
responses (Liu & Zhu 1997, Liu & Zhu 1998, Hong &
Vierling 2000). The complete genome of Arabidopsis
has recently been sequenced (The Arabidopsis
Genome Initiative 2000) and currently there is a great
deal of emphasis on the functional genomics of this
species (for further details on structural and func-tional
genomics, refer Somerville & Somerville 1999, Walbot
1999, Maheshwari et al. 2001, Dubey & Grover 2001).
The understanding of the fundamentals of the stress
responses from this species will possibly be more
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elaborate than any other plant species in times to come.
Amongst the crop plants, a great deal of experimental
work on flooding stress response has been undertaken
on Oryzasativa(Hossain etal. 1994, Hossain etal. 1996,
Rivoal et al. 1997) and Zea mays (Wignarajah &
Greenway 1976, Laszlo & Lawrence 1983, Kelley 1989,
Kelly et al. 1991). Z. mays is a highly-sensitive crop to
flooding stress while O. sativa is relatively a flooding-
tolerant cereal (Perata & Alpi 1993). Hordeum vulgare
has turned out to be a favourite material for studies
on salt stress. This species is considered to be the most
salt-tolerant cereal (Suhayda et al. 1992). O. sativa and
Triticum aestivum are reported to be highly-sensitive
to salt stress (Maas & Hoffman 1976, Rawson 1986,
Maas & Grieve 1990, Bhushan & Grover 1993, Barlow
et al. 1977). The effects of water stress have been
extensively analyzed using O. sativa and T. aestivum
(Mundy & Chua 1988, Claes et al. 1990, Bostock &
Quatrano 1992, Kusano et al. 1992, Pareek et al. 1995,
Nakagawa et al. 1996, Pareek et al. 1997, Singla et al.
1997). The experimentation in abiotic stresses
responses utilizing the above as well as other species
have involved high-yielding stress sensitive cultivars,
moderately-yielding stress tolerant cultivars and low-
yielding stress tolerant wild relatives of the specific
plants (figure 2). The wild relatives of crop species are

tolerant wild relative, * sensitive cultivar | stress tolerant cultivar
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Figure 2 Experimental systems and techniques that have often
been employed for the analysis of abiotic stress responses.
The experimentation in abiotic stress responses have been
undertaken employing highly sensitive and the highly tolerant
types as well as the contrasting germplasm. These systems
are subjected to sub-lethal stresses in order to evoke the stress
responses. The induced responses have subsequently been
examined at various hierarchial levels which include molecular,
biochemical and physiological changes examined at tissue-,
organ- as well as organism-based expression. The relevance
of the candidate stress responsive genes and proteins towards
conferring stress tolerance is examined using different micobial
and higher plant systems (see text for details).
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extremely useful source for agronomically-important
genes. As mentioned above, “Nona bokra” and
“Pokkali” are the low-yielding local selections of rice
that have proven useful for studying mechanism(s) of
salt tolerance in rice (Akbar et al. 1986, Moons et al.
1995). The halophytic wild relative of rice Porteresia
coarctata is noted for its salt tolerance (Raychaudhuri
& Majumdar 1996). Another wild rice type O.
granulata has notable sensitivity to water-logging.
The use of breeding lines that have a contrast in their
stress responses has also been followed in many
instances. In H. vulgare, CM72 and Prato cultivars have
a notable contrast with respect to their salt stress

responses (Epstein et al. 1980). These contrasting types -

have been analyzed for RNA and protein expression
studies (Ramagopal 1987a, b, c). On the same line,
FR13A and FR 43B rice types have been exploited for
studies on flooding response (Mohanty et al. 2000).
Several national and international breeding programs
have been initiated to introgress flooding tolerance
from the above sources into high-yielding modern rice
cultivars resulting in production of selected tolerant
lines which are presently at different stages of testing
(Mohanty et al. 2000).

While the use of specific plant species is
emphasized in the above account, it must also be
appreciated that plant-abiotic stress responses are,
by and large, conserved. For instance, the nucleotide
sequences of different hsp (heat shock protein) genes
is nearly identical in different biological systems
(Singla et al. 1997, Katiyar-Agarwal et al. 2001).
Therefore, any conclusion made with regard to stress
response of a specific plant would be applicable to a
wide range of different plant species. This conclusion
is further supported by the observed synteny in the
genomes of different plant species (Gale & Devos
1998). The use of different species in varied studies
is thus hardly a handicap in stress-related literature.

The microbial systems can provide genes for
bringing in high-level plant abiotic stress tolerance
as well. These organisms are uniquely empowered
with the capacities to grow and reproduce under
conditions in which the life of higher plants is difficult
to even imagine. These organisms are present in
snow-capped glaciers, volcanoes, deserts or springs.
The natural thermophilic habitats such as sulphur or
iron-rich hot springs and geothermal vents allow
growth and survival of several microbial populations.
Several classes of osmo-tolerant microorganisms are
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found in a wide range of environments such as
bacteria and algae in salt lakes, several kinds of yeast
in syrups and filamentous fungi in saline soils of low
water content and stored food. In their natural
habitats, microorganisms are frequently exposed to
osmotic changes that are not only sensed but
converted into an activity change of specific enzymes
and transport proteins and/ or their synthesis de
novo such that the osmotic imbalance is rapidly
restored (Edwards 1990). Selected examples of osmo-
compatible solutes include glycerol, arabitol,
erythritol, mannitol, glycosyl glycerol, sucrose,
trehalose, proline, glutamate, glycinebetaine and
proline-betaine (Edwards 1990). Bacillus responds
to osmotic stress by initially taking up K* ions
followed by large amounts of proline by de novo
synthesis (Measures 1975, Whatmore et al. 1990,
Whatmore & Reed 1990). This bacterium also uses
compatible glycinebetaine solute which is
accumulated either due to de novosynthesis or direct
uptake from the environment. Multiple transport
systems are noted to be involved in the uptake of
glycinebetaine in Bacillus. It has been observed that
the most prominent physiological effect in
osmotically-stressed yeast cells is the enhanced
production of glycerol to counterbalance the osmotic
pressure (Pavlik et al. 1993). Obligate thermophiles
are represented by a wide range of species, the best
studied of which are Bacillus and Thermus genera.
The thermotolerant species of Bacillus such as
B. licheniformis and B. subtilis are able to tolerate a
temperature of 20-50°C, facultative thermophiles
such as B. coagulans tolerate a range of 30-60°C and
obligate thermophiles such as B. sterothermophilus
and B. acidocaldarius tolerate a range of 40-80°.
Bacillus population is shown to possess well-formed
mechanisms for tolerating severe heat stress (Visick
& Clarke 1995). Examples of selected genes of
microbial origin proven useful for enhancing abiotic
stress tolerance of higher plants are mentioned in the
subsequent account.

Molecular Parameters for Analyzing Abiotic
Stress Responses

Detailed characterization of stress responses has
shown that specific proteins accumulate in response
to imposition of stress conditions. These proteins are
commonly referred to as stress proteins. The classical
example of such proteins is the heat shock proteins
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(HSPs) that are induced primarily in response to high
temperature stress (Vierling 1991, Singla et al. 1997,
Katiyar-Agarwal et al. 2001). Specific stress proteins
have also been noted to accumulate in response to
low temperature stress, water stress, salt stress and
oxidative stress (Grover et al. 1998a, Grover et al.
1999, Chang et al. 2000, Grover et al. 2001). The amino
acid sequence of the stress proteins has enabled
isolation of the specific gene clones (Claes et al. 1990,
Moons et al. 1998). The stress genes have also been
isolated by differential screening of cDNA libraries
constructed from control and stressed tissue mRNAs
as well as through use of subtractive cDNA libraries.
In recent years, the technique of differential display
of cDNA clones has also been successfully employed
for isolation of stress-specific clones (Liang & Pardee
1992, Huq & Hodges 1999). Selective examples of
genes and proteins induced by heat shock, cold stress,
water stress and salt stress are presented in table 1.
The stress genes isolated and cloned from microbial
systems include mannitol phosphate dehydrogenase
gene from E. coli, genes encoding betainealdehyde
dehydrogenase, choline dehydrogenase and levan
sucrase isolated from B. subtilis and gene encoding
choline oxidase from Arthobacter globiformis. The
recent progress made in isolation, cloning and
characterization of anaerobiosis, low temperature
and high temperature-induced stress promoters is
among the major developments which have taken
place in stress biology in recent years (table 2). Most
of the stress promoters contain an array of stress-
specific cis-acting elements that are recognized by the
requisite transcription factors. Importantly, the
knowledge generated from stress promoters is
proving useful not only with respect to the funda-
mental studies on stress-inducibility but also for the
regulated expression of stress gene in transgenic
systems (for further details see Katiyar-Agarwal
et al. 1999). The studies on the mechanisms behind
switching on and off of the stress genes have placed
a great deal of emphasis on transcription factors for
the regulation of stress promoters (table 3). The
generation of stress tolerance through engineering
for over-expression of transcription factor genes is
emerging as an attractive possibility in recent years.
More details on stress proteins, genes, promoters,
transcription factors and signal transduction
components can be seen in the recent paper by
Grover et al. (2001).
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Experimental Systems for Analyzing Functional
Relevance of the Stress Genes

The foremost goal of the abiotic stress biology
research is to seek understanding of the plant
responses at the fundamental level. The question
being addressed is how plants sense stresses and
how is the defense mounted? The other equally-
important goal of stress biology research is to
produce plants that have genetically-enhanced
capacity to tolerate abiotic stresses. As the output
from the first objective is an essential input for the
second objective, both basic and applied aspects of
abiotic stress molecular biology science have an
interwoven relevance.

The term stress genes that includes genes which
are up-regulated in response to application of stress
treatments is a misnomer. It is possible that a given
stress gene may not be primarily related to the events
of stress tolerance. Therefore, it is prudent to experi-
mentally work out how the specific stress gene is re-
lated to stress tolerance. The methods for genetically
introducing the desired gene in the trans-host have
fortunately been optimized to a great deal, enabling
the use of reverse genetics approach for the same.
Further, it is possible now to not only overexpress
the gene but to under-express it as well (through
antisense technology) so that the consequences of the
gene action are proved either way.

In several studies, plant stress genes have been
over-expressed in yeast. Yeast is a unique eukary-
otic system in terms of its genotypic organization
and yet has many of the advantages which are nor-
mally seen in the prokaryotes in terms of growth
cycle (Bassham & Raikhel 2000). The complete ge-
nome of yeast has been sequenced and is noted to
encode for nearly 6000 functional proteins (Goffeau
et al. 1996). Importantly, attempts are being made
to raise knockout mutants of each one of the yeast
genes. The availability of this kind of flexibility in
the yeast system is of paramount importance. The
functional complementation of the higher plant
genes with the yeast system has proven a fertile
approach. Inrecent years, anumber of different plant
genes have been introduced in yeast with this objec-
tive. The plant hsp100 genes have been shown to
functionally complement hsp104 mutation in yeast
(Schirmer et al. 1994, Lee et al. 1994, Wells et al.
1998). On the note of caution, there are several plant
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Table 1 Selective examples of genes/ proteins induced by abiotic stresses
Plant Species LGenes/ Proteins’ l Characteristic Feature(S) Reference
Heat shock responsive gene/ proteins
Arabidopsis thaliana HSP81-1 Expression occurs at low level in absence of Takahashi et al.
heat shock (HS) and at high level at 35°C 1992
HSP81-2 Constitutively expressed at higher level and is | Takahashi et al.
moderately enhanced by elevated 1992
temperature; analysis of HSP81-2 genomic
and partial cDNA sequence suggests that the
coding region is interrupted by two introns of
304 and 106 base pairs
hsp70-1 Constitutively expressed, 4-5 fold increase in Wu et al. 1988
mRNA levels after HS
AtHSP17.6 Induced by HS; gene encodes 17.6 kDa protein | Helm and

having 157 amino acids

Vierling 1989

HSP18.2 and HSP17 4

Transcript undetectable in control tissues but
induced by HS

Takahashi &
Komeda 1989

localized in the ER during HS

AtHSP101 Induced by HS, partially substitutes the Schirmer et al.
function of yeast hsp104 1994
AtHSP22 Induced by HS, encodes 22 kDa protein and is | Helm et al. 1995

Brassica oleracea

90, 88, 86,74, 69, 66,
47,43,42,27,23,21,
19 and 18 kDa
proteins

HSPs induced by HS

Fabijanski et al.
1987

Catharanthus roseus

cDNA for hsp 90
homologue

Protein constitutively expressed in cell
cultures grown at 25°C; not detected in young
plants at room temperature but seen after a HS
at 37°C for several hours

Schroder et al.
1993

reaches maximum levels at 37°C

Cucurbita sp. 76 and 73 kDa HSPs induced by HS Strzalka et al. 1994
proteins
Daucus carota pMON 9508 hsp 70 genomic clone encoding HSP 70 Rochester et al.
1986
Dchsp70 Accumulation of mRNA is heat- inducible and | Lin etal. 1991

Glycine max

LMW classl proteins

15-18 kDa, responsible for thermotolerance

Hsieh et al. 1992

mRNA known as
halUbiS

hsp17.6-L, Code for proteins in molecular weight range Nagao et al. 1985

hsp17.5-M and of 17.3-17.5 kDa

hsp17.5-E

hsp22 Induced by HS, encodes 22 kDa protein Helm et al. 1993

hsp101 Induced by HS, encodes 101 kDa protein Lee et al. 1994
Helianthus annuus Tetraubiquitin Induced by HS Almoguera et al.

1995
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HSP17.6 and HSP17.9 Induced by HS as well as water stress Almoguera et al.
1993
Hordeum vulgare 94,85,76,71,39, 32 and Proteins accumulated in response to HS Clarke &
24 kDa proteins Critchley 1992

hsp90 mRNA

Induced by pathogen infection and HS

Walther-Larsen et
al. 1993

Lycopersicon peryvianum

Seven LMW HSPs (15-
20 kDa)

Proteins induced by heat stress

Kato et al. 1993

Polyubiquitin (Ubq1-1)

Induced by HS, 7 ubiquitin units with two
additional amino acids

Rollfinke &
Pfitzner1994

25-91 kDa HSPs

Metal ion responsive proteins

Kapoor 1986

Nicotana tabacum pTC B48 cDNA clone Encodes calmodulin-binding HSP Luetal 1995
Oryza sativa hsp82B Encodes 82 kDa protein, mRNA accumulates Breusegem et al.
to high levels within 120 min after plants are 1994
shifted to 42°C
33 kDa HSP Synthesis occurs at high temperature Fourre & Lhoest

1989

Oshsp16.9 A and 16.9 kDa HSPs Tzeng et al. 1992
Oshsp16.9 B
110 kDa HSP Heat and ABA-inducible Singla & Grover

1993

pTS1 and pTS3

Encode 16-20 kDa HSPs; also synthesized in
response to heavy metal stress

Tseng et al. 1993

104 kDa HSP Heat-inducible Singla & Grover
1994, Pareek et al.
1995
90 kDa HSP Heat-inducible Pareek et al. 1995
Pharbitis ml hsp83A DNA sequence homology to members of 83 to | Felsheim & Das
90 kDa hsp gene family; 1992
increase in mRNA levels found 2 h after end-
of-day dark treatment; encodes a protein that
exhibits 70% amino acid identity with
Drosophila HSP83
Phaseolus aureus HSP70 70 kDa protein induced under heat stress, also | Wu et al. 1993
induced due to low temperature
Phaseolus vulgaris hsp70 68 kDa protein loosely associated with the Vidal et al. 1993
mitochondrial envelope
Pisum sattwum HSP18.1 18.1 kDa classl protein Neumann et al.
1989
HSP62 Etioplast-encoded protein Necchi et al. 1987
HSP21 21 kDa nuclear encoded chloroplast-localized | Vierling et al. 1988
HSP
sHSPs ClassI and classlI cytoplasmic HSPs, DeRocher &

accumulate in embryo without HS at levels
similar as that present in heat-stressed leaves

Vierling 1994
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Vigna radiata

114,79,73, 70, 60, 56,
51,46 and 18 kDa
proteins

HSPs induced by HS

Collins et al. 1995

Zea mays

60 kDa protein

Protein induced under high temperature

Sinibaldi &
Turpen 1985

108, 89, 84, 76, 73, 30,

HSPs induced by HS

Atkinson et al.

23 and 18 kDa 1989
proteins
hsp70 Low level of expression at normal temperature | Rochester et al.
and it increases 40-60 fold at 42°C, 68% 1986
homologous to hsp70 of Drosophila
Cold responsive genes/ proteins

A. thaliana

corpHH 7.2, 28, 29,
67

Induced by ABA and water stress

Hajela et al. 1990

skinl Identical to cor 6.6; ABA and low temperature Kurkela & Franck
inducible 1990

14140 Induced by water stress, low temperature and Nordin et al. 1991
by fluridone treatment

rab18 18.5 kDa glycine rich protein induced by low Lang & Palva
temperature, water stress and ABA 1992

corl5 Induced by low temperature and drought Lin &

Thomashow 1992

1ti78 Induced by low temperature Nordin et al. 1993

1ti65 Induced by low temperature, drought and Nordin et al. 1993
ABA

corl5b Homologue of cor15a, responsive to low Wilhem &
temperature stress and ABA but notto Thomashow 1993
drought stress

1130 Belongs to dhn/lea/rab gene family, Welin et al. 1994
expressed during cold stress

1t145 ABA independent expression Welin et al. 1994

cord? Drought responsive but not responsive to Welin et al. 1994

ABA

Bromus inermis

22 kDa protein

Inhibited by low temperature

Robertson et al.
1987

pBGA12, 56, 85 and
25

ABA inducble cold responsive genes;
implicated in freezing tolerance

Lee & Chen 1993

Brassica napus

22-23 kDa protein

Inhibited by cold stress

Meza-Basso et al.
1986

Cucumis sativus

25, 38,50, 70 and 80
kDa proteins

HSPs, also induced by chilling

Lafuente et al.
1991

G.max HSP70 related HSC protein, increased synthesis at low Cabane et al. 1993
protein temperature
H. vulgare 75 kDa protein Most abundant cold stress protein Cattivelli &

Bartels 1989
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cDNAs show freezing tolerance

pAF93,pT59,pAO86 | Cold regulated cDNA clones Cattivelli & Bartels
and pAO29 1990
45 kDa protein Protein synthesis in response to cold, drought | Grossi et al. 1992
and ABA
hval Group 3 lea gene Sutton et al. 1992
bit101 Induced by low temperature, ABA and Goddard et al. 1993
drought
Lycopersicon esculentum 27 and 35 kDa 35 kDa protein is synthesized and 27 kDa Coloper & Ort 1988
proteins protein is inhibited by chilling
Medicago sativa MsaciA clone Encodes for glycine-rich protein Laberge et al. 1993
15 kDa protein Low temperature responsive protein Monroy et al. 1993
Nicotiana plumbaginifolia SOD cDNAs Transgenic plants overexpressing these Bowler et al. 1991

denatured proteins during cold stress

O. sativa 95,75,25and 21 kDa | Induced at low temperature Hahn & Walbot
protein 1989
rab16A Induced by low temperature, water stress and | Hahn & Walbot
ABA 1989
psaB, psbB, rbcL and | Chloroplast encoded genes inhibited at low Hahn & Walbot
atpE temperature 1989
rbcSand cab Nucleus-encoded genes, reduced expression Hahn & Walbot
in response to low temperature 1989
lip5, lip9 and lip19 Induced by low temperature; lip5 and lip19 Aguan et al. 1991
also stimulated by ABA
Spinacia oleracea 85 and 160 kDa Synthesized in response to low temperature Guy et al. 1992
proteins and water stress
cor85 and cor140 Heat-stable proteins; responsive to low Kazuoka & Oeda
temperature, ABA, drought and wounding 1992
cap79 79 kDa protein, plays role in renaturation of Neven et al. 1992

Solanum tuberosum

¢i13, ci19, ci7 and ci21

Transcript transiently expressed in response to
low temperature

Berkel et al. 1994

anaerobiosis

Triticum aestivum wes120 Strongly induced by cold Houde et al. 1992
wcs19 Leaf-specific gene stimulated by light during Chauvin et al. 1993
low temperature stress
Z. mays adhl Cold inducibility shown; primarily induced by | Christie et al. 1991
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Water stress responsive genes/ proteins

A. thaliana 1ti78 and iti64 [ti78 (77.8 kDa protein) mainly responsive to Nordin et al. 1993
low temperature while /ti64 (64.5 kDa protein)
responsive to drought and ABA
rd22 ABA mediates the drought induced Yamaguchi-
expression but not the seed-specific expression { Shinozaki &
of rd22 Shinozaki 1993b
ERDS5 cDNA clone Encodes a precursor of proline dehydrogenase | Kiyosue et al.
(oxidase) which is regulated at the level of 1996
mRNA accumulation during both hydrated
and dehydrated plants - homologous to yeast
putl and Drosophila sluggish A genes
rd29A and rd29B Induced by exogenous ABA following 3 h of Yamaguchi-
application Shinozaki &
Shinozaki 1993a,
1994
B. napus bnd22 Increased by progressive or rapid water stress | Reviron et al.
and salinity and disappeared on rehydration 1992
Craterostigma Several in vitro Synthesized after treatment with ABA; cDNA | Bartels et al. 1990

plantagineum synthesized clones corresponding to mRNA expressed
polypeptides only in desiccation tolerant tissues
Desiccation specific Desiccation-related cDNA clones Piatkowski et al.
major pcC gene 1990
families
cdeT27-45 Induced by ABA in leaves and callus, Michel et al. 1993
promoter active in developing embryos and
mature pollen grains in transformed tobacco
Gossypium hirsutum 6 LEA proteins and Expressed during the maturation and Baker et al. 1988
genes desiccation phases of seed development
lea5 and lea14 (27-45 | Highly induced in vegetative tissues; induced | Galauetal. 1993

homologue genes)

in post-abscission stage of embryogenesis and
enviromentally induced in embryo by
desiccation or treatment with ABA or high
osmoticum

D. carota DC8 ABA regulated Franz et al. 1989

H. annuus hsp17.6 and Expressed in response to HS or water stress Almoguera et al.
hsp17.9 mRNAs 1993

L. esculentum TAS14 and TSW12 Induced by drought stress, also induced by Godoy et al. 1990,

low temperature stress

Torres-Schumann
etal. 1991, 1992
Hughes et al. 1992

Genes for proteases
and ubiquitin

Induced by water deficit; gene products may
be involved in the degradation of proteins that
are denatured during cellular water loss

Bray 1993
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crystallinum

le16 Encodes a 12.7 kDa protein, induced by Plant et al. 1991
drought stress and regulated by ABA
specifically in aerial vegetative tissues; als¢
induced by salt, heat, cold and water stress
plc30-15 ABA and drought induced Chen &
Tabaeziadeh 1992,
Chen et al. 1993
Mesembryanthemum imtl Induced by osmotic stress Vernon & Bohnert

1992

Two isogenes for PEP | ppcl shows 30 fold increase in transcription Cushman et al.
carboxylase ppcl and | rate in leaves and ppc2 transcripts decrease 1989
ppc2 slightly in leaf tissues; in roots transcripts for
both the genes descrease with time of
exposure of stress; induced by salt stress also
Nicotiana glauca MIP1 Down regulated under drought stress Smart et al.
(unpublished
report)
O. sativa rab16B, rab16C and ABA regulated Yamaguchi
rab16D Shinozaki et al.
1990
23 kDa polypeptide ABA responsive , not responsive to NaCl and Rao et al. 1993
cold treatment, boiling stable and
immunologically related to the RAB 16 family
of proteins
23 kDa Induced in cell suspensions Reddy et al. 1993
polypeptide
rab16A Osmotic stress and ABA responsive, Mundy et al. 1990
conserved sequence motifs in the rab 16A
promoter specifically bind nuclear protein
factors
RAB21 RAB21 mRNA and protein (16.5 kDa) Mundy & Chua
accumulate in rice embryos , root, leaves and 1988
callus derived suspension cell upon treatment
with NaCl or ABA
P.sativum pPsB12 cDNA Encodes a polypeptide of 20.4 kDa; pea Robertson &
clone dehydrin lacks a stretch of serine residues Chandler 1992
which is conserved in other dehydrins, ABA
induced expression of dehydrins in the
unstressed seedlings
Sorghum bicolor BADH1 and Encode betaine aldehyde dehydrogenase Wood et al. 1996
BADH15
c¢DNA clones
MIP1 Membrane intrinsic protein and induced by Whitsitt et al.
drought stress (unpublished
report)
G. max p5cs Encodes 28.6 kDa enzyme that is involved in Delauney &
proline biosynthesis Verma 1990
T. aestivum em ABA regulated gene Marcotte et al.

1989
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Vigna radiata

Em like protein
clone

Synthesized during early germination of axis
and ABA extends its synthesis

Manickam et al.
1996

tissues; also induced by water stress in young
leaves

Z. mays RAB17 Induced during late embryogenesis when Vilardell et al. 1990
ABA levels are high and it is also ABA and
water stress inducible in embryo and
vegetative tissues
rab28 ABA-inducible in embryos and vegetative Pla et al. 1993

Salt responsive genes/ protein

or rapid water stress and salinity

A. thaliana Sall Induced by salt stress, over expression in Quintero et al. 1996
Arabidopisis or yeast overcomes Na* and Li"
toxicity, homologous to hall of yeast

B. napus bnd22 22 kDa protein, level increased by progressive | Reviron et al. 1992

heat stress

Citrus sinensis Salt associated 23-25 | Induced by salt stress, ABA and water stress Ben Hayyim et al.
kDa protein 1993
Dunaliella salina p150 150 kDa protein, induced by salt stress, de Sadka et al. 1991
novo synthesized protein
H.vulgare 26 kDa and 27 kDa Salt stress induces S -5, polypetides but water | Hurkman &
proteins (saltinduced | deficit did not induce S, polypeptides Tanaka 1988
poly-peptides SIP S1-
S4)
hval Induced by ABA, drought, NaCl, cold and Hong et al. 1992
heat treatment
L. esculentum TAS-12 Salt and water stress induced lipid transfer Torres-Schumann
protein etal. 1992
le-16 gene Induced by drought, PEG, salinity cold and Plant et al. 1991

M. crystallinum

ppc-1and ppc-2

Encodes PEP carbroxylase, induced by salt

Cushman et al.

isogenes and water stress, exogenous ABA is a poor 1989
substitute for NaCl to induce it
Imtl Encodes myo-insitol o-methyl transferasel; Vernon & Bohnert
induced by NaCl and osmotic stress 1992
inps1 Encodes myo-inositol 1-phosphate synthase Ishitani et al. 1996
(INPS 1), shows significant homology to
corresponding genes in plants and yeast
N. tabacum 26 and 43 kDa Levels increase in both NaCl and PEG Singh et al. 1985
polypeptides induced water stress adapted cells but are not
detectable in unadapted cells
58,37, 35.5, 34, 26, 21, | Increased levels with increased NaCl Singh et al. 1985
19.5 and 18 kDa tolerance
polypeptides
30 kDa polypeptide Heat shock at 38°C induces cross tolerance to | Harrington and
salt stress Alm 1988
Vitronectin and Found in membranes and cells wall of NaCl Zhu et al. 1993
fibronectin like adapted cells
proteins
Osmotin 26 kDa protein, protein level enhanced in Singh et al. 1987
both NaCl and PEG induced water stress
adapted cells but not in unadaptable cells
O. sativa RAB21 Induced when plants are subjected to water Mundy & Chua
stress, rab21 mRNA and protein accumulate 1988
in rice embryos leaves, roots and callus
derived suspension cells upon treatment with
NaCl and/or ABA
salT mRNA accumulates rapidly in shoots and Claes et al. 1990
roots of mature seedlings with ABA salts,
PEG, NaCl and KCI; no induction in leaf
lamina
em Induced by ABA and salt stress, salt interacts Bostock &
synergistically with ABA Quatrano 1992

*The names of various genes and proteins have been by and large reproduced here as per the original publications of the authors.
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up-regulation of stress-related genes.

temperature

Gene' Source Trans-Host, If Any Inducing Stress Type(S) Reference
Salt, low temperature and abscisic acid
bnlls B. napus S Low temperature Jiang et al. 1996
catl Z. mays Z. mays ABA and osmotic stress Guan et al. 2000
cdeT27-45 C. plantagineum N. tabacum Desiccation and ABA Nelson et al. 1994
ci21A S. tuberosum S. tuberosum Low temperature, drought | Schneider et al.
and ABA 1997
corl5A A. thaliana e Low temperature, ABA and | Baker et al. 1994
drought
cor6.6 A. thaliana N. tabacum Low temperature, osmotic Wang et al. 1995
stress and dehydration
em T. aestivum N. tabacum and O. ABA Marcotte et al. 1989
sativa
hval H.vulgare ——————— Drought, low temperature, | Straub et al. 1994,
heat, salinity and ABA Shen et al. 1996
kinl A. thaliana N. tabacum Low temperature, osmotic | Wang et al. 1995
stress and dehydration
osmotin N. tabacum N. tabacum ABA, CH, and NaCl. Liu et al.1995,
Raghothama et al.
1997
pin2 S. tuberosum O. sativa Wounding, ABA and Xu et al. 1993
methyl jasmonate
rabl6 O. sativa O. sativa Osmotic stress, water stress | Ono et al. 1996
and ABA
rab17 Z.mays A. thaliana Water stress and osmotic Busk et al. 1997,
stress Vilardell et al. 1994
rab21 O. sativa O. sativa Water stress, osmotic stress | Mundy et al. 1998
and ABA
rab28 Z mays O. sativa Water stress and ABA Pla et al. 1993
rd22 A. thaliana N. tabacum Dehydration, salt stress, Yamaguchi-
water deficit and ABA Shinozaki et al.
1993
rd29 A. thaliana N. tabacum Desiccation, cold, high salt | Yamaguchi-
conditions and ABA Shinozaki et al.
1993, 1994
B- phaseolin P. vulgaris N. tabacum ABA Bustos et al. 1998
wes120 T. aestivum Several monocots and | Low temperature Oullet et al. 1998
dicots
Anaerobic stress
adh A. thaliana A. thaliana Dehydration, cold and Dolferus et al. 1994
hypoxia
Kyozuka et al. 1994
Z. mays O. sativa Dehydration, cold and
hypoxia
gapC4 Z. mays N. tabacum Anoxia, UV and wounding | Kohler et al. 1996,
Geffers et al. 2000
gpcé Z. mays Z. mays Anoxia Manjunath et al.
1997
High temperature
gmhsp17.3B G. max N. tabacum High temperature Rieping et al. 1992
gmhsp17.5E G. max H.annuus High temperature Gurley et al. 1986,
Czarnecka et al.
1992
hahsp17.6G1 H.annuus N. tabacum Non-responsive to high Carranco et al. 1999

‘The names of various genes and proteins have been by and large reproduced here as per the original publications of the authors.
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Table 3 Selective characteristics of the genes encoding stress-related transcription factors.

Transcription Factor

Plant Species
Examined

Binding Site

Characteristics

Reference

alfinl

M. sativa

G- rich triplets

Encodes a novel protein with a Cys4
and His/Cys3 putative zinc-binding
domain, may play a role in the
regulated expression of MsPRP2 in
alfalfa roots contributing to salt
tolerance

Bastola et al. 1998

athb-12

A. thaliana

Unknown

These genes contain a conserved
sequence motif, the homeobox that
encodes a DNA binding domain
called as the homeodomain; they also
contain a second element that codes
for a putative leucine zipper motif;
treatment with water stress and ABA
resulted in the accumulation of Athb-
12

Lee & Chun 1998

athbo-7

A. thaliana

Unknown

Homeodomain-leucine zipper
proteins; putative transcription
factors encoded by a class of
homeobox genes and are induced in
all the organs by water deficit and
osmotic stress

Soderman et al. 1996

AtMYB2

A. thaliana

MYB site

ATMYB is drought and ABA
inducible and encodes the MYB
related protein which functions as
transcriptional activator of the rd 22
gene along with rd 22BP1

Urao et al. 1993

CBF1

A. thaliana

CRT/DRE

CBF1 encodes an AP2 binding
domain containing the transcriptional
activator that binds to the CRT/DRE
sequence in the genes; induced by
low temperature

Stockinger et al. 1997,
Medina et al. 1999

DREB1A and 2A

A. thaliana

DRE/ CRT

Bind to the DRE sequence in vitro
and bring about freezing and
dehydration tolerance; deduced
amino acid sequence shows similarity
in the conserved DNA binding
domain found in the ERBP and
APETALA2 proteins like that of CBF1

Liu et al. 1998

DREB 2A and 2B

A. thaliana

DRE/ CRT

Induced by dehydration and high salt
stress; unlike the DREB1A these are
not induced in response to low
temperature; contain a conserved
Ser/Thr rich region adjacent to the
EREBP/ AP2 DNA binding domain
which is considered to be
phosphorylated

Nakashima et al. 2000

EmBP-1

T. aestivum

ABRE

Interacts specifically with the 8 bp
sequence CACGTGGC in the ABRE;
deduced amino acid sequence of the
EmBP-1 contains some conserved
basic and leucine zipper domains
found in the transcription factors in
the plants, yeast and mammals

Guiltinan et al. 1990

A. thaliana, L.

peruvianum, Z.

mays and G.
max.

Despite a considerable variability in
size and sequence, their basic
structure is similar; there is a highly
conserved DNA binding domain near
the N-terminus and the
oligomerization domain is connected
to the DNA binding domain by a
flexible linker

Scharf et al. 1993,
1998, Czarnecka-
Verner et al. 2000

Rd22BP1

A. thaliana

MYC site

Encodes a 68kDa protein that has a
typical DNA binding domain of basic
helix loop helix leucine zipper motifs
in the MYC related transcription
factors; dehydration stress and ABA
induce the transcription of the
rd22BP1 and its induction precedes
that of rd22

Abe et al. 1997.

203
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processes that yeast system does not possess and test-
ing relevance of genes associated with such processes
in yeast may or may not be a valid approach.

The current success in plant genetic engineer-
ing research has been possible due to the develop-
ment of in vitro techniques for the culture and
propaga-tion of cells and tissues. The first method
used successfully for the introduction of exogenous
DNA into plants employed the soil-borne organ-
ism Agrobacterium tumefaciens. Subsequently, sev-
eral other methods (such as direct DNA transfer
through electroporation into protoplasts, particle
gun etc.) have been optimized for transferring
genes, and this has enabled transformation of a
large number of species. As of now, methods for
genetic transformation of more than 150 different
plant species have been optimized (Birch 1997,
Hansen & Wright 1999). Among the plants, the best
transformation frequencies have been noted with
tobacco and Arabidopsis. Most work on testing of
novel transgenes has therefore been carried out
using these two species which is fair-enough to
make a beginning (Grover & Minhas 2000). How-
ever, as the trans-gene for stress tolerance must be
introduced in the destined species exhibiting stress
sensitivity, optimization of the cultivar-specific
methods for the genetic transformation of the crops
has emerged as a high-priority objective in recent
years (Grover et al. 1999). The production of
transgenics involves several steps and techniques
such as availability of suitable cloning vectors, pro-
moters and related methods of tissue culture. One
of the goals of the future research is to optimize
tissue culture and genetic transformation work
with more number of crop cultivars so that desired
stress genes can be suitably trans-expressed.

Synthesis

Abiotic stresses elicit complex responses. To
understand these responses, varied biological
parameters have been utilized. From such efforts,
we understand that abiotic stress responses are
triggered at different levels of hierarchy of the
cellular organization. It is shown that a large
number of physiological and biochemical attributes
of the cell are affected when plants experience
abiotic stresses. However, specific biochemical/
molecular changes that contribute towards stress

Anil Grover et al.

tolerance have only been partially identified thus
far. Due to this gap in information, generation of
abiotic stress tolerant plants through transgenic
technology is proving a handicap. For removing
the bottlenecks associated with production of
abiotic stress tolerant plants, the detailed
understanding of the plant abiotic stress responses
is the need of the hour. The plant stress molecular
biology and biotechnology research is limited by
the non-availability of the stress genes to a large
extent. The past attempts on the analysis of stress
responses have mostly been made for defining the
specific changes in gene expression, biochemical
reaction or physiological event. These studies have
remained focussed on analysis of single or limited
number of genes and proteins at a given time. The
present need is to look at stress responses with
respect to global changes in different proteins/
genes. Fortunately, the current developments in
genomics and proteomics have the potential to
present this kind of picture of the global changes
in RNA and proteins. The genome-wide analysis
of mRNA expression by micro-array chip
technology is providing important clues about the
expression patterns and the function of gene
products while proteomics is turning out to be the
major subject of research for defining the gene
functions. The enormity of analyzing genomics is
such that no laboratory can individually answer all
the questions. Therefore, it is important that groups
specializing in different aspects of plant biology
look at genomics with their own viewpoints. Those
who work with abiotic stresses using diverse
experimental materials across the globe need to
come under an elaborate network so that efforts
are co-ordinated amongst different institutions.
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