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The class of  all invariant measures of  a transformation, or a flow, is an important 
aspect of  its dynamics. Thus for instance if T is a homeomorphism of a locally 
compact space X then any compact minimal (non-empty) T-invariant set is the 
support of  an invariant measure. Since x eX is an almost periodic point of T if and 
only if the closure of  its orbit is a compact minimal set (cf. [11 ] Proposition 2.5), the 
class of invariant measures also determines the set of all almost periodic points. On 

n - - 1  

the other hand, for any x e X  the limit points of the sequence n-1 ~ 6r, x (where 6~. 
j=o 

denotes the point measure based at yeX)  are T-invariant measures. In a certain 
intuitive sense these limiting measures describe how the orbit of x is "distributed" in 
X. Consider the particular case when T is a homeomorphism of a compact second 
countable space X such that T admits a unique invariant probability measure, say p; 
such a transformation is said to be uniquely ergodic. I f  Yis the support of/t then for 
any y e Y the orbit is dense in Y and is uniformly distributed with respect to p in the 

n - - 1  

sense that for any continuous function ~0 the averages n-1 ~ q)(T~x) converge to 
j=o 

S ~o dp.  The classical theorem of H. Weyl, which asserts that if c~ is an irrational 
number then the sequence of fractional parts of  kcr k = 1,2... is uniformly 
distributed, is indeed a simple consequence of the fact that the rotation of the circle 
by an angle 2~e, with c~ as above, is a uniquely ergodic transformation. 

In [13], H. Furstenberg investigated which affine transformations of tori are 
uniquely ergodic. The study was later extended by W. Parry [20] to affine 
transformations of  compact nilmanifolds. In each of these cases necessary and 
sufficient conditions for unique ergodicity have been obtained. It is also 
straightforward to extend the theory to translation flows induced by one-parameter 
subgroups. 

A natural question arising at this stage is whether a similar phenomenon holds 
for transformations and flows on homogeneous spaces of  semisimple or, more 
generally, reductive Lie groups. It may be noted that the geodesic and horocycle 
flows associated to surfaces of  constant negative curvature fall in this class of flows. 
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Again, Furstenberg in [14] inaugurated the general area under consideration by 
proving that the horocycle flow associated to a compact surface of constant 
negative curvature is uniquely ergodic. A theorem of G.A. Hedlund asserting that 
the horocycle flow is minimal (i.e. every orbit is dense) falls out as an easy 
consequence of the above result. 

Let G be a reductive Lie group; i.e. the adjoint representation is completely 
reducible. A discrete subgroup F of G is called a lattice in G, if G/F admits a finite G- 
invariant measure. We note that in general such a homogeneous space may or may 
not be compact. The lattice F is said to be uniform or non-uniform depending on 
whether G/F is compact or non-compact respectively. Let us now consider the 
special case G --SL(2,  IR), the group of real 2 • 2 unimodular matrices. Let F be a 
lattice in S L  (2, IR). Consider the action of the one-parameter subgroup N consisting 
of all upper triangular unipotent matrices, on SL(2,  IR)/F. Any horocycle flow 
associated to a surface of constant negative curvature and finite volume can be 
realised in this fashion for a suitable lattice F. If F is a uniform lattice then 
Furstenberg's result asserts that the action of N is uniquely ergodic. I f S L  (2, IR)/F is 
non-compact then, as a rule, the horocycle flow admits periodic trajectories and 
hence fails to be uniquely ergodic. However, it was proved by the present author in 
[8] that apart from the SL(2,  IR)-invariant measure the only other ergodic finite 
invariant measures for the horocycle flow are those based on the periodic 
trajectories. As a consequence, it can be deduced that the periodic trajectories are 
the only compact minimal (invariant, nonempty) sets. Alternatively, every almost 
periodic point of the horocycle flow is periodic. 

In the light of these results for lattices in SL(2,  ~) and other results discussed in 
the sequel it seems reasonable to expect the following: 

I. Conjecture. Let G be a reductive Lie group and F be a lattice in G. Let {ut} be a one- 
parameter subgroup in G such that for each t, Ad u t is a unipotent matrix ("Ad" stands 
for the adjoint representation). Let t~ be a {ut)-invariant ergodic measure on G/ F. Then 
there exist, a connected Lie subgroup L containing {ut} and x ~ G, such that Lx  F / F is a 
closed subset of  G/F and a is a finite L-invariant measure supported on LxF/F .  

The preceding discussion shows that the conjecture is satisfied in the case of 
SL(2,~) ,  provided a is finite. In fact we only need to choose L to be either 
SL(2,  IR) or N itself. It is not difficult to see that in general there could exist proper 
closed subgroups L, containing N as a proper subgroup, which indeed correspond 
to N-invariant ergodic measures as in the conjecture (cf. Corollary 2.4). In the case 
of SL(2,  IR) this is ruled out by the fact that there exists no unimodular subgroup 
with desired proper inclusions. 

Validity of the conjecture would also mean that every compact minimal {u,}- 
invariant set is of  the form L x F / F  (in the notation as before). From the point of 
view of understanding the dynamics of these flows and certain applications it would 
be appropriate to prove the following stronger assertion. 
II. Conjecture. Let G,F and {ut} be as' in Conjecture I. Then the closure oJ any orbit of 
{ut} in G/F is of  the form L x F / F  Jor a suitable connected Lie subgroup L oJ G. 

This conjecture is due to M.S. Raghunathan (oral communication), who also 
informed the author that its validity would yield a proof  of a conjecture due to 
Davenport, on the density of the set of values of certain quadratic forms, at integral 
points. 
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In view of Hedlund's result quoted earlier Conjecture II  is satisfied for uniform 
lattices in SL(2, IR). By a result of J.S. Dani E6] it is also true for the lattice 
SL(2, 77) (cf. [-10] for a more general result). These and certain easy consequences 
thereof are the only instances known to the author where the conjecture is satis- 
fied for any one-parameter subgroup at all. 

The main feature which distinguishes the one-parameter subgroup N of upper 
triangular unipotent matrices in S L  (2, ~)  is that it is a"horospherical  subgroup". A 
subgroup U of a Lie group G is said to be horosphericalif there exists g ~ G such that 

U={u~GlgJug-J--*e as j - - * ~ }  

where e is the identity element. There have been certain generalisations of  
Furstenberg's theorem from this point of  view. W.A. Veech in [24] showed that i fG 
is a semisimple Lie group without compact factors and F is a uniform lattice in G 
then the action of a maximal horospherical flow is uniquely ergodic. Subsequently 
R. Bowen [5] and R. Ellis and W. Perrizo [12] obtained similar results for the 
actions of  all, not necessarily maximal, horospherical subgroups. 

In [8] the author adapted the technique of Furstenberg [14] and Veech [24] to 
make it suitable for classification of ergodic invariant measures of  maximal 
horospherical subgroups. Let G be a reductive Lie group and F be a lattice in G. Let 
N be a maximal horospherical subgroup of  G. The main result in [8] consists of a 
characterisation of the G-invariant measures on GIN in the class of F-invariant 
ergodic measures (cf. w 3 for details). Using the characterisation the author was, in 
particular, able to conclude that if G is a simple Lie group of K-rank 1, then every 
finite N-invariant ergodic measure on G/F is either G-invariant or it is the measure 
supported on a compact orbit of  N. In the present paper using the characterisation 
mentioned above we obtain a complete classification of N-invariant ergodic 
measures on G/F. We prove the following. 

(9.1) Theorem. Let G be a reductive Lie group and F be a lattice in G. Let N be a 
maximal horospherical subgroup of  G. Let a be a N-invariant ergodic probability 
measure. Then there exist, a connected Lie subgroup L o f  G containing N, and x ~ G, 
such that i) L x F / F is a closed subset of  G / F and ii) a is L-invariant and is supported on 
LxF/F .  

We note that conditions i) and ii) completely determine the measure a. The 
theorem means that the analogue of  Conjecture I is true for the actions of  maximal 
horospherical subgroups, provided we restrict ourselves to finite N-invariant 
measures. For  "arithmetic" lattices every N-invariant ergodic measure is finite [9]. 
We do not know whether this is true in general. 

It is not difficult to show that if the group G as in Theorem9.1 is also a 
semisimple group without compact factors and F is a uniform lattice then the 
subgroup L would have to be G itself. Actually in the sequel we obtain an explicit 
discription of the subgroup L from which also it is evident that in the above- 
mentioned special case L coincides with G (cf. Remark8.4).  Thus Theorem9.1 
extends Veech's theorem on unique ergodicity of maximal horospherical flows [24]. 

The general idea of  the proof  of  Theorem 9.1 consists of  the following. If  the 
measure a is not invariant under G ~ the connected component  of  the identity in G, 
then by the characterisation of Haar  measures referred to above (cf. Theorem 3.4) a 
is concentrated on a certain lower dimensional set. Using certain techniques from 
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the theory of algebraic groups we show that it is possible to choose a subgroup with 
an orbit of positive measure such that the condition characterising the Haar  
measures is satisfied. 

The contents of  the paper are organised as follows. In Part I consisting of w167 1 to 
4 we discuss various preliminaries. In w we recall various results regarding 
measures on groups and homogeneous spaces. In w we give a description of a 
canonical class of  invariant measures which are prototypes for the classification as 
in Theorem 9.1. w is devoted to recalling (cf. Theorem 3.4) the characterisation of 
the Haar  measures from [8]. In w we obtain a generalisation (cf. Theorem 4.1) of  
W. Parry's result on unique ergodicity of flows on compact nilmanifolds. Though it 
is proved expressly for use in w the result also seems to be of  independent interest. 
Part II, which is the crucial part  in the paper, constitutes a proof  of  Theorem 9.1 for 
arithmetic lattices (cf. w for definition) in reductive groups satisfying the 
conditions of Theorem 3.4. In Part III  we deduce the general result and discuss 
applications to minimal sets of  horospherical flows, orbits of  arithmetic groups etc. 

The text also includes certain corrections to [8] (cf. Remarks 3.6 and 8.3). 

Before concluding this introduction the author would like to thank Gopal Prasad for clarification of 
certain points involving the theory of algebraic groups. The author also thanks the referee for useful 
suggestions. 

Parth Preliminaries 

w 1. Measures on Homogeneous Spaces 

(1.1) By a measure on a locally compact second countable space X, we man a 
positive locally finite Borel measure. The set of all measures on X is denoted by 
Jg(X).  Let G be a locally compact (second countable, topological) group and let 
4~: G• X ~ X  be a measurable G-action. The subset of ~ ( X )  consisting of G- 
invariant measures under the action �9 is denoted by J{(X, G), provided the action 
involved is clear from the context. Let G be a locally compact group and H and K be 
two closed subgroups of G. A measure on G is said to be (H, K)-invariant if it is 
invariant under the left action of H and also under the right action of K. The set of  
(H,K)-invariant measures on G is denoted by Jk'(G, H, K). Let dk be a fixed Haar  
measure on K. We define a map IK:JlC(G/K)~JC(G) as follows. For any 
~eJIC(G/K), lK(~) is defined to be the measure such that 

(1.2) ~f(x) dlK(n) (x) = ~ ~f(xk)  dk drc(xK) 
a G/K K 

for all f~Cc(G), the space of  continuous functions with compact support. The 
following fact was observed in [14]. 
(1.3) Proposition. Suppose that K is a closed unimodular subgroup of a locally 
compact group G. Then for any ~ ~ Jg (G/K), lK (n) E Jl[ (G, {e}, K), where {e} is the 
trivial subgroup of G. Further ~ ~ lK(~) is a one-one correspondence of Jg (G/K) onto 
J / ( G ,  {e},K). Let H be any closed subgroup of G. Then for any ~ J t ( G / K , H )  
(action on the left) lx (~)~J/ t (G,H,K ) and n~lK(n)  induces a one-one cor- 
respondence of JI(G/K, H) onto JI(G, H, K). 
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The inverse of the map l K as above, defined from ~I(G, H, K) onto Jg(G/K,H), 
shall be denoted by Px. 

(1.4) Let H and K be two closed unimodular  subgroups o f  a locally compact  
group G. We can now set up a natural one-one correspondence between 

(G/K, H) and JL (G/H, K) as follows: Let iG: G --* G be the map defined by ic (g) 
= g - ,  for all g ~ G. For  any v ~ ~ '  (G, H, K) the measure i~ (v) (defined by ic (v) (E) 
=v(i~l(E)) for all Borel sets E) belongs to ~Ir Thus for any 
rc ~ ~?r H) the measure ~ = p~ iG lK(rc) belongs to ~r K). Then rc+-~r is a 
one-one correspondence o f  all(G/K, H) onto ~(G/H, K). In this case we shall say 
that ~ (respectively a) is dual to a (respectively ~), provided the subgroups involved 
are clear f rom the context; clearly a dual is uniquely defined up to a scalar multiple. 

The above correspondences, which will be used crucially in the sequel, first 
appeared in [14]. Following are some of  the properties o f  the correspondences 
which are easy to prove. 

(1.5) Let G, H and K be as above. Let L be a closed unimodular  normal  subgroup 
of  G contained in H. Then any (H, K)-invariant measure on G is also (H, LK)- 
invariant. Also for v ~ JCL(G, H, K) the measure pL(v) is a (H/L, KL/L)-invariant 
measure on G/L, whenever KL is unimodular.  Conversely if L is as above 
and q:G~G/L is the quotient homomorph i sm then the following holds: I f  
v ~ J r  (G, {e}, L) and PL (v) ~ Jg (G/L, H', K') for certain subgroups H '  and K '  o f  G/L 
and if K '  and t / - ,  (K')  are unimodular ,  then v e Jr t/- 1 (H') ,  t/- 1 (K')). 

(1.6) The simultaneous action on G of  the subgroups H and K on the left and right 
hand sides can be viewed as an action o f  the direct product  group H x K. A measure 
v e ~ / (G,  H, K) is said to be ergodic if it is ergodic as a H x K-invariant measure. It  is 
easy to verify that ~ e ~(G/K, H) is ergodic (as an H-invariant  measure) if and only 
if l K (r 0 is an ergodic (H, K)-invariant measure in the above sense. In particular, it 
follows that under  the one-one correspondence o f  JCl(G/H, K) onto J/C(G/K, H) as 
above, ergodic K-invariant measures correspond to ergodic H-invariant  measures. 

(1.7) Let G, H and K be as above. A measure ~ e ~ '  (G/K, H) is said to be H-finite if 
the dual element in ~I(G/H, K), in the sense of  w is a finite measure. I f  H is a 
discrete (countable) subgroup then rce ~ '  (G/K, H) is H-finite if and only if for every 
Borel subset D of  G such that {hD, heH} are mutually disjoint, lK(rc)(D ) is finite. 

(1.8) Direct Integral Decomposi t ions and Ergodic Decomposi t ions 

Let X be a locally compact  second countable space and let H be a locally compact  
second countable group acting continuously on X. Let 7z~Jg(X,H). Let ~ be a 
countably separated (by Borel sets) partit ion of  X and let X/~ be the quotient space 
equipped with the quotient  Borel structure. Let ff s og (X/~) be the quotient  measure 
o f  re. Assume that every element o f  ~ is invariant under the H-action. A direct 
integral decomposition of~  with respect to ~ is a family {~cIC~X/~} of  measures on 
X satisfying the following conditions:  a) there exists a measurable subset X '  o f  X/~ 
such that r~ (X/~ - X ' )  = 0 and for each C e X' ,  rc c is a H-invariant  measure such that 
r~c (X - C) = 0 and b) for each Borel subset E of  X, r~c (E) is a measurable function o f  
C and 

~(E) = ~ ~c(E)d~(C). 
x/{ 
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(1.9) Proposition. Let X, H and ~ be as above. Then any ~ ~ J//(X, H)  admits a direct 
integral decomposition with respect to 4. 

Proof  For  finite measures this result is standard (cf. [23]). The general case can be 
deduced as follows: L e t J b e  a continuous function on X such tha t f (x )  > 0 for all 

x E X  and Sfd~  = 1. For  C~X/~ let ~c be the measure such that d z c c = f  -1 . dlzc 
X 

where {pc ICeX/~} is a system of conditional measures with respect to ~ for the 
probability measure /.z given by d/~ =fdz t .  Using the separability of H it is 
straightforward to verify that for a suitable subset X'  of  X/~ such that z~(X/r - X ' )  
= 0 the measures {rCc, CeX '}have  the desired properties. 

Let X and H be as above and let ~ E J / ( X ,  H). An ergodic decomposition of ~ is a 
direct integral decomposition {rCc} , with respect to a suitable H-invariant countably 
separated partition 4, such that for almost all C, rc c is an ergodic H-invariant 
measure. It  is well-known that a finite H-invariant measure admits an ergodic 
decomposition (cf. [23]). Using a similar construction and the ideas involved in [22] 
the same assertion can be upheld for any locally finite H-invariant measure. 
However we shall not need this in full generality and hence do not go into the 
details. We content ourselves with the following assertion. 

(1.10) Proposition. Let H and K be two closed unimodular subgroups o f  a locally 
compact second countable group G. Let rE ~ J [  (G/K, H)  be H-finite. Then rt admits an 
ergodie decomposition. 

Proof  Since the dual measure a eJr  K) is finite and admits an ergodic 
decomposition, the same is true of 7r. 

In the sequel we also need the following Lemma which can be easily proved 
using the map l introduced in Proposition 1.3. 

(1.11) Lemma. Let G be a locally compact second coun table group and let H and K 
be closed unimodular subgroups o f  G. Let K1 be a subgroup o f finite index in K and let 
q: G/Kx --* G/K be the natural quotient map. I f  a is an ergodic H-invariant measure on 
G/K, then there exists an ergodic H-invariant measure ~r' on G/Klsuch that q(a') = a. 

(1.12) As the reader would have noted the maps l H and PH are defined only for 
(closed) unimodular subgroups. In the sequel while employing these maps, the 
unimodularity of  the subgroups in question would follow (and we shall often not 
stop to prove it) from the fact that a Lie group which admits a lattice is necessarily 
unimodular. In this connection we also note the following. 

(1.13) Lemma. (cf. Lemma 1.14, [8]). Let G be a locally compact group and F be a 
lattice in G. Let H be a closed subgroup o f  G such that H F  is a closed subgroup of  G. 
Then Hc~F is a lattice in H. 

w Canonical Invariant Measures on Arithmetic Homogeneous Spaces 

In this section we shall describe a class of  ergodic invariant measures of  maximal 
horospherical flows, which will be the prototypes for the classification coming up 
later. 
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Let k be a subfield of the field ~ of complex numbers and let G be an algebraic k- 
group; i.e. G is an algebraic group defined over k. We shall identify G with its group 
of ~:-elements. For  a proper subf ie ldfof  ~ containing k, we shall denote by Gf the 
group of all j-elements of G. For various notions and results used in the sequel we 
refer the reader to [3]. 

(2.1) Let G be any algebraic N-group. Then G~ is a Lie group with finitely many 
connected components. As the reader will find later, the major task in proving 
Theorem 9.1 is to prove it in the special case of"arithmetic lattices" in G~ where G is 
an algebraic Q-group. 

Let G be a Zariski connected algebraic Q-group. Let G be viewed as a subgroup 
of GL(V) defined over Q where V is a vector space with a Q-structure. Let 
{el, e2, . . . ,  e,} be a basis ofV o. Let Gz be the subgroup consisting of  elements which 
are represented (with respect to the basis) by integral matrices of determinant + 1. A 
subgroup F of G o is said to be arithmetic if it is commensurable with Gz. It is well- 
known (cf. [1 ]) that the notion of an arithmetic subgroup depends only on the Q- 
structure of G and not on the other choices involved. By a theorem of Borel and 
Harish-Chandra, for G as above, an arithmetic subgroup of G is a lattice in G~, if 
and only if G does not admit non-trivial characters (algebraic homomorphisms into 
GL(I))  defined over Q; (cf. [2]). A lattice in Ge is said to be an arithmetic lattice in 
G~ if it is an arithmetic subgroup of G. 

Let G be an algebraic Q-group. Then any horospherical subgroup (cf. 
Introduction for definition) of G R is a unipotent subgroup; that is, it consists 
entirely ofunipotent elements. Further, if G is a reductive algebraic N-group then a 
subgroup U of G~ is a horospherical subgroup if and only if there exists a parabolic 
subgroup P such that U = U~, where U is the unipotent radical of P. 

Notation. Let G be a Lie group. For  any subset E of G we denote by/~ the closure of 
E. For a closed subgroup H of G,/4 ~ denotes the connected component of the 
identity in H. When G = G~, where G is an algebraic IR-group, these notations will 
be used only with respect to the Lie group topology (and not the Zariski topology). 

The following simple fact about arithmetic subgroups is often useful. 

(2.2) Lemma. Let G be an algebraic Q-group andF be an arithmetic subgroup of  G. 
Let H be an algebraic Q-subgroup of  G which admits no characters deft'ned over Q. 
Then FH~ is closed. 

Proof This can be deduced, for instance, from the fact that under these conditions 
there exists a Q-rational representation of G such that H is the isotropy subgroup of 
a rational point (cf. [1], Proposition 7.8). 

(2.3) Proposition. Let G be a Zariski connected algebraic group deigned over Q. Let 
N be a maximal unipotent subgroup of  G~ and let V be the smallest normal subgroup 
of G~ containing N. Let F be an arithmetic subgroup of  G and let H be the smallest 

algebraic N-subgroup of  G containing (VF) ~ Then the following conditions are 
satisfied. 

i) H is a normal subgroup of  G defined over Q. 
ii) H ~  ~ and o o G~/H~ has no non-compact (semisimple) simple factors. 
iii) H~ m F is a lattice in HR. 
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iv) The action of  N on H ~  ~ c~F is ergodic with respect to the H~ 
measure. 

v) Every ergodic (N, F)-invariant measure on G~ is concentrated on a single eoset 
o f  the form g H ~  where g~G~.  

Proof of  i), ii) andiii). These statements follow from standard facts from the theory 
of algebraic groups. We only outline the proof. Firstly, since evidently the 
unipotent radical of G is contained in H, by passing to the quotient we may, without 
loss of  generality, assume G to be reductive. In this case there exists a normal 
semisimple algebraic subgroup G' defined over ~ such that N is contained in G~. 

Then by Lemma 2.2, G~F is closed and therefore (VF) ~ is contained in G~. For any 

g~ Go, g F g -  1 and/~ are commensurable. This implies that (VF) ~ is normalised by 
G o. But G o is Zariski dense in G (cf. [3], Theorem 2.14) and therefore considering 
the adjoint representation of G, we can conclude that (VF) ~ is normal in G~. Hence 
it is a semisimple normal subgroup of G~. But a connected semisimple Lie 
subgroup is always the connected component of the identity in the group of IR- 

elements of an algebraic lR-subgroup. Thus H ~ = (VF) ~ Since H ~ contains N, the 
G~/HR is a reductive Lie group with no non-trivial horospherical subgroup. group 0 0 

Hence it has no non-compact simple factors. Being the smallest algebraic IR- 

subgroup containing the normal subgroup (VF) ~ of G~, H is normal in G. Observe 
that by the theorem of Borel and Harish-Chandra mentioned earlier G~ ~ F  is a 
lattice in G~. Since H~ is contained in G~, G~/H~ is compact and H~/~ is closed it 
follows that HR~/~ is a lattice in HR. In particular, by Borel's density theorem 
(cf. [21], Chapter V) H coincides with the Zariski closure of H R ~/~ in G. Since 
F c G~, we deduce that H is defined over ~. 

Proof  of  iv). As in the earlier part we may assume G to be reductive. Recall that in 
this case H ~ is a connected semisimple Lie group and H ~ ~/~ is a lattice in H ~ It is 
also easy to verify that V is a connected semisimple normal Lie subgroup of H ~ 
Also V has no compact factors and N is a totally non-compact subgroup of V; i.e. 
the image of N under any non-trivial homomorphism of V has non-compact 
closure. Under this condition C.C. Moore's ergodicity theorem implies that any N- 
invariant function f ~ L 2 ( H ~ 1 7 6  V-invariant (cf. [19], Theorem2). On the 
other hand V(H ~ ~ F) is dense in H ~ . The subgroup V being normal in H ~ the last 
two statements imply that every N-invariant function in L 2 ( H ~ 1 7 6  is H ~ 
invariant (cf. [8], Lemma 8.2). Therefore the action of N on H~ ~ ~ F is ergodic. 

Proof o f  v). Clearly the partition of G~ into cosets of  the form g H ~  is 
countably separated (by Borel sets). On the other hand since H ~ is normal in G~ 
each of the cosets is invariant under the left action of N and also under the right 
action of F. Hence every ergodic (N,F)-invariant measure is concentrated on a 
single coset as above. 

(2.4) Corollary. Let G be a reductive algebraic group defined over ~ and let I ~ be an 
arithmetic lattice in G R . Let N be a maximal horospherical subgroup of  G~. Let Q be 
an algebraic subgroup of  G defined over ~ containing N. Let V be the smallest normal 

subgroup o f  Q R containing N and let H -- (V(Q~ ~ F )  ) ~ Then for any y ---- zq, where 
z ~ G~ is such that z H z -  1 = H and q ~ Go, HyF/I"  is a closedsubset o f  G~/I ~ and there 
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exists a finite H-invariant measure supported on H y F / F ,  which is also an ergodic N- 
invariant measure. 

(2.5) Remark. We note that if GR and F are as above and if G~/F is not compact 
then there exist proper parabolic subgroups which are defined over t1~. Since any 
parabolic subgroup contains a conjugate of  any horospherical subgroup, by the 
above corollary we obtain ergodic invariant measures for maximal horospherical 
flows other than the Ga-invariant measure. A similar remark holds in the general 
case, as we will observe later. We emphasize that the ergodic invariant measures 
obtained as above are supported on a single orbit of a closed connected subgroup of 
GR and are invariant under that subgroup. 

~" 3. A Characterisation of  Haar Measures 

The classification of ergodic invariant measures of horospherical flows in later 
sections depends on a characterisation of Haar  measures proved in [8]. Since the 
presentation of the theorem involves rather elaborate notation we devote this 
section to describe the result and generalise it slightly. 

In this section let G be a connected reductive Lie group and let L be the smallest 
normal subgroup of G such that G/L is a semisimple Lie group with trivial center 
and no non-trivial compact factors. 

Let F be a lattice in G. A horospherical subgroup V of G is said to be F-rational 
if VL ~ F is a (necessarily uniform) lattice in VL. Let U and U- be two maximal F- 
rational horosphericat subgroups and let P and P -  be their respective normalisers in 
G. Then Uand U-  are said to be opposite (to each other) i f P ~ P -  is a reductive Levi 
subgroup in both P and P - ;  i.e. P = ( P A P - ) "  U and P -  = ( P ~ P - ) "  U-.  Now let 
(U, U-)be  a pair of opposite maximal F-rational horospherical subgroups and let P 
and P -  be their respective normalisers. Let S o be the unique maximum vector 
subgroup contained in the center of  ( P ~ P - )  ~ such that the adjoint action o fS  ~ on 
the Lie algebra g of G is simultaneously diagonalisable over IR. Thus 

g = 3 +  ~ g'l 
'leA 

where 3 is the centraliser o f S  ~ A is a set of  non-trivial characters o f S  ~ into N+ and 
g'l for 2 cA is the corresponding eigenspace. There exists a unique subset A + of A 
such that ~ g'l is the Lie subalgebra corresponding to U. Now for any t e ~:+ put 

, l e a  + 

S t = { s e S ~  fora l l  2eA+}.  

(3.1) Proposition. Let the notations be as above. Let K be a maximal compact 
subgroup of  G. Then there exist, a finite subset J o f  G, a compact subset C o f (P-)~  and 
t6]R + such that 

a) G = F J C S ,  K a n d  

b) for a l l j e J ,  j -Z  Fj t~U - is a lattice in U- .  

Proof. This is a consequence of the results on construction of fundamental domains, 
due to Borel for arithmetic groups [1], and Garland and Raghunathan [15] for 
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lattices in N-rank 1 groups, put together using Margulis's arithmeticity theorem 
[18]. Details of  the deduction for the case when G is a connected semisimple Lie 
group with trivial center and without compact factors can be found in [8] (cf. 
Proposition 2.3, [8]). The general case can be derived from this using the fact that 
Lc~F is a (necessarily uniform) lattice in L (cf. [8], Lemma9.1).  

(3.2) Definition. A finite subset J of G for which Proposition 3.1 holds, for a 
suitable choice of  the compact set C and t > 0, is called a sujficient set of  cusp 
elements for F with respect to the triple (P - ,  U, K). 

(3.3) Remark. I f  G = G ~ (notation as in w where G is a reductive algebraic If)- 
group and F is an arithmetic lattice in G~ then G o c~ G contains a sufficient set of  
cusp elements for F. 

Proof I f  G = GR (that is, if G~ is connected) then the remark follows from 
Theorem 13.1 in [1] (cf. the proof  of  Proposition 2.3 in [8]). The general case can be 
deduced as follows. Since the center of  G~ intersects F in a (necessarily uniform) 
lattice, the remark needs a proof  only when G is a semisimple algebraic Q-group. 
Further, by passing to a covering (isogeny) defined over Q, G may be assumed to be 
simply connected. Under these conditions G~ is connected and hence the remark is 
justified. 

(3.4) Theorem. Let G be a connected reductive Lie group and let F be a lattice in G. 
Let F be the smallest normal subgroup of  G containing every connected non-compact 

simple Lie subgroup of  G. Suppose that G = FF. Let U and U- be a pair of  maximal 
F-rational horospherical subgroups opposite to each other and let P and P -  be their 
respective normalisers. Let N be a maximal horospherical subgroup such that 
U ~ N c P .  Let J be a sufficient set of  cusp elements for F with respect to (P- ,  U, K) 
where K is a maximal compact subgroup of  G. Let ~ be a F-invariant F-finite measure 
on G/N. Then ~ is G-invariant if  and only if  

(3.5) ~ ( G / N - j P -  N/N) = 0 for all jEJ .  

Proof. By a well-known consequence of  the Bruhat decomposition (cf. [25], 
Proposition 1.2.4.10) P -  N is an open dense subset of  G and G - P -  N has zero 
Haar  measure. Hence we only need to prove the converse statement. Further since 
as in the hypothesis admits an ergodic decomposition (cf. Proposition 1.10) we need 
to prove the theorem only in the case when = is also ergodic. 

For a connected semisimple Lie group with trivial center and without compact 
factors the converse statement is just essentially Theorem 2.4 in [8] except for the 
following: 

(3.6) Remark. While setting up the notation for the statement of  Theorem 2.4 in 
[8], the set X o was inadvertently defined to be U j P -  N/N, instead of ~ j P -  N/N 
as actually required. J~J J~J 

(3.7) Remark. The phrase "sufficient set of  cusp elements" was not introduced in 
[8]. There we had fixed a set J satisfying certain conditions (as in Proposition 2.3, 
[8]). The proof  of  Theorem 2.4 depends only on the conditions included in the 
definition of  a sufficient set of  cusp elements. 
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Now,  as before let L be the smallest closed normal  subgroup  of  G such that  G/L 
is a semisimple Lie group with trivial center and without  compac t  factors. Let  G'  
= G/L and let t/: G ~ G'  be the quotient  homomorph i sm.  Then F '  = t/(F) is a lattice 
in G' and  the quotient  m a p  O:G/F~G' /F '  is proper  (cf. [8] Lemma9.1) .  Let 
lr ~ ogg (G/N, F) be a F-finite ergodic measure satisfying (3.5). Let  o-e JC(G/F, N) be 
the (finite) measure  dual to rc and let rc's ~ '  (G'/~ (N'), F') be the measure  dual to 
O(a)sJCl(G'/F',~I(N')). It  is easy to verify that  7r' satisfies the conditions of  
Theorem 3.4 for suitable (canonical) choices of  the subgroups and the set of  cusp 
elements. By the special case of  the theorem considered above,  it follows that  ~r' is 
G'- invariant .  Therefore  ~(~) is G'- invariant .  Hence by Proposi t ion 9.3 in [8], there 
exists a closed analytic subgroup H of  G such that  cr is H- invar iant  and is 
concentrated on a single closed orbit  o f  H. Since rT(a ) is G'- invar iant  H m u s t  also be 
such that  ~/ (H)= G/L; that  is, H L  = G. Since G is a reductive Lie group, this 
condit ion implies that  H contains every non-compac t  connected simple Lie 
subgroup of  G. Hence F c H .  Let y e G  be such that  ~ is concentra ted on HyF/F,  
where H y F  is a closed set. We have H y F  = H F y F  = H y F F .  But since H y F  is 
closed and FF is dense in G we must  have H =  G; that  is, ~r is G-invariant.  
Equivalently, ~r is G-invariant.  

(3.8) Remark. I f G  = G ~ where G is an algebraic II)-group and F is an ari thmetic 
lattice in G then in Theorem 3.4 the condit ion ofF-f ini teness  o f g  is redundant .  This 
is because for G and F as above,  every invariant  measure  of  any horospherical  
subgroup  N (-  indeed of  any unipotent  subgroup) is the limit o f  an increasing 
sequence of  finite N-invar iant  measures  (cf. Theorem 4.1 [9]). In other words, every 
F- invar iant  measure  on GIN is the limit of  an increasing sequence of  F-finite F- 
invar iant  measures.  

~" 4. Invariance of  LiJted Measures 

The aim of  this section is to prove the following theorem which may  be viewed as a 
generalisation of  W. Parry 's  result [20] on unique ergodicity of  translat ions of  
compac t  nilmanifolds. 

(4.1) Theorem. Let G be a connected Lie group and F be a lattice in G. Let U be an 
analytic subgroup of  G and let V be the smallest normal subgroup oJ G containing U. 

Suppose that  H = (VF) ~ is a nilpotent Lie group. Let It be a U-invariant measure on 

G/F such that the projection o) ~ on G/VF is' G-invariant. Then ~ is G-invariant. 

Proof In  view of  L e m m a  1.13 H c~ F is a lattice in H. Since H i s  a nilpotent Lie group  
this implies that  H / H ~ F  is compac t  (cf. [21], Theorem2.1) .  Consequent ly  the 
canonical  quotient  m a p  of  G/F onto G/HF is proper.  Hence the projection o f p  on 
G/HF is indeed a locally finite Borel measure.  

Now let X = G/F and let ~ be the part i t ion of  X i n t o  cosets o f  the form gHF/F.  
The quotient  space X/~ is canonically isomorphic  to G/HF. In part icular  ~ is a 
measurable  part i t ion of  X. Let  fi be the quotient  measure  on X/~ and let 
{lxc[CsX/~ } be a system of  condit ional  measures.  We recall that  such a system is 
defined fi a.e. and  is unique fi a.e.. Since U is a separable locally compac t  g roup  
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we can deduce that for C in the complement of  a set of  zero fi-measure,/~c is 
U-invariant. Set 

(4.2) X '  = { C t X / ~  [ lr(/Xc) is (U, HF)-invariant}. 

We shall show that fi(X/~ - X')  = 0. This would imply that l r (p) = lnr (fi) and since 
by hypothesis fi is G-invariant, in view of Proposition 1.3 ~ would be G-invariant. 
To prove the previous statement we need the following result, which is a 
reinterpretation of W. Parry's theorem referred above. 

(4.3) Lemma. Let H be a connected nilpotent Lie group and let A be a lattice in H. 
Then there exist countably many proper normal analytic subgroups {Hi} z~IN of  H such 
that the following conditions hold: 

i) For any i t IN,  IliA is closed and 
ii) For any analytic subgroup U o f  H either U = H i for some i or every U-invariant 

measure on H/A is H-invariant. 

Proof  Firstly we note that there is no toss of  generality in assuming, as we do, that H 
is simply connected. Then H/[H,H] is naturally isomorphic to IR k for some k.It is 
well-known that [H, H]F/[H, H] is a lattice in HI[H, H]. Thus the image of A in IRk is 
a lattice and hence for a suitable choice of  the basis it can be identified with Z k. Let 
{H~},~ denote the (countable) family of  all subspaces of IRk which are defined by 
linear equations with rational coefficients. Let {Hi},~ be the subgroups of H which 
are inverse images of  H;  under the quotient map of H onto H/[H,H] --- IRk. It  is 
evident that for any i t  IN, I l ia  is closed. We only need to verify condition (ii) which 
is done as follows. Let Ube any analytic subgroup of  Hwhich  is not contained in H~ 
for any i. We can choose a one-parameter subgroup {u~},~ of U which is not 
contained in Hi for any i. The image of {u,},~ in IRk under the quotient map is a line 
D = {t~ [ t t IR}, where c~ t IRk, which is not contained in H;  for any i. It  is well-known 
that under this condition the flow on IRk/zk induced by D is uniquely ergodic; that 
is, the Haar  measure is the only D-invariant probability measure on IRk/zk. But by 
Parry's theorem (cf. [20], Theorem 5) this implies that any {ut}-invariant measure 
on H/A is H-invariant, which proves the lemma. 

We now return to the proof  of  Theorem4.1. The following proof  involves 
essentially the same idea as the author has used in [7], Lemma 4.2, for lifting 
ergodicity under a similar situation. Let g t G  be such that the measure/~c, where C 
= gHF/F ,  is U-invariant. Put A = H c~ F. We define a measure vg on H/A as follows. 
The map ~00: H/A --* G/F defined by q~g(hA) = ghF for all h t H i s  a homeomorphism 
onto C. Set v 0 = q~- 1 (Uc). Then v o is a g -  ~ Ug-invariant measure on H/A. 

Recall that His  a connected nilpotent Lie group and that A is a lattice in H. Now 
let Hi, i t IN be the proper closed normal subgroups of H as in Lemma 4.3. For i t IN 
put 

there exists a g i G  such that ' [  
X i = C t X / ~  C = g H F / F  and g -  1 U g c  HiJ" 

We would like to show that f i (Xi)= 0 for all i. Since/ i  is G-invariant and the 
subgroups Hi are normal in H evidently it is enough to show that  the sets 

E i = { g t G l g U g  -1 c H i }  

are sets of  zero Haar  measure in G. 
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Let if possible ielN be an index such that E~ has positive Haar  measure. Let g be 
the Lie algebra of G and let u and b~ denote the Lie subalgebras corresponding to U 
and Hi respectively. Let r be the dimension of u and consider the representation Q of 

G on /~ g obtained as the rth exterior power of  the adjoint representation. Let 
r r 

9~ = A b~ c /~  g and let f be a non-zero element in the one-dimensional subspace 

/~ u. Clearly geE i if and only if Q(g)fe9 i. Let qt be any linear functional on /~  g 
such that qs (~?~) = 0. Then ~(Q(g)f)  is a real analytic function on G which vanishes 
on Ez. Since E~ has positive Haar  measure and G is connected this implies that 
qJ (Q (g)f) = 0 for all geG. Since q~ is arbitrary we must have ~(g)fe9~ for all geG. 
However this is equivalent to g U g - ~  H~ for all gsG. Therefore V, the smallest 
normal subgroup containing U, must be contained in Hi. Since H~F is closed this 

implies that H = (VF) ~ is contained in Hi. Since Hi is a proper subgroup of H this 
is a contradiction. Hence fi(X~) = 0 for all i. 

Since /~c is U-invariant for /i-almost all C and fi(X~)= 0 for all loiN, by 
Lemma 4.3 for/ i-almost  all C = gHF/F the measure v o on H/A is H-invariant. Let 
gcG be such that this is satisfied. Then l~ (v0) is the Haar  measure on H. Since ltc 
= (po(vo), for C = gHF/F the last assertion implies that lr(,Uc) is invariant under the 
action of H on the right. Hence l r ~ c )  is (U, HF)-invariant. Thus the complement of  
the set X'  as defined in (4.2) is of  zero/i-measure, which proves the theorem. 

Part II: A Special Case 

w More About Algebraic Groups and Their Subgroups 

The notations introduced in this section will be adhered to throughout Part  II. 

(5.1) Let G be a reductive Zariski connected algebraic q-group.  Let S be a 
maximal q-split  torus in G. Let A be a maximal lR-split torus containing S and 
defined over the algebraic closure of  Q in ~.  Let (5 be the Lie algebra of  G and 
consider the root space decomposition of (5 with respect to A; thus 

where 3 is the Lie subalgebra corresponding to the centraliser of A in G, �9 is a root 
system of characters on A and each ~ is the root space corresponding to the root ~, 
given by 

(5~={~r foral l  a~A}, 

where Ad denotes the adjoint representation. We fix an order on �9 and let q~+ and A 
respectively denote the set of positive roots and the set of  simple roots with respect 
to the order. For  any ct let G~ denote the subgroup generated by exp (5 ~. For any 
subset ~ of  q) let G ( ~ )  denote the subgroup generated by {G~ I c~ ~ 7 ~} together with 
Z, the latter being the centraliser of  A in G. For any subset O of A let (69) denote the 
set of  roots in (b which are integral combinations of  elements of  O and let [69] 
= (O)wq~ +. For any subset O of  A let Pe and P~ denote the subgroups G([G]) 
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and G ( -  [O]) respectively and let Uo and Uo  denote the unipotent radicals of Po 
and Po respectively. The subgroup Po, is called the standard parabolic N-subgroup 
of G associated to O. Any parabolic N-subgroup of G is conjugate to a unique 
standard parabolic N-subgroup. For any subset O of A let Z o denote the subgroup 
generated by {G~I~<O>} together with Z. Then Zo is a reductive algebraic N- 
subgroup. Further Po = Zo Uo (semi-direct product) is a Levi decomposition called 
the standard Levi decomposition. 

Let A o denote the subset of  A consisting of those roots whose restriction to S is 
the trivial character on S. We set P = PJo and P -  = PA~. Then P and P -  are minimal 
parabolic Q-subgroups (i.e. parabolic subgroups defined over Q). 

(5.2) We now describe a criterion to determine which of the standard parabolic 
subgroups are defined over Q. 

Let k be the field of  algebraic numbers and let D be a maximal torus in G 
containing A and defined over k. Let A e be the system of simple roots with respect 
to D such that the simple roots in A are restrictions of  elements o f d  e to A. It is well- 
known that d e can also be regarded as a system of simple roots with respect to I ~ ,  
as the restrictions of  distinct roots are distinct. Let Z be the Galois group of k over 
Q. Then there exists an action of Z on d e defined as follows. Let ~ s Z .  Then there 
exists an element g ~ G  k such that the corresponding inner automorphism cg 
transforms ~(Dk) into I~  and the system of  simple roots a(Ae) relative to ~(Dk) into 
the system Ae relative to I~,. The action of cg.e on the set of characters on Dk is 
independent of the choice o fg  and leaves Ar invariant. Further, associating to e the 
automorphism of de thus induced, yields an action of Z on Ae (cf. [3], w 6). Now let 
q:A~ ~ A  be the map  which associates to each ~ A ~  its restriction to A. Also let 

= { ~ c  A It/- 1(7~) is invariant under the above-mentioned action of Z on Ae.} 

A subset of A which belongs to E is said to be Q-saturated. The rationality criterion 
sought after is the following: 

(5.3) Proposition. (cf. [3], w For any tp ~ A the standardparabolic N-subgroup P~ 
is defined over Q if and only if Aoc 7 j and tP is Q-saturated. 

In the sequel we also need the following observation. 

(5.4) Lemma. Let L c U~o be an algebraic subgroup defined over Q. Suppose that L 
is normalised by Z~o. Then the set { e ta  [G, c L }  is Q-saturated. 

Prooj~ We note that the maximal torus D involved in the definition of �9 as above 
can be chosen to be contained in Z~0 and that in this case the element g, 
transforming a(Dk) into ~ and a(Ae) into Ae (where e sZ) ,  can be chosen to be in 
(Z~0)k. From this it is straightforward to deduce the lemma. We omit the details. 

(5.5) Retaining the ,notations as in w we shall now introduce certain Lie 
subgroups, through which we shall be able to use the results recalled in w 

Set G = G~, Z = Z~, P = P~ and P -  = P~ .  Next, let [] be the empty subset of  A 
and put R = (P~)R and N = (U=)~. Observe that PD is the minimal standard N- 
parabolic subgroup of  G and U D is a maximal unipotent N-subgroup of G. Thus N 
is a maximal horospherical subgroup of G(cf. w The standard Levi 
decomposition of P~ yields R = Z .  N (semi-direct product, with N as a normal 
subgroup). 
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Now let F be an arithmetic lattice in G = G~. Let W be the unipotent radical of  a 
parabolic R-subgroup of G. Then the horospherical subgroup W~ is F-rational in 
the sense of w if and only if W is defined over Q. Recall also that P = P~o and P -  
-- PL  are minimal parabolic q-subgroups and that Udo and U s  are their respective 
unipotent radicals. It  follows that the subgroups U-(Uno)~ and U - =  (Us 
which are contained in G, are maximal F-rational horospherical subgroups of G ~ 
Further Pr~ G o and P -  r~ G o are the normalisers o f  U and U-  in G ~ In particular, 
(U, U - )  form a pair of  maximal F-rational horospherical subgroups opposite to 
each other. It  may be remarked that because of our choices as above we 
automatically have U= N~  P. 

Lastly, in the sequel, the subgroup Go, which is contained in G, will be denoted 
by G o . 

(5.6) Let N(A) and N(S) denote the normalisers of  A and S respectively in G. 
Then W =  N(A)~/Zis the R-Weyl group of G. By the Bruhat decomposition (cf. [3], 
Theorem 5.15) we have 

G = U RxwR (disjoint union) 
wEW 

where {xw}w~w is any set of  representatives in N(A)R for W. 
We fix a set of  representatives and, by abuse of notation, write w for x w. It is 

well-known that there exists a unique element w o ~W such that RwoR is an open 
dense subset of  G and that for w ~ Wo, R wR is a lower dimensional submanifold of  
G. Indeed RwoR, where R = P [ ] ,  is Zariski open in G and RwoR=RwoRc~G. 
Similarly using the fact that any parabolic subgroup of G is Zariski connected it is 
easy to prove the following. 

(5.7) Proposition. Let Q be a standard parabolic R-subgroup. Then for any g~G 
there exists a unique w eW such that R wR is open in QRg R. Further the complement 
of R wR in Q~g R is a finite union of lower dimensional submanifolds. 

(5.8) Proposition. There exists Q~N(S)~ such that Q-1pQ=p-  and PQR 
=PwoR. 

Proof. There exists ~ e N (S)e such that r  1 p O = P -  and P Q U~o is Zariski open in 
G (cf. [3]). By the uniqueness property of  w o recalled earlier we get that 
RwoRcPQR. Hence PQR=PwoR. 

Let W 0 be the subset of W consisting of those elements w~W such that w 4: Wo 
and RwR is open (and dense) in PwR. Then by Propositions 5.7 and 5.8 and the 
Bruhat decomposition we have 

(5.9) G - P r  U PwR. 
w~Wo 

(5.10) The Weyl group W can also be viewed in a natural way as a group of  linear 
transformations of  V = X(A) |  Rwhere X(A) is the group of characters on A (cf. [3] 
w There exists on V a W-invariant inner product such that {s, I ~ A } ,  where s, is 
the reflexion in the hyperplane orthogonal to ~, is a set of  generators for W. For 
weW the minimum possible word length of any expression for w in terms of 
{s, I~cA} is called the length of w and is denoted by l(w). In the sequel we need the 
following results involving l(w). 
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(5.11) Proposition. Let  ~ A  and w~W.  Then l(s~w)=l(w)+_ 1 and 

a) l(s ,w) > l(w) implies that R s ,  R w R  = Rs~wR,  and 
b) l ( s~w)<l (w)  implies that R s ~ R w R  is contained in R w R ~ R s ~ w R  and 

intersects R w R  in a non-empty set. 
The Proposition is a consequence of the fact that (G, R, N(A), {s, ]~ ~A }) is a Tits 

system (cf. [25] w and Lemma A, w [17]). 

(5.12) Lemma. Let  ~ A  and w~W.  Then l(s~w) > l(w) i f  and only i f  ~w(4~+) .  
This is well-known; it can be deduced from the observations in w of [16]. 

(5.13) Theorem. Let w ~ W and let w = sl s z . . .  sl, where l = l(w) and s i ~ {s~ I c~ ~A }, 
be a reduced decomposition for  w. Then the set A ( w ) =  {st, "si2"" "si~ Ik~IN, 1 < i 1 
"< i2"" < i k < l} is independent o f  the choice o f  the reduced decomposition and 

R w R =  U R w ' R .  
w' EA(w) 

This is just Corollaire 3.15 in [4] for the field of real numbers with respect to the 
euclidean topology. Noting that the equality also holds with respect to the 
(restriction of the) Zariski topology (cf. Theorem3.13, [4]) one deduces the 
following. 

(5.14) Remark.  For any w e W, R wR is the set of lR-points of an algebraic variety 
defined over R. 

(5.15) Corollary. Let  w ~ W  and 7 ~ = { ~ A  [l(s~w) < l(w)}. Then 

(Pv)~ = { g 6 a l g R w R  = R w R } .  

Proof. Indeed, the right hand side is a subgroup containing R and hence it is 
necessarily of the form (Po)~, with O = A (cf. [25]). Evidently O must be the set 

{ s e a  Is, R w R  = R w R } .  Let ~ 7  j. Then by Proposition5.11 and Theorem5.13, 

s, R w R  ~ R w R  w R s ,  w R  ~ R w R .  Hence c~ cO. Therefore ~u = O. On the other hand 

if ~ 7 j, then Rs,  R w R = Rs ,  w R, which by Theorem 5.13 is not contained in R w R,  
and consequently ~ ~ O. Therefore ~u = O. 

In the sequel we also need the following decomposition Lemma. 

(5.16) Lemma. Let  Q = P o  be a standard parabolic R-subgroup and w~W.  Then 
there exist analytic subgroups N + and N -  o f  G such that theJollowing conditions hold. 

a) N + and N -  are normalised by every element o f  Z. 

b) N = N § N -  and N + ~ N -  is the trivial subgroup. 

c) For any g ~ Q~ w N there exist uniquely defined elements x ~ QR and n ~ N -  such 
that g = xwn.  

Proof. Put 

~ +  = {~ ~,/'+ I w ( ~ ) e ( O )  w,P + } 

where ( O )  is the set of  roots which are integral combinations of  elements of O. 
Also let ~ -  = 4~ + - ~U+. It is straightforward to verify that 9l + = ~ (5 �9 and 

r  § 
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9 / - =  ~, ~" are Lie subalgebras of  (~ defined over ~. Hence there exist 

(uniquely defined) analytic subgroups N § and N -  such that the corresponding Lie 
subalgebras of 6i, over fiT, coincide with 91" and 9l-  respectively. It is then easy to 
check that assertions a) and b) are satisfied. (cf. [25], Proposition 1.1.4.5, for an idea 
of the proof  of  (b)). Also evidently w N  + w- 1 = Q ~  and w N -  w- ~ c~Q~ is the trivial 
subgroup. Thus Q ~ w N =  Q~(wN + w -  X ) ( w N - )  = Q ~ w N - .  Now if g 6 Q ~ w N -  
then g w -  ~ ~QR(wN-  w-  ~) and because of the above condition there exist uniquely 
defined elements x~Q~ and y ~ w N - w  -~ such that gw -~ = x y ;  I f  n ~ N -  is the 
element such that y = w n w -  ~ then we have g = xwn,  the elements being uniquely 
defined. 

w 6. Invariant Measures on Arithmetic Homogeneous Spaces 

We now obtain a classification of ergodic invariant measures of  maximal 
horospherical flows on homogeneous spaces corresponding to certain arithmetic 
lattices. 

(6.1) Theorem. Let the subgroups G, N, Z, G~ etc. be as in w Further let F c  GQ 

be an arithmetic lattice in G such that ( FF)  ~ = G ~ where F is the smallest normal 
subgroup of  G containing every connected non-compact simple Lie subgroup of  G. Let 
a be an N-invariant ergodic measure on G/F. Then there exist, a closedsubgroup L of  
G and a y eZGe ,  such that the following conditions are satisfied. 

i) L ~  is a closed orbit which admits a finite L~ measure (unique 
upto a scalar multiple). 

ii) a ( G / F -  L ~  0 and ~ is L~ 

Further, in the notation and terminology as in w 5.1, we have the following: 

iii) There exists a standard parabolic N-subgroup Q of  the ambient group G such 
that the following holds: L is a normal subgroup of  Q~ and further, i f  V is the smallest 

normal subgroup of  Q~ containing N, then L ~ = (VF)~ = (V(Q~ r~ F))~ 

iv) L is the group of  N-elements of  an algebraic subgroup of  G defined over tt). 

Note. F being an arithmetic lattice, the condition (FF)o = G o as above, forces G to 
be a semisimple Lie group. We shall however not need this information. 

Proof  In view of Lemma 1.11, for proving the theorem, we may without loss of  
generality assume that F c G ~  Now let zr be the (F,N)-invariant measure on G 
defined by 7r= i~lr(a) (cf. w We note that G = Z G  ~ (cf. [3], w Hence there 
exists 4 EZ such that rc(G ~ 4) > 0. Since ~ normalises N, the theorem is true for r if 
and only if it is true for its right translate by 4. Hence in the proof  we may assume 
zr(G ~ > 0. By ergodicity of  r this already implies that 7r(G - G ~ = 0. 

Now, if 7r (G ~ - j P -  N) = ~z(G ~ - j ( P -  ~G~ --- 0 for a l l j s G e  ~ G  ~ (notations 
as in w then in view of Remark  3.3 and 3.8, Theorem 3.4 implies that 7r is G ~ 
invariant. In this case evidently the theorem holds if we choose L = G and y to be the 
identity element. Next suppose otherwise. Thus there exists j s G ~  ~ G  ~ such that 
rc(G - j P -  N) > 0. Recall that 
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G - j P - N =  G - j P - R =  G - j o - ~ P o R  

= j Q - ~ ( G - P o R )  

= j o - l (  U PwR) 
weWo 

where 0 EGo and Wo c W are as in (5.9). Let w eW o be chosen so that i) there exists 

qGGe such that g(qPwR) > 0 and ii) g(r(PwR - PwR)) = 0 for all rtGe.  We note 
that since 7 t ( G - j P - N )  > 0 and QGGe, such an element w exists. 

Now let Y= PwR and Q' = {g~G [gY= Y}. Since w tWo, Y= RwR. Hence by 
Corollary 5.15 Q ' =  (Po,)~ where O ' =  {eGA [l(s,w)</(w)}. Next let Q be the 
largest standard parabolic subgroup of  G defined over (i~ and contained in Po,. 
Since Q' contains P such a subgroup exists. Further, in view of Proposition 5.3, Q 
= Po where O is the largest II~-saturated subset of O'. Now let V be the smallest 
normal subgroup of  Q~ containing a maximal unipotent subgroup, Let L be the 

smallest algebraic N-subgroup of G containing (VF)~ Then by Proposition 2.3, L 
is a normal subgroup of Q and it is defined over Ii~. Let Q = Z o - Uo be the standard 
Levi decomposition of Q. Then clearly L = (L ~Zo)"  Uo is a Levi decomposition 
for L. Since Zo is a Zariski connected reductive algebraic group defined over (i~ and 
L ~ Z  o is a normal subgroup of Zo defined over Q there exists a normal algebraic 
subgroup Z' of Z o defined over ~ such that Z' ~ L  is finite and Zo = (L c~Zo)Z'. 
Since L ~ Z o  contains a maximal unipotent subgroup of Zo it is evident from the 
root space decomposition that Z '  is contained in Z. In particular 

0 0 0 0 Q~ = (Zo)~(Uo)~ c (L ~Zo)~ .  Z~(Uo)~ ~ L~Z. 

We shall now put Q = Q~, and L = L~. Since QO is connected, the last inclusion 
relation implies that QO~ Loz. Since Q = Q~ (cf. [3], w 14) we can also conclude 
that Q = L~ 

The proof  of the theorem will be completed by showing that there exists z o GZ 
such that n is a (F,L~ measure supported on Fqzo L~ the latter being a 
closed set. The proof  depends on the following. 

(6.2) Proposition. Let ~' be the measure on G defined by ~'(E)= z~(q(E~ Y)) for 
any Borel subset E of G. Then z~' is (L~ 

We defer the proof  of the Proposition until the next section and first complete 
the proof  of the theorem assuming the validity of the Proposition. This will be 
achieved in several steps. 

Step 0 n' is ergodic as a (q- lFq ~ Q,N)-invariant measure. 

Proof. Consider the family 

= <(El n' ( E ) >  0 and there exist k tiN and 71,72 . . . .  , Yk t q- lFq~.  
(such that E= YcW~ Y...r~yk Y J 

Since Yis the set of  real points of  an algebraic variety (cf. Remark 5.14), ~ admits a 
minimal element, say Eo. Then evidently for any y e q - ~ F q  either ),E o = E o or 
n'(yEoc~Eo)=O. We shall show that Eo = Y and then deduce the above claim. 
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Since by Proposi t ion 6.2, n '  is invariant under the left action o f L  ~ there exists a 
measure z~' on L ~  such that  for any ~oeCc(G) 

(6.3) ~ ~o(x)d~'(x) = ~d~'(L~ 

where 2 is a Haar  measure on L ~ It is s traightforward to verify that for any x e G  the 
set L c~ Eox-~ is the set o f  real points o f  an algebraic variety defined over IR. We 
deduce that for any x e G either L ~ x is contained in E o or 2 (L ~ c~ Eo x - 1) = 0. Hence, 
in view of(6.3) it follows that there exists a L~ Borel subset E1 of  Eo such 
that re'(E o - El)  = 0. In particular, re'(E1) > 0. 

Now let x e E~ and let ~ e W  be such that x e r e  R = N~ R. Since Ex is L~ 
and L ~ contains N we get that  L~  is contained in EI R. But L~ = L ~  
= L ~  = Q~R. Hence E 1R is a (finite) union o f  double cosets of  the form Q~R 
where ~EW. But recall that re'(EiR ) > 0 and by the choice o f  w, for any ~eW, 
g'(Q~R) > 0 implies that w e Q r  Hence Q w R  is contained in E 1R. But clearly 
E1 R is contained in E o . Hence Q w R c E o . However  Q wR is an open dense subset o f  
Y whereas Eo is a closed subset o f  Y. Hence we must  have Eo = Y. In other words, 
for any 7 e q -  1Fq either 7 Y = Y or  ~'(7 Y~  Y) = 0. It  may  be observed that  n '  is the 
restriction to Y of  the measure q -  1 rc (defined by (q-  ~ re) (E) = rc(qE) for  any Borel 
set E). Since q -  1 re is clearly an ergodic (q-  ~ F q, N)-invariant measure, the above 
condit ion implies that  zt' is ergodic as a ( q - 1 F q  ~Q,N)- invar ian t  measure. 

Step ii) There exists z ~ Z  such that ~r'(L ~ w z N ) >  O. 

Proof. Put F~ = (q-~Fq)c~Q. Evidently, L 1 = F~L ~ is a closed subgroup of  Q. 
Further  since Q = L ~  we also get Q = L 1 Z. Let Za be a Borel subset o f  Z such that  
for any x ~ Q  there exists a unique element z ~ Z  1 such that x~L~z;  that  is, Z~ is a 
Borel section for L 1 \ Q. N o w  Q w N  = LI Z~ w N and using Lemma 5.16 it is easy to 
verify that {L~zwNlz~Z~}  is a countably separated parti t ion of  QwN.  Each 
element of  the parti t ion is invariant under the left action of/'1 and the right action o f  
N. Since zt' (Q w N) > 0 and n'  is ergodic as a (F~, N)-invariant measure it follows that  
zt' is concentrated on a single element o f  the above partition. Observe that  since w 
normalises Z, each element o f  the partition also has the form L 1 wzN.  Thus there 
exists z e Z  such that ~' (L~ wzN)  > 0. Since L 1 = F~ L ~ and re' is (/'1, N)-invariant we 
conclude that re'(L~ > O. 

Step iii). w N w - 1  is contained in L ~ 

Proof. Let N + and N -  be the subgroups of  N as in Lemma 5.16 corresponding 
to Q and w as above. Observe that since w N  + w-1 consists only o f  unipotent  
elements and is contained in Q, it must  be contained in L ~ Therefore we 
have L ~ w z N  = L ~ w N z  = L ~  + w-  1) (wN-  z) = L ~ w z N - .  Further,  the map  
z : L  ~ • N -  ~ L ~ w z N - ,  sending (x,n) ~L ~ • N -  to xwzn ,  is a Borel isomorphism o f  
L ~ x N -  onto  L ~  Since by Proposit ion 6.2,~'  is (L~ it follows 
that the restriction o f  re' to L ~ w z N  is the image under  z o f  the product  o f  the H a a r  
measures 2 and v on L ~ and N -  respectively. By Proposi t ion 2.3 L ~ c~F1 is a lattice in 
L ~ Let O be a fundamental  domain  in L ~ for the left action o fL~  ; that  is, f2 is a 
Borel subset of  L ~ such that for any x e L  ~ there exists a unique element a~f2 such 
that xe(L~ Put  D=~(~2  • N - ) .  Then for any 7~L~ 
Since F I=  Q = L ~ Z, for any 7 ~/'1 the sets 7 L~ wz N and L ~ w z N  are disjoint unless 



376 S.G. Dani 

7 e L  ~ Hence we have 7Z'(TDc~D) = 0  for all 7 e F  a. Finally, for 7 e q - l F q - F 1  
= q - l F q - Q  we know that  n ' ( T Y c ~ Y ) = 0  and therefore we conclude that 
n'(yDc~D) = 0 for all 7 sq -  ~ Fq. Recall that  n '  is the restriction of  the measure q -  1 n 
and that  q -  1 n is a (q- ~ Fq, N)-invariant ergodic measure on G. Since q-  1 Fq is an 
arithmetic lattice in G, by Theorem 4.1 in [9], q - i n  is q-1Fq_finite. Hence (q-1 n) 
(D) is finite (cf. w 1.7). Since D c  Y this means that n ' (D) is finite. But recall that  n' (D) 
= 2(f2) x v(N-) .  Hence v (N- )  is finite. However,  being an analytic subgroup of  N, 
N -  is a simply connected nilpotent Lie group and hence v (N- )  can be finite only if 
N -  is the trivial subgroup.  Thus finally we have N = N + N -  = N + and therefore 
wNw -1 = wN + w - l c L  ~ 

Step iv) w ~ Q. 

Proof. Since w N w - l ~ L c Q ,  wNw -1 is a maximal horospherical  subgroup 
contained in Q. But as w R w -  ~ is the unique minimal parabolic subgroup of  G with 
w N w -  1 as the unipotent  radical, we conclude that wR w- ~ is contained in Q. Since 
Q and R are parabolic subgroups and R c Q, the above is possible only if w ~ Q (cf. 
[25], w and [17], w LemmaD) .  

The author  is grateful to the referee for suggesting the above simpler p roof  o f  
step iv). 

Step v). Complet ion o f  the proof.  

Recall that  rt' (L ~ w zN)  > 0. Since w ~ Q = L ~ Z there exists z '~  Z such that L ~ w 
= L ~  '. Thus L ~ 1 7 6 1 7 6 1 7 6 1 7 6  where Zo=Z'zEZ.  
Thus we have n'(L~ > 0. Observe that since L is normal  in Q,L~ = Zo L~ and in 
particular, it is invariant under the action o f  L ~ on the right hand side. Further,  since 
the restriction o f  the measure re' to L~ is L~ under  the left action and L ~ 
is unimodular ,  we deduce that  the restriction is invariant under the action on the 
right; i.e. n'(Et) = n'  (E) for any Borel subset E o f  L ~ Zo and any t e L  ~ Since q -  i rt is 
a (q-~Fq, N)-invariant ergodic measure, whose restriction to Y is zc', the last 
assertion implies that  q -Xn is the (unique upto a scalar multiple) (q-~Yq, L~ - 
invariant measure concentrated on q-  x Fqz o L ~ Therefore rt is the (F, L~ 
measure concentrated on Yqzo L~ Hence a is the L~ measure con- 
centrated on the L~ of  y = (qzo)-1. 

Since L is an algebraic subgroup of  G defined over ~ and admits no characters 
defined over ~ ,  by Lemma2.2  q-~FqL ~ is closed. Hence so are Fqzo L~ and L~ 
Therefore L~ is a closed orbit  o f  L ~ Also as noted earlier the isotropy 
subgroup o f  the act ion o f L  ~ is clearly a lattice in L ~ Hence the orbit admits a finite 
L~ measure. 

Thus the p r o o f  o f  i) and ii) as in the statement o f  Theorem6.1 is complete. 
Assertions iii) and iv) are evident f rom Proposi t ion 2.3 and the choice o f  L. 

6.4 Remark. In the p roo f  o f  Theorem 6.1, it may  be o f  some interest to note that  a 
posteriori, Q = Q'. This may  be proved as follows. Since 
wNw -~ c L ~ Q ,  w(q~+)c(O)wq~ + (notations as before). On the other hand, for 
any ~ ~ O' ,  l(s~ w) < l(w). Therefore by Lemma 5.12, (6) ' )  c~ ~ - c w (q0 +), where (b - 
= q~ - q~+. Hence ( ~ 9 ' ) c ~ b - c ( ~ 9 ) u ~  +. This implies that  ( O ' ) ~ + ~ ( 6 ) )  and 
therefore, ~9'~ (9. But as 6 ~  ~9', we conclude that O '  = O. Hence Q'  = Q. 
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w 7. Proof of Proposition 6.2 

We now proceed to prove Proposi t ion 6.2 keeping the same notat ions as before. 
Recall that 7~' is a (F1,N)-invariant measure concentrated on Y, where F 1 
= (q - 1 Fq)~ Q. Further  by the choice of  the element w e W o we have re' (j'(Y - P w R)) 
= 0 for all j~Go.  Since P c  Q, in particular we have ~r' ( Y - Q  w N ) =  O. 

Recall that  Q = L ~ Z. Let Zo be a Borel subset o f  Z such that for every x e Q there 
exists a unique element z~Zo such that xeL~ It is easy to verify, using 
Lemma5.16,  that  the partit ion of  Q w N  into {L~  is a countably 
separated partition. Hence re' admits a direct integral decomposit ion,  say {rc'z}Z~Zo, 
with respect to this parti t ion (cf. Proposi t ion l.9) where each g'z,zeZo is 
(F 1 ~L~ measure on G and 7r'~(G-L~ = 0. Since L• is countable 
and ~ z ' ( Y - j P w R )  = ~'(I'(Y - PwR))  = 0 for a l l j~L~  we can choose each ~'z, z~Zo 
to be such that ~'~(Y-jPwR)----0 for all j e L e .  Also to prove Proposit ion 6.2 it 
is enough to prove that  each ~z' z as above is L~ equivalently, it is enough 
to prove that Pu(~'z) is L~ (cf. Proposit ion1.3).  Let z e Z  o be fixed 
arbitrarily. Let N'  = L ~  w N w -  1 and let i: L/N'  ~ L z w N / N  be the map  defined by 
i(gN') = gzwN. T h e n / i s  a homeomorphism.  Let/3 = i-1 (pu(~Z,z)) where pN(~Z'~) is 
viewed as a measure on L ~ z w N/N, by restriction. Let F '  = F 1 c~ L ~ and P '  = Pc~ L. It 
is straightforward to verify that /3 is a F ' - invar ian t  measure on L~ ' and 
~(L~ ' - j P ' N ' / N ' )  = 0 for al l jeLec~L ~ Therefore to prove Proposi t ion 6.2 it is 
enough to prove the following. 

(7.1) Proposition. Let ~ J I I ( L ~  ') and ~ ( L ~  for all 
j ~ L ~ L  ~ Then ~ is L~ 

Proof Recall that  L = T .  U o (semi-direct product)  where T = L ~ Z o .  T is a 
reductive Zariski connected algebraic group defined over Q. Put T = T~. Then T O is 
a connected reductive Lie group. Further  T O satisfies the condit ion o f  Theorem 3.4; 
viz. if F is the smallest (normal) subgroup of  T O containing every non-compact  

simple Lie subgroup of  T O then (F(T~F)  ~ = T o (cf. Proposi t ion 2.3). Let rl: L ~ T 
be the canonical projection homomorph i sm and let F* = q (F '), N* = q (N')  and P* 
= q(P'). Then F* is an arithmetic lattice in T. Fur ther  the natural quotient map  
~: L~ ' -~ TO~F* is proper. 

Let/31 be the N'- invar iant  measure on L~ ' dual to/3 (cf. w Then ~(/31) is a 
N*-invariant measure on T~ *. Let/3* be the F*-invariant  measure on T~ * 
dual to ~(/30- Then the hypothesis implies that 

(7.2) ~*(T~ * - j P * N * / N * )  = 0 for all j e T o ~ T  ~ 

N o w  we shall first prove, using Theorem 3.4, that/3* is T~ and then use 
Theorem 4.1 to deduce that /3 '  is L~ thus proving Proposi t ion 7.1. 

Recall that  Zo is a reductive Zariski connected algebraic group defined over 
and T is a normal  subgroup of  Z o defined over @. Hence there exists a normal  
algebraic subgroup C defined over Q such that Cc~T is finite, C" T has finite index 
in Z o and every element of  C commutes  with every element o f T .  This in particular 
implies that the subgroups S 1 and A 1 defined to be the Zariski-connected 
components  o f  the identity in Sc~T and Ac~T respectively are maximal @-split and 
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maximal N-split tori (in T) respectively. Let (b 1 be the set of those non-trivial 
characters on A 1 which are restrictions of  elements of (O) .  Then q~i is the root 
system o f T  with respect to A 1 and the root space corresponding to c~ o �9 is ~ ~ ' ,  

where the summation is taken over all those roots in ( O )  whose restriction to A1 is 
~o. On (b a we choose the ordering which is opposite to the ordering induced by @; 
that is, ~o e@~ is taken to be positive if it is the restriction of a negative root with 
respect to the ordering on 4). We show that with respect to this ordering the 
subgroup N* is indeed the standard maximal horospherical subgroup of T. Since 
6) c {~ �9 A [ l(s~ w) < l(w)} by Lemma 5.12 for any c~ �9 6) we get that - ~ �9 w (q~ +). 
Since the restrictions of { - ale �9 form the system of simple roots in cb~ the last 
assertion implies that the standard maximal horospherical subgroup of  T is 
contained in w N w -  ~, and hence in N*. But then since N* consists only ofunipotent 
elements it must be the standard maximal horospherical subgroup. 

Let Pi- be the minimal parabolic II~-subgroup of T which contains the centraliser 
of $1 in T and the maximal horospherical subgroup corresponding to all the nega- 
tive roots in @1. We show that P* is contained in P~-. Since P = Z~0. U~o we have 
P'=Lr~Pc(L~Z~o).U,~o=(Tr~ZAo).U~ o. Hence P*=~I(P')c(Tr~Z~o).~I(UAo). 
Evidently Tr~Z~o centralises S~ and hence it is contained in P~-. On the other hand 
the Lie subalgebra corresponding to ~/(U~o) is a certain sum of root spaces of the 
form ff~, ~e@ § Since the restriction of any such root to A~ does not belong to @~ 
it follows that ~/(U~o) is contained in P ; .  Hence P * c P ; .  Put P~-=(P]-)~. 
Then P * ~ P ;  and by (7.2) for anyjeToc~T ~ 

r* (T~ * - j P ;  N*/N*) < r* (T~ * - j P *  N*/N*) = O. 

Since F* is an arithmetic lattice in Tand r* is a F*-invariant measure, in view of the 
above verifications and Remarks 3.3 and 3.8, Theorem 3.4 implies that r*  is T ~ 
invariant. 

Next, using Theorem 4.1 we deduce that fl is L~ We need to verify the 
following 

(7.3) Lemma. Let V be the smallest normal subgroup o f  L ~ containing 

( U o ) ~ w N  w-  1. Then (F '  V) ~ = (Ue) ~ 

Proof Recall that F '  is an arithmetic latti6e in L = T(Ue) ,  and that Uo is defined 

over ~.  Hence F ' (Ue)  ~ is closed. Therefore F '  V ~ is contained in (Uo)R. 
Observe that the subgroups (Uo) ,c~wNw -1 and L ~ are normalised by every 

element of Z. Hence it follows that V is a normal subgroup of  Q. For  any 

g � 9  -a is commensurable with F '  and consequently g ( F ' V ) ~  -~ 

= (F'  V) ~ Hence the Lie subalgebra of F '  V ~ is invariant under the adjoint action 
of every g � 9  Since Qo is Zariski dense in Q (cf. [3], Corollary 3.20) the same 

holds for every element of Q. Hence (F '  V) ~ is a normal subgroup of Q. Being an 
analytic subgroup consisting only of  unipotent elements, it coincides with the group 
of N-elements of  a (unique) Zariski connected algebraic N-subgroup U' of  Q. In 

view of  the above, U' is a normal (algebraic) subgroup of  Q. Further since (F '  V) ~ 
contains an arithmetic lattice, U' must be defined over ~. Thus by Lemma 5.4 it 
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follows that  the set, say A', o f  simple roots ~ such that  Go is contained in U' ,  is Q- 
saturated.  Since O ' =  {a~A ]l(s,w) </(w)},  by L e m m a  5.12 A - O ' =  w(4~+). But 
clearly (A - O)c~ w (~b +) is contained in A'. Hence (A - O ' ) =  (A - O)r~ w(4~ +)C A '. 
Since O is the largest ~ - sa tu ra ted  subset of  O '  we deduce that  A' = A - O. Thus U '  
contains the subgroups  G , , a ~ A -  O. But Uo has no proper  subgroup  which 
contains all G~, ~ A  - 6) and  is normalised by Z o .  Hence U ' =  Uo which proves 
the Lemma.  

Recall that  fil~,//C(L~ ') is dual to fl and that  q(fll) is dual  to 
fl* ~J//I(T~ Since fl* is T~ t~(fll ) is T~ (cf. (1.5)). Since 
fix is N ' - invar ian t  in view o f  L e m m a  7.3 and Theorem4.1  it follows that  fll is L ~ 
invariant.  Hence the same is true offi,  which completes the p r o o f  of  Proposi t ion 7.1. 

Part III: Conclusions 

In the next two sections we shall deduce the main  theorem from Theorem 6.1. 

w 8. Lattices in Semisimple Lie Groups 

In this section let G be a connected semisimple Lie group with trivial center and 
without  compact  factors and  let F be a lattice in G. 

A lattice A in a semisimple Lie group H is said to be irreducible if the only 
positive dimensional normal  subgroup  F for which FA is closed is H itself. 

The lattice F can be "decomposed"  into irreducible lattices in normal  subgroups  
of  G. More  precisely we have  the following 

(8.1) Proposition (cf. [21 ], Theo rem 5.22). Let G and F be as above. Then there exist 
normal (semisimple) Lie subgroups Gi, i 6 I  (a suitable indexing set) such that 

i) G = I-] Gi (direct product) 
lEl  

ii) For each i~L  Fi= Fc~G i is an irreducible lattice in Gi, and 
iii) F '  = F[ Fi is a (normal) subgroup o f finite index in F. 

t e l  

The decomposition is unique upto reindexing. 

(8.2) Theorem. Let G and F be as above and let N be a maximal horospherical 
subgroup of  G. Let a be a finite N-invariant ergodic measure on G/F. Then there ex&t 
a connected Lie subgroup L and a y ~ G such that the following conditions are satisfied 

i) L y F/F & a closed orbit of L, which admits a finite L-invariant measure 

ii) a is L-invariant and & supported on LyF/F .  

iii) N c  L and there exists a normal subgroup N'  of  L such that N ' ~  N and L/N '  & 
reductive. 

Proof Firstly consider the special case when F is an irreducible lattice in G. In this 
case by Margulis 's  ari thmetici ty theorem (cf. [18]) there are the following three (not 
necessarily mutual ly  exclusive) cases possible: i) G/F is compact ,  ii) IR-rank of  G is 1 
or  iii) there exists an algebraic g roup  G defined over  ~ such that  G = G ~ (via a 
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topological isomorphism) and F corresponds to an arithmetic lattice in G, with 
respect to the Q-structure on G. Let us consider each case separately. In case i), G 
admits no non-trivial F-rational horospherical subgroup. Consequently the 
conditions of Theorem 3.4 are trivially satisfied and we obtain that a is G-invariant. 
(This result is also proved earlier by several authors as mentioned in the 
introduction.) Thus L = G answers the theorem. In case iii) the desired result 
follows directly from Theorem 6.1 ; we only need to note that if Theorem 8.2 is true 
for a suitably chosen maximal horospherical subgroup then it is true for all of  them, 
since any two are conjugate to each other. Lastly consider case ii). We may assume 
G/F to be non-compact. Since ~ - r ank  of G is 1, G/F being non-compact implies that 
there exists a maximal horospherical subgroup which is F-rational. Since, as seen 
above, we have the freedom to choose the maximal horospherical subgroup, we 
may assume N t o  be F-rational. Now let N -  be a maximal F-rational horospherical 
subgroup opposite to N. Let P and P -  be the normalisers of N and N -  respectively. 
Then by the Bruhat decomposition (cf. [25], Theorem 1.2.3.1) there exists weG such 
that G = P w N u P  and w- 1Pw = P - .  Let J be a sufficient set of cusp elements for F 
with respect to (P- ,  N, K) where K is a maximal compact subgroup of G. As 
before let ~z be the (F, N)-invariant measure on G associated to a. Clearly the F-in- 
variant measure Pu(n) is F-finite. Now if r c ( G - j P - N ) =  0 for all j ~ J  then by 
Theorem 3.4 n is G-invariant and hence so is a. Next suppose otherwise and let 
j e J  be such that rc(G - j P -  N) > 0. Let x = j w -  1 and let n'  be the measure defined 
by rc'(E) = lt(xE) for any Borel subset E of  G. Then ~' is a (x-  1Fx, N)-invariant 
ergodic measure on G and z'(P) = 7z(jw- ~ P) = 7r(G - j P -  N) > 0. Let P = Z- N 
be the Langlands decomposition of  P. Put F ' =  x-~ Fx = w j -1F jw-1 .  Then F ' N  
= w ( j - 1 F j ) ( w - 1 N w ) w  -1 ----- w ( j ' - I F j ) ' N - w  -1.  But s i n c e j - l F j ~ N  - is a lattice in 
N - ,  (1"- 1 Fj) N -  is closed and hence so is F '  N. Since every element of  Z normalises N 
it follows that each F' zN ,  z ~ Z  is a closed set and {F ' zNIz~Z}  yields a countably 
separated partition o fF  'P. Since re' is a (F',  N)-invariant ergodic measure and ~t' (P) 
> 0 we deduce that there exists z e Z  such that n' is concentrated on F'zN.  Hence 7z 
is concentrated on FxzN. Therefore, a is concentrated on the N-orbit o fyF /F  where 
y = ( x z )  -a. Also y F y - l ~ N = z - l w ( j - l F j ) w - l z ~ N = z - l w ( 1 " - l F j c ~ N - ) w - l z .  
Since j -  ~ Fjc~ N -  is a (uniform) lattice in N - ,  it follows that yFy -  1~ N is a lattice in 
N. Since the latter is the isotropy subgroup o f y F / F  for the N-action we conclude 
that  N y F / F  is compact. Thus for the case at hand the theorem is satisfied with 
L = N .  

We now consider the general case. Let Gi and F,. for i~ l a n d  F '  be the subgroups 
as obtained from Proposition 8.1. In view of Lemma 1.11 the theorem need be 
proved only for F ' ;  equivalently, we may assume F = l-[ F~. 

i e I  

Now for i 6 I  let r/i: G / F ~ G i / F  i be the natural projection maps. For any i the 
measure t/i (o-) is invariant and ergodic under the maximal horospherical subgroup 
N, = N ~  Gi. Therefore by the special case considered earlier, for any i ~ L there exist, 
a subgroup L~ and an element y~ ~G~ such that L~yi~/F~ is a closed orbit supporting 

the measure t h (a) and t/~(a) is Li-invariant. Let L = 1-[ Li and y ~ G be such that t h (y) 
IEI 

= y~. Then clearly L y F / F  is a closed L-orbit admitting a finite L-invariant measure. 
Further a is obviously concentrated on LyF/F .  It only remains to show that a is L- 
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invariant. A Borel subset E of G/F is said to be rectangular if for any 
x~G/F,  q~(x) E~i(E) for a l l /z / impl ies  that x~E. Let us fix an index say k~I.  Let E 
be any rectangular subset of G/F. Let E be the rectangular set such that r/i(Z ~) 
= ~/i(E) for all i :~ k and ~/k (L') = Gk/Fk. Then L'is Gk-invariant. Further the measure 
if, defined by 6(B)= a(/~c~B) for any Borel subset B of G/F, is Nk-invariant. 
Consider the measure qk(6) on G j F  k. It is Nk-invariant and also absolutely 
continuous with respect to r/k(a ). Since the latter is ergodic as a Nk-invariant 
measure we deduce that ~lk(6) is a scalar multiple of ~lk(a). Since E is arbitrary one 
can deduce from this that for any rectangular subset E and g~L k, ~r(E) and 
a(gE) are a(/~) times the qk(6)-measures of rlk(E ) and ~lk(gE) respectively. 
Therefore cr(gE) = a(E) for all g e L  k. Since E is an arbitrary rectangular set it 
follows that a is Lk-invariant. Now varying k o v e r / w e  deduce that a is L invariant. 

(8.3) Remark. Case ii) in the above proof  also follows from Theorem 10.1 in [8]. 
However the author notes with regret that the proof of Theorem 10.1 in [8], though 
valid for lattices in IR-rank-1 groups, is not valid in the generality that it is stated. 
This is because Lemma 10.3 in [8], which purports to reduce the task of proving the 
theorem to a special case, is incorrect. Also in the special case the notation is rather 
clumsy and the proof  less transparent. 

(8.4) Remark. In Theorem 8.2 if we choose N containing a maximal F-rational 
horospherical subgroup then the subgroup L has the following property: There 
exists a parabolic subgroup Q containing N such that a) the unipotent radical of Q is 
F-rational and b) if V is the smallest normal subgroup of Q containing N then L 

= (VF)o. To verify this it is enough to consider the case of irreducible lattices and 
then apply it to the irreducible components. Consider the three possibilities as in the 
proof  of the theorem. For arithmetic lattices this is simply assertion iii) in 
Theorem 6.1. For  the first two cases L is G and N respectively and if we choose Q to 
be G and P respectively, the assertions a) and b) are satisfied. 

w 9. Theorems and Problems 

(9.1) Theorem. Let G be a reductive Lie group and F be a lattice in G. Let N be a 
maximal horospherical subgroup of  G. Let t7 be a finite N-invariant ergodic measure 
on G/F. Then there exist, a connected Lie subgroup L of G containing N and a y6G 
such that the following conditions are satisfied 

i) L y F/F is a closed orbit of  L, which admits a finite L-invariant measure and 

ii) ~ is L-invariant and tT(G/F-LyF/F) = O. 

Proof Since F is a lattice in G, G~ has only finitely many orbits on G/F. Because of  
ergodicity only one of these orbits has positive o--measure. Hence there is no loss of 
generality in assuming G to be connected. Now let H be the smallest closed normal 
subgroup of G such that G' = G/H is a semisimple Lie group with trivial center and 
without compact factors. Let q: G ~ G/H be the natural projection homomorphism. 
The subgroup F '  = r/(F) is closed and the map 6: G/F ~ G'/F' induced by q is proper 
(cf. [8], Lemma 9.1). Clearly q(N) is a maximal horospherical subgroup and q(a) is 
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a finite q(N)-invariant ergodic measure on G'/F'. Hence by Theorem8.2 there 
exists a connected Lie subgroup L' of  G' such that 6(a) is a L'-invariant measure 
supported on a closed orbit L'y'F'/F', where y'eG'. Further there exists a subgroup 
N '  of  q(N) such that N '  is normal in L'  and L'/N' is reductive. Under these 
conditions Proposition 9.3 in [8] asserts that there exists an analytic subgroup L of 
G contained in r / - l (L  ') and ye~/- l (y , )  such that the assertions i) and ii) of  
Theorem 9.1 are satisfied. 

(9.2) Remark. Let G,F and N be as in Theorem 9.1. Suppose that there exists no 
homomorphism ~0 of G O onto a simple Lie group H of N-rank 1 such that ~o (F) is a 
non-uniform, non-arithmetic lattice in H. Then every N-invariant ergodic measure 
is finite. This can be deduced using Theorem 4.1 in [9] and the decomposition as in 
the proof  of  Theorem 8.2. Thus in this case the hypothesis of finiteness of  a in 
Theorem 9.1 is redundant. I f  the following question is answered in the affirmative 
then this would be the situation for all lattices. 

(9.3) Question. Let H be a simple Lie group of N-rank 1, and let F be a (non- 
uniform, non-arithmetic) lattice in H. Let N be a maximal horospherical subgroup 
of H. Then is it true that every N-invariant ergodic measure is finite? More 
generally we may ask the following: Is it true that for any element usN every 
u-invariant ergodic measure is finite? This is related to the question whether given 
xeH/F  there exists a compact subset C of H/F such that the sequence 
{jelNluJxeC} has positive upper density (cf. [9]). 

Since the above was written, Gopal  Prasad has sent to the author a proof  of the 
analogue of Margulis's lemma for any (not necessarily arithmetic) lattice in a simple 
Lie group of N-rank 1. The result implies that the set {jelN luJxeC}, as above, 
is unbounded. (Apparently, the result was also known to M.S. Raghunathan.) 
However, whether the set has positive upper density or not is not known. 

The classification ofergodic invariant measures ofhorospherical subgroups can 
be applied to determine their minimal (invariant closed non-empty) sets. Since any 
horospherical subgroup is solvable, any compact invariant set supports an 
invariant measure; this may be deduced from the Markov-Kakutani  fixed point 
theorem. It may be deduced that every compact minimal set is the support of  an 
ergodic invariant measure. Thus we immediately have the following. 

(9.4) Corollary. Let G, F and N be as in Theorem 9.1. Let C be a compact minimal 
N-invariant (non-empty) subset of G/F. Then there exists a closed connected subgroup 
L of G containing N such that C is an orbit of L. 

I f  G is a semisimple Lie group without compact factors then we can obtain 
precise information about the subgroup L. From Theorem 8.2 and Remark 8.4 we 
can deduce the following result. 

(9.5) Corollary. Let G be a connected semisimple Lie group without compact factors 
and let Y be a lattice in G. Let N be a maximal horospherical subgroup of G containing 
a maximal F-rational horospherical subgroup, say U. Let P be the normaliser of U. 
Suppose that N c  P and V* be the smallest normal subgroup of P containing N. Let L* 

= (V* F) ~ = (V* (P~ F)) ~ Then every compact minimal N-invariant subset of G/Y is 
an orbit of L. 
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Proof. Firstly we note that if M denotes the center of G then MF is closed and the 
quotient map q: G/F ~ G/MF is a covering of finite order; this is a consequence of 
Borel's density theorem (cf. [8], Lemma 9.1, for an idea of the proof). Therefore for 
the proof  we may without loss of  generality assume that G has trivial center. 
Further, in view of Proposition 8.1, as in the proof  of Theorem 8.2, we may assume 
F to be an irreducible lattice in G. Now let C be a compact minimal N-invariant 
subset of G/F. In view of the discussion in the beginning of this section, Theorem 8.2 
and Remark 8.4 imply that there exists a parabolic subgroup Q of G such that a) the 
unipotent radical of Q is F-rational and b) Q contains N and if V is the smallest 

normal subgroup of Q containing N, then C is an orbit of L = (VF) ~ Consider 
the three possible cases as enumerated in the proof  of  Theorem 8.2. I f  G/F is 
compact, then there exists no non-trivial F-rational horospherical subgroup and 
hence P = Q = G and hence L = L*. Suppose next that G has N-rank 1 and that G/F 
is not compact. Then N is a maximal F-rational horospherical subgroup and since 
Q contains N, the rank condition implies that either Q = P or Q = G. Consequently, 
L = L* or G. However, in the latter case C would have to be G/F which is certainly 
not minimal, as N itself admits closed orbits. Finally suppose that F is an arithmetic 
lattice in G (with respect to a suitable Q-structure). In this case P and Q are 
parabolic N-subgroups defined over I1~. It is possible to make our choices for the 
notions in w in such a way that Nis  the standard maximal horospherical subgroup 
and P is the group of N-elements of  the standard minimal parabolic II~-subgroup. 
Assertion iii) in Theorem 6.1 therefore implies that PcQ. Hence V* is contained in 

V and in turn, L*=(V*(PmF))~176176 Now, in view of 
Theorem 6.1, the orbit of  L supporting the ergodic invariant measure contains a 
point of  the form zq where zeP and q~Ge. In particular, zqF/Fc C. We now show 
that L* zqF is a closed subset of G. By Proposition 2.3, L* is a normal subgroup of P 
and hence z normalises L*. Also, in view of Lemma2.2L*qF is closed. Hence 
L* zqF = zL* qF is a closed set. Therefore L* zqF/F is a closed subset of G/F. Since 
L * z q / F c L z q F / F c C  and N~L* by minimality of C we get C =  L*zqF/F. 

(9.6) Remark. We recall that if G = G ~ where G is an algebraic Q-group and F is 
an arithmetic lattice in G, then every non-empty closed subset of  G/F invariant 
under a horospherical flow supports an ergodic invariant measure (cf. Pro- 
position 7.1, [9]). Thus in this case the arguments as in the proof  of  Corollary 9.5 
yield that every closed (not necessarily compact) invariant subset of a maximal 
horospherical flow contains a compact minimal invariant set. We do not know 
whether a similar assertion holds for lattices in simple Lie groups of N-rank 1. 

It may be conjectured that the closure of any orbit of  a maximal horospherical 
subgroup N is the support of an ergodic invariant measure. By Theorem 9.1 it 
would then be an orbit of  a suitable subgroup containing N. We note that in view of 
the results in [10] w this is true for the actions of  certain horospherical subgroups 
of SL(n, ~) on SL(n, IR)/SL(n, 71). 

The study of  dynamics of horospherical subgroups can be applied to study the 
orbits of  certain discrete linear groups. Observe that i fG is a Lie group and F and N 
be two closed subgroup of G then for any g,h ~ G the closure of  the F-orbit  ofgN/N 
contains h N/N if and only if the closure of the N orbit of  g -  1 F/F contains h - 1 F/F; 
either of  these holds if and only if FgN contains FhN. Therefore using 
Corollary 9.5 and Remark9.6  it is easy to deduce the following result. 
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(9.7) Corollary. Let the notations be as in Corollary 9.5. Suppose also that G admits 
a Q-structure such that F is an arithmetic lattice in G. Let Q : G ~ GL(V)  be afinite 

dimensional representation of  G and let v ~ V be a vector f i xed  by ~ (N). Then ~ (F) v 
contains an L*-orbit. 

Recall that for uniform lattices, L* coincides with G and hence the 0 (F) orbit of 
every vector fixed by Q(N) is dense in the Q(G)-orbit. For the non-uniform lattice 
SL(n,  2[) in SL(n,  IR) we have the following result. 

(9.8) Corollary. Let V be a vector space o f  dimension n and let SL(n,  ~)  act on V via 
a basis {et, e2 . . . . .  en}. Let f l  ,f~ . . . .  , fn- 1 be linearly independent vectors in V. Then 
there exist rational vectors aa ,az , . . . , an_  1 in V (with respect to the basis 
{e l , . . . ,  en}), non-zero scalars 21,22 . . . .  ,2n-1 in ~ and a sequence {yj} in SL(n,  2[) 
such that 

7s (fx Afz A . . .  Afk) -* ,tk (a, Aa2 A . . .  Aak) 

for  all k = l,2 . . . .  n - 1 .  

Proof. Let A s V, j = 1,2 . . . . .  n - 1 be the j th exterior power of V and consider W 
n - 1  

= ~) A s V. Let Q be the representation o f G  = SL(n,  ~)  on Wobtained as the direct 
./=1 

sum of exterior power representations of  the natural representation of SL(n,  IR) 
on V via the basis {el, e 2 . . . . .  e,}. Let e = (el, el Ae2 . . . . .  el Aee A . . .  Aen_ 1) eW. 
It is easy to verify that the isotropy subgroup of e under the G-action via ~ is 
the subgroup N consisting of all upper triangular unipotent matrices in 
SL(n,  IR). The orbit ~3 of e in W consists of  the vectors a of  the form 
(a l ,a lAa2  . . . . .  a l A a z A . . . A a n _  O, where a l ,a2 , . . . , an_  1 are any linearly 
independent vectors in V. The map q : G / N ~  s defined by ~I(gN/N) = Q(g)e is a 
continuous bijection onto 9 .  

We now recall that F = SL(n,  2[) is an arithmetic lattice in G. L e t f ~  ~3 and let 

g~G be such that q ( g N ) = f .  Set C =  N g - l i " .  Then C/F is a closed N-invariant 
subset of  G/I". By Remark9.6  C/I" supports a N-invariant ergodic measure. 
Therefore by Theorem 6.1, C/I" must contain an element of the form zqI"/I" where 
qeSL(n ,  ~)  and z is a diagonal matrix with respect to {e l , . . . ,  e,} (i.e. in the present 
case Z may be chosen to be the subgroup consisting of all diagonal matrices). As in 

the earlier results, this implies that I"g N / N  contains q - t z - 1 N / N .  Hence F f  
contains Q(q- l z -1 )e .  It  is easy to verify that there exist rational vectors 
a l ,a  2 . . . . .  an_ 1 and non-zero scalars 21 ,22 , . . . , 2 ,_1  such that ( q - l z - 1 ) e  
= (,tl al,  2z al Aa2 . . . .  ,2n_ 1 al A . . .  A a,_ i), which proves the corollary. 

It is possible to obtain similar results for other arithmetic lattices. Also, solving 
some of the questions raised earlier would enable their improvement. It would be 
possible to give sharper applications to orbits of  arithmetic groups. The author 
hopes to return to the subject. 
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