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Abstract

Using the ideas of supersymmetry and shape invariance we re-derive the

spectrum of the AN−1 and BCN Calogero-Sutherland model. We briefly

discuss as to how to obtain the corresponding eigenfunctions. We also

discuss the difficulties involved in extending this approach to the trigono-

metric models.
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I. INTRODUCTION

In recent years, supersymmetric quantum mechanics (SUSY QM) has provided a

deeper understanding of the exact solvability of several well known potentials in 1-

dimensional QM. In particular, using the ideas of shape invariance (SI), it provides

a procedure for getting the spectrum, the eigenfunctions and the S-matrix (i.e. the

reflection and transmission coefficients) algebraically [1]. There also exist interesting

connections between SUSY QM and soliton solutions. Despite these (and more) inter-

esting developments in SUSY QM for one particle system in one dimension, so far, not

many of these results could be extended either for N -particle systems in one dimension

or for one particle systems in more than one dimension.

In recent times there is a revival of interest in the N -body problems in one dimen-

sion with inverse square interaction which were introduced and studied by Calogero [2]

and developed by Sutherland [3] and others [4]. These models have several interest-

ing features, like exact solvability, classical and quantum integrability and also have

interesting applications in several branches of physics [5,6]. Apart from the well known

translational invariant inverse square interaction models, referred to as AN−1 Calogero-

Sutherland Model (CSM), there also exist generalizations of this model, but without

the translational invariance, referred to as BCN , BN , DN models. These nomenclatures

refer to the relationship of these models to the root system of the classical Lie group. It

might be added here that these models also share with AN−1 CSM, features like exact

solvability, and integrability and have also found application in certain physical systems.

The purpose of this note is to enquire if the ideas of one dimensional SUSY QM

could be extended to the N -particle case. In particular, whether the spectrum of the

celebrated Calogero and other models could be obtained algebraically by using the ideas
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of SI and SUSY QM. The first step in that direction was taken recently by Efthimiou

and Spector [7] who showed that the well known Calogero model (also termed as AN−1

CSM) exhibits SI. However, they were unable to obtain the spectrum algebraically.

This is because using SUSY they were unable to relate the eigenspectra of the two

SUSY partner potentials. In this paper we demonstrate that using SUSY QM, SI and

exchange operator formalism [8], the spectrum of the rational AN−1 CSM, and also of

all its generalizations like BN , DN and BCN can be obtained algebraically. It is worth

mentioning that the SI in our case is somewhat different from that of Efthimiou and

Spector [7]. So far as we are aware off, this is the first instance when an N -particle

quantum system has been solved using the techniques of SUSY QM and SI.

The plan of the paper is the following. We briefly review the ideas of one dimensional

SUSY QM in Sec. II with the main emphasis on solvability using SI.. In Sec. II.A,

we apply these ideas to the Calogero model, i.e., the rational AN−1 model. We show

that the spectrum of such a model can be derived using the ideas of SUSY QM, SI

and the exchange operator formalism[8]. We also briefly discuss as to how to obtain

the corresponding eigen-functions. In Sec. II.B, we treat the rational BCN model, a

translationally non-invariant system, in the same spirit. The full spectrum is obtained

and the method for obtaining the exact eigen-functions is explicitly spelled out. It is

also shown in this section that the BCN model posses SI even if the exchange operator

formalism is not employed. This is a generalization of Efthimiou et al’s work [7] on

AN−1 model to the BCN case. Finally, in Sec. III, we summarize our results and discuss

the possible directions to be followed in order to have a viable formalism of many-body

SUSY QM. We also point out the difficulties involved in extending these results to the

trigonometric case. In Appendix we show that the BCN trigonometric model is also

shape invariant.
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II. SUSY, SI AND SOLVABILITY

It may be worthwhile to first mention the key steps involved in obtaining the eigen-

spectrum of a one body problem by using the concepts of SUSY QM and SI. One usually

defines the SUSY partner potentials H1 and H2 by

H1 = A†A , H2 = AA† , (1)

where (h̄ = 2m = 1)

A =
d

dx
+W (x) , A† = − d

dx
+W (x) . (2)

In the case of unbroken SUSY, the ground state wave function is given in terms of the

superpotential W (x) by,

ψ0(x) ∝ e−
∫

x
W (y)dy , (3)

while the energy eigenvalues and the wave functions of H1 and H2 are related by, (n =

0, 1, 2, ...)

E(2)
n = E

(1)
n+1 , E

(1)
0 = 0 , (4)

ψ(2)
n = [E

(1)
n+1]

−1/2Aψ
(1)
n+1 , ψ

(1)
n+1 = [E(2)

n ]−1/2A†ψ(2)
n . (5)

Let us now explain precisely what one means by SI. If the pair of SUSY partner

Hamiltonians H1, H2 defined above are similar in shape and differ only in the param-

eters that appear in them, then they are said to be SI. More precisely, if the partner

Hamiltonians H1,2(x; a1) satisfy the condition,

H2(x; a1) = H1(x; a2) +R(a1), (6)
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where a1 is a set of parameters, a2 is a function of a1 (say a2 = f(a1)) and the remainder

R(a1) is independent of x, then H1(x; a1) and H2(x; a1) are said to be SI. The property of

SI permits an immediate analytic determination of the energy eigenvalues, eigenfunctions

and the scattering matrix [1]. In particular the eigenvalues and the eigenfunctions of H1

are given by (n = 1, 2, ...)

E(1)
n (a1) =

n
∑

k=1

R(ak) , E
(1)
0 (a1) = 0 , (7)

ψ(1)
n (x; a1) ∝ A†(x; a1)A

†(x; a2)....A
†(x; an)ψ

(1)
0 (x; an+1) , (8)

ψ
(1)
0 (x; a1) ∝ e−

∫

x
W (y;a1)dy . (9)

A. Rational AN−1 Calogero Model

We now apply the exchange operator formulation to the rational AN−1 CSM. The

Hamiltonian of the rational AN−1 CSM is given by

HCSM =
∑

i

1

2
p2

i + l(l ∓ 1)
∑

i<j

(xi − xj)
−2 + ω

∑

i

1

2
x2

i . (10)

The sign ∓ in (10) refers to the fact that H acts on completely anti-symmetric or

symmetric functions, respectively. Let us now define an operator Di

Di = −i∂i + il
′
∑

j

(xi − xj)
−1
Mij , (11)

known as the Dunkl operator in the literature. Hereafter ′ means i = j is excluded in

the summation. The exchange operator Mij have the following properties [8]

M2
ij = 1 , M

†
ij = Mij , Mijψ

± = ±ψ± ,

MijDi = DjMij , MijDk = DkMij , k 6= i, j ,

Mijk = MijMjk , Mijk = Mkij = Mjki , (12)
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where ψ± is a(an) symmetric(antisymmetric) function. Note that the Dunkl operator is

hermitian by construction and [Di, Dj] = 0. If we now define

ai = Di − iωxi , ai
† = Di + iωxi , (13)

then it is easy to see that

[ai, aj
†] = 2wδij(1 + l

′
∑

k

Mik) − 2(1 − δij)lwMij . (14)

Let us now consider the SUSY partner potentials H and H̃ defined by

H =
1

2

∑

i

ai
†ai , H̃ =

1

2

∑

i

aiai
† . (15)

Using eqs. (11) and (13) it is easily shown that

HCSM = H + ECSM
0 , ECSM

0 = [
N

2
∓ l

2
N(N − 1)]ω .. (16)

Thus, by construction, the ground state energy of H is zero.

Using eqs. (11) and (13) it is easily shown that if ψ is the eigenstate of H with

eigenvalue E(> 0), then A1ψ is the eigenstate of H̃ with eigenvalue E + δ1 i.e.

H̃(A1ψ) = [E + δ1](A1ψ), (17)

where,

A1 =
∑

i

ai , δ1 = [(N − 1) ± lN(N − 1)]ω . (18)

Similarly, if ψ̃ is the eigenfunction of H̃ with eigenvalue Ẽ, then A†
1ψ is the eigenfunction

of H with eigenvalue Ẽ − δ1 i.e.

H(A†
1ψ̃) = [Ẽ − δ1](A

†
1ψ̃). (19)

This proves one to one correspondence between the non-zero energy eigen values of H

and H̃ . Thus it follows from here that the energy eigenvalues and eigenfunctions of the

two partner Hamiltonians H and H̃ are related by
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Ẽn = En+1 + δ1 , E0 = 0 , n = 0, 1, 2, ... (20)

ψ̃n =
A1ψn+1√
En+1 + δ1

, ψn+1 =
A

†
1ψ̃n√
En+1

. (21)

Note that δ1 vanishes for N = 1 and we recover the usual results of SUSY QM with one

degree of freedom. It is worth noting that unlike the case of one dimensional QM, in

this case the (positive) energy levels of H and H̃ are not degenerate.

Using eqs.. (11) and (13) it is also easily shown that H and H̃ satisfy the shape

invariance condition

H̃({xi}, l) = H({xi}, l) +R(l), (22)

where

R(l) = [N ± lN(N − 1)]ω = ω + δ1 . (23)

As a result, using the formalism of SUSY QM, and the relation between En+1 and Ẽn

as given by eq. (20), the spectrum of H is given by

En =
∑

i

R(li) − nδ1 . (24)

Note that in this particular case all li are identical so that using δ1 and R(l) as given by

eqs. (18) and (23), the spectrum turns out to be

En = n(R− δ1) = nω . (25)

Using eq. (16) we then get the correct spectrum of the Calogero AN−1 model.

Let us now discuss as to how to obtain the eigenfunctions of CSM using the formalism

of SUSY QM. We have seen that A1 and A†
1 relate the non-zero eigen states of the partner

Hamiltonians H and H̃. Once a particular state of H(H̃) with non-zero eigen value is
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known, the use of eq. (21) enables us to find the corresponding state of H̃(H). In

particular, using eq. (8) and the fact that in this case all the li are identical, it follows

that all the eigen-functions can be obtained from the ground state wave functions ψ0

as, ψn = (A†
1)

nψ0. Note that this is justified from the operator algebra also, since A1

and A
†
1 can be identified as the annhilation and the creation operator respectively. In

particular, one can show using eqs. (17), (19), (22) and (23) that [H,A1] = −A1 and

[H,A†
1] = A1.

This procedure for obtaining the eigen-functions is similar to that of Isikov et al. [9].

To see this, define a set of operators,

An =
N
∑

i=1

an
i , n ≤ N, (26)

which are symmetric in the particle indices. These operators satisfy relations which are

analogous to those given by eqs. (17) and (19) for any n (see the next paragraph).

It is easily checked that [H,An] = −nAn and [H,A†
n] = nA†

n. Following [9], the k-th

eigen-state is given by,

ψ{ni} =
N
∏

i=1

(

A
†
i

)ni

ψ0, aiψ0 = 0, k =
N
∑

i=1

ni . (27)

Note that ψ{ni} incorporates all the degenerate states corresponding to a particular value

of k and all the corresponding states of H̃ can be obtained by applying the same A1 on

ψ{ni}.

Let us now ask the question whether or not A1 is the only operator which relates

the states with nonzero eigen values of the partner Hamiltonians. The answer obviously

is negative and in fact, any operator which is symmetric in the particle indices can be

used to relate the non-zero eigenstates of the partner Hamiltonians. However, none of

these operators are useful in deriving the full spectrum of the AN−1 CSM model. For

example, if ψ is an eigen-function of H with non-zero energy eigen-value E, then,

8



H̃(Anψ) = [E + δn] (Anψ) , δn = [(N − n) ± lN(N − 1)]ω . (28)

Note that the above equation is valid only if ψ is at least the n-th excited state, since

An(A†
n) anhilates(creates) n states. Similarly, one can show that any state ψ̃ of H̃ ,

which represents at least the (n − 1)-th excited state with energy eigen value Ẽ, is

related to a state A†
nψ̃ of H with the eigen value

(

Ẽ − δn
)

. This again proves one to

one correspondence between the n-th excited state of H and the (n−1)-th excited state

of H̃. As a result, the use of SI gives only the spectrum beginning with the n’th excited

state of H and not the full spectrum.

It is worth pointing out that for the BN type models, however, the symmetry argu-

ments force us to replace A1 by A2 in order to derive the full spectrum using SUSY QM.

This is discussed below in detail.

B. Rational BCN Calogero Model

The Hamiltonian for BCN Calogero model is given by

HBCN
=

1

2
[
∑

i

p2
i + l(l ∓ 1)

′

∑

i,j

[

(xi − xj)
−2 + (xi + xj)

−2
]

+ (l1 − 1)l1
∑

i

xi
−2

+
(l2)(l2 − 1)

2

∑

i

xi
−2 +

ω

2

∑

i

x2
i ] . (29)

The sign ∓ in front of the second term implies that H is restricted to act on the space

of anti-symmetric (symmetric) wave-functions only. This model reduces to CSM of BN ,

CN and DN type in the limit l2 = 0, l1 = 0 and l2 = l1 = 0, respectively. Without loss

of generality, in this section, we therefore only study the BN type model, i.e. l2 = 0.

The other cases are easily obtained from here.

It is interesting to observe that this system also shares the property of SI as found

in [7] in the case of the AN−1 model. Superpotential corresponding to this model is

9



Wi =
∂G(x1...xN )

∂xi
=
∂(lnψ0)

∂xi
, (30)

where ψ0 is the ground state wave function of HBN
and G is given by

G = +l1
∑

i

ln(xi) + l
∑

i>j

ln(xi − xj)(xi + xj) −
ω

2

∑

i

x2
i . (31)

Thus, the superpotential takes the form

Wi = +l
′
∑

j

[

(xi − xj)
−1 + (xi + xj)

−1
]

+ l1x
−1
i − ωxi . (32)

Following [7], define Ai(A†
i) = ±∂i + Wi,from which Hamiltonian (29) with l2 = 0 can

be expressed as

HBN =
∑

i

Ai
†Ai −

[

N

2
− lN(N − 1) − l1N

]

ω , (33)

Shape invariance follows due to the identity,

∑

i

AiA†
i(l, l1) =

∑

i

A†
iAi(l + 1, l1 + 1) . (34)

Shape invariance as observed in [7] for AN−1 CSM, is present not only in the rational

BN , DN , BCN models, but also in their trigonometric counterparts. For trigonometric

BCN models this is shown in the Appendix .

As in the AN−1 case, the SI condition does not help us in obtaining the spectrum of

the rational BCN models unless we employ the exchange operator formalism. Further,

the Hamiltonian in eq. (29) can also be cast in a diagonal form using exchange operator

method. This however requires including a reflection operator (ti) where ti commutes

with xj and anti-commutes with xi. The Dunkl derivative operator ( analogous to the

AN−1 case) is given by

Di = −i∂i + il
′
∑

j

[

(xi − xj)
−1
Mij + (xi + xj)

−1
M̃ij

]

+ il1x
−1
i , M̃ij = titjMij . (35)
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The reflection operator ti satisfies the following relations

t2i = 1 , tiψ(x1, . . . , xi, . . . , xN ) = ψ(x1, . . . ,−xi, . . . , xN ) ,

Mijti = tjMij , M̃
†
ij = M̃ij , tiDi = −Diti , tiDj = Djti , j 6= i,

M̃ijDi = −DiM̃ij . (36)

It follows from eq. (35) that [Di,Dj] = 0 and

[xi,Dj] = iδij

(

1 + l
′
∑

k

(Mik + M̃ik) + 2l1ti

)

− i(1 − δij)l(Mij − M̃ij) . (37)

Defining, âi and â
†
i with the same defintion as in the previous case (see eq. (13)) and

using the above equations, one finds

[âi, â
†
j] = 2ωδij

(

1 + l
′
∑

k

(Mik + M̃ik) + 2l1ti

)

− 2(1 − δij)lω(Mij − M̃ij) . (38)

As before, the SUSY partner Hamiltonians H and H̃ for the BN case are defined as

H =
1

2

∑

i

â
†
i âi , H̃ =

1

2

∑

i

âiâ
†
i . (39)

It can be seen that,

HBN
= H + E

BN

0 , E
BN

0 = [
N

2
∓ l

2
N(N − 1) + l1N ]ω . (40)

The operator which brings in a correspondence between the eigenstates ψ and ψ̃ are

respectively

Â2 =
∑

i

â2
i , Â

†
2 =

∑

i

(â†i )
2 . (41)

One can show that if ψ(ψ̃) is the eigenfunction of H(H̃) with eigenvalue E(Ẽ) then

H(Â2
†
ψ) = (Ẽ − δ̂2)(Â2

†
ψ̃) , H̃(Â2ψ) = (E + δ̂2)(Â2ψ) . (42)

where,
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δ̂2 = [N − 2 ± 2lN(N − 1) + 2l1N ]ω . (43)

Now the question is why we should take Â2 instead of Â1 (note that Ân =
∑

i â
n
i )?

The point is, unlike the AN−1 case, the BCN Hamiltonian has the reflection symmetry,

xi→− xi. Such a symmetry on the wave-functions is ensured only if one uses Â2 and

not Â1.

Following the treatment in the AN−1 case, it is easy to show that H and H̃ of the BN

model also satisfy the SI condition i.e.

H̃({xi}, l, l1) = H({xi}, l, l1) +R2(l, l1) (44)

where

R2(l, l1) = [N ± 2lN(N − 1) + 2l1N ]ω . (45)

Since in this case also all the li are identical, hence it is easy to see that the spectrum is

given by

En = n(R2 − δ̂2) = 2nω . (46)

Note that now the spectrum is given by 2nω, instead of nω as in the case of ÂN−1. This

spectrum was also obtained earlier in [10], but by different method.

Thus we have shown that for the N-body Calogero models, the spectrum can also be

obtained by using the ideas of SQM, SI and exchange operator formalism.

III. SUMMARY & DISCUSSIONS

In this paper, we have generalized the ideas of SUSY QM with one degree of freedom

to the rational-CSM, which is a many-body problem. In particular, we have shown that

the exchange operator formalism is suitable for relating the non-zero eigen states of the
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partner Hamiltonians of CSM. The shape invariance in this formalism becomes trivial

compared to the case discussed in [7]. In fact, the potentials of the partner Hamiltonians

differ by a constant and this is reminiscent of the usual harmonic oscillator case. As a

result, the operator method employed in [9] for solving the rational-CSM algebraically

and the SUSY method described here are not very different from each other.

One of the nontrivial check of the applicability of the SUSY QM and the SI ideas to

the many-body problems lies in solving the trigonometric CSM, since unlike the oscillator

case, in this case the energy spectrum is not linear in the radial quantum number.

Unfortunately, the generalized momentum operator Di for all types of models, rational

as well as trigonometric CSM associated with the root structure of An, Bn, Dn and BCn,

are hermitian by construction. So, we can not talk of partner Hamiltonians in terms ofDi

alone. We can define the usual creation and the anhilation operators, a†i and ai, in case we

are dealing with the rational-CSM and construct partner Hamiltonians. Unfortunately,

this can not be done for the trigonometric models. On the other hand, as described in

[7], we can indeed introduce partner Hamiltonians for An type of trignometric models

provided the exchange operator formalism has not been used. The SI is present in this

formalism also but the task of relating the eigenspectrum of the partner Hamiltonians

is unknown as yet. We have shown in this paper that the SI is also present in the

most general BCN type of trignometric models. However, the problem again lies in our

inability to relate the the spectrum of the partner Hamiltonians.

APPENDIX A: SI IN TRIGONOMETRIC BCN CSM MODEL

In this Appendix, we present the SI conditions for the trigonometric BCN models.

The trigonometric BCN Hamiltonian is given by,
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HBCN
= −

∑

i

∂2
i + l(l − 1)

′
∑

i,j

[

1

sin2(xi − xj)
+

1

sin2(xi + xj)

]

+
∑

i

l1(l1 − 1)

sin2 xi

+ l2(l2 − 1)
∑

i

1

sin2 2xi

. (A1)

This model reduces to BN , CN and DN for (a) l2 = 0, (b) l1 = 0, (c) l1 = l2 = 0,

respectively. We define a superpotential of the form,

Wi = l
∑

j

[cot(xi − xj) + cot(xi + xj)] + l1 cot xi + l2 cot 2xi . (A2)

Using this expression of Wi in the definition of the creation and the anhilation operators

as defined in (1), one can construct partner Hamiltonians which are equivalent to HBCN

up to an overall constant. The SI condition for these partner Hamiltonians is

H
BCN

2 ({xi}, l, l1, l2) = H
BCN

1 ({xi}, l′, l′1, l′2) +RBCN , (A3)

where

RBCN = 2(l′l′1 − ll1)N(N − 1) +
4

3
N(N − 1)(N − 2)(l′2 − l2) + 4N(l′2l

′
1 − l2l1)

+4N(N − 1)(l′2l
′ − l2l) + 4N(l′22 − l2) +N(l′21 − l1) + 2N(N − 1)(l′2 − l2) (A4)

and

l′ = l − 1 , l′1 = l1 − 1 , l′2 = l2 − 1 . (A5)

The SI condition for BN , CN and DN can be obtained from the above equations by

taking appropriate limits. In particular, by putting l2 = 0, l1 = 0 or l2 = l1 = 0, we

obtain the corresponding results for the BN , CN and DN type models respectively.
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