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Abstract— Despite the existence of a number of procedures
for multi-objective optimization using evolutionary algorithms,
there is still the need for a systematic and unbiased comparison
of different approaches on a carefully chosen set of test
problems.

In this paper, a hybrid approach using PCX based NSGA-
II and Sequential Quadratic Programming (SQP) is applied
on 19 benchmark test problems consisting of two, three and
five objectives. PCX-NSGA-II is used as a population based
algorithm where SQP is used as a local search procedure. A
population based approach helps in finding the non-dominated
set of solutions with a good spread, whereas SQP improves
the obtained set of non-dominated solutions locally. The results
obtained by the present approach shows mixed performance on
the chosen test problems.

I. INTRODUCTION

Due to increasing interest in solving real-world multi-
objective optimization problems using evolutionary algo-
rithms (EA), researchers have developed a number of evo-
lutionary multi-objective algorithms (EMO) based on real
parameters. In the same direction, a generic parent-centric
based recombination (PCX) operator is used with EA [1].
PCX is a vector-wise recombination operator which uses
more than two parents to create an offspring. It assigns more
probability for an offspring to remain closer to the index
parent than away from it. This recombination operator has
shown an efficient way of solving real-parameter optimiza-
tion problems. NSGA-II [2], [3] with PCX recombination
operator was introduced and tested successfully on various
multi-objective and epistatic test problems [4]. For locally
improving the obtained set of non-dominated solutions of
PCX-NSGA-II, a classical optimization method such as SQP
is applied in this paper.

This paper is devoted to the special session for per-
formance assessment and competition of different multi-
objective optimization algorithms on a set of 19 test prob-
lems consisting of various properties in terms of number
of objectives (separability and deception), uni-modality and
multi-modality, convexity and concavity, and with complex
geometry, and others [5]. A procedure which contains the
properties of good convergence and diversity among the
solutions can only solve such a wide variety of test problems
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with reasonable satisfaction. For this purpose, PCX-NSGA-
II is a promising algorithm to find a diverse set of points.
Thereafter, the non-dominated solutions of PCX-NSGA-II
can be improved by a local search technique using a classical
optimization method, such as Sequential Quadratic Program-
ming (SQP). Most of the classical optimization methods
are designed to solve single-objective optimization problems
and for solving a multi-objective optimization problem, it
needs to be scalarized to a single-objective problem. The
ε-constraint method is used for driving multi-objective to
single-objective optimization problem [6]. In the proposed
PCX-NSGA-II algorithm, no two solutions apart by less than
ε distance are preferred to achieve a uniform and diverse
distribution [7]. In the following section, we describe the
description of algorithm and the proposed procedure. In
Section III and IV, we present the parameter setting and sim-
ulation results in tabular and graphical forms, respectively,
and the paper is concluded in section V.

II. DESCRIPTION OF THE ALGORITHM

A. Elitist Non-dominated Sorting Genetic Algorithm

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-
II) uses an elite-preserving strategy as well as an explicit
diversity preserving mechanism [2]. PCX-NSGA-II differs
form original NSGA-II in terms of using a parent-centric
based recombination operator. Motivation behind using PCX
operator is it’s property that uses probability distributions
around the parent solutions to create an offspring. It has been
shown elsewhere [1], that PCX based NSGA-II can perform
well even in the case of skewed initial population, which
does not bracket the optimum.

PCX operator involves two parameters σζ and ση con-
trolling the variance along the principal direction (centroid
towards the index parent) and in each of the rest (µ − 1)
directions, respectively (where µ is the number of selected
parents). In PCX based NSGA-II procedure, we choose three
solutions using the binary tournament selection operator from
the parent population. Each of them is, in turn, used as the
index parent and an offspring solution is created by applying
PCX operator to three chosen solutions [4].

B. Sequential Quadratic Programming

In quadratic programming (QP), a quadratic model for
objective function and a linear model for constraints are
used to solve a non-linear optimization problem. Sequential
Quadratic programming (SQP) method solves QP in each



iteration [8]. Forward difference technique is used to com-
pute the gradients numerically, including (n + 2) function
evaluations (n is the number of variables).

Test suite given in [5] comprises of multi-objective prob-
lems. For converting the same to single-objective problem,
the ε-constraint method is used, following which the SQP is
applied to the single-objective optimization problem.

In the proposed procedure, PCX based NSGA-II is used
as a population based algorithm which helps in finding the
non-dominated set of solutions with good diversity and can
act as a global optimizer whereas SQP is employed as a
local search method. Steps of the proposed procedure are
described below:

1) Population is initialized randomly.
2) PCX-NSGA-II is applied on the initial population.
3) After finding the diverse set of non-dominated solu-

tions of PCX-NSGA-II, SQP is employed on these
solutions.

4) Solutions obtained from SQP are again supplied to
PCX-NSGA-II to run for a final iteration, so that ade-
quate number of non-dominated solutions are created.

Test problems with M = 2 and M = 3 objectives are solved
with the above procedure with only one final PCX-NSGA-
II iteration in step 4. For M = 5 objectives, the obtained
SQP solutions are supplied to PCX-NSGA-II and then, an
archive of non-dominated solutions is maintained during the
final three iterations of PCX-NSGA-II.

To obtain a uniform distribution of solutions of PCX-
NSGA-II, no two solutions apart by less than ε distance
are preferred, where distance between any two solutions is
calculated in the normalized objective space [7].

III. PARAMETERS SETTING

A. Test Suite

The performance of the hybrid algorithm is tested on a set
of 19 benchmark problems [5], which include seven two-
objective test problems, six three-objective, and six five-
objective test problems.

B. PC Configuration

• System: Mandrake Linux 10.1
• CPU: P-IV 2.8 GHz
• RAM: 1 GB
• Language: ANSI-C
• Compiler Used: GCC version-3.2.2

C. Parameters Setting for PCX-NSGA-II

Population size (N )

1) For M = 2 objectives: N = 100
2) For M = 3 objectives: N = 150
3) For M = 5 objectives: N = 300

Probability of crossover Pc = 0.9
Probability of mutation Pm = 0.033
Distribution index for mutation ηm = 15

ε = 0.001, 0.01 and 0.05 for two, three and five objective test
problems respectively.

σζ =

{

0.010 if PCX-NSGA-II generations (γ) < 1,000
0.001 Otherwsie.

ση =

{

0.008 if PCX-NSGA-II generations (γ) < 1,000
0.001 Otherwsie.

D. Parameters Setting and Termination Criteria of SQP

1) Norm of descent direction: ‖ d ‖≤ ε; where ε = 10−9

or
2) Maximum number of iterations allowed (τ ): 50, 50

and 20 for two, three and five-objective problems
respectively.

SQP terminates when any of the above criteria is satisfied
first. The proposed procedure includes the FES of both
PCX-NSGA-II and SQP. First, we calculate the function
evaluations required by SQP which is as follows. To calculate
gradients and objective function values, SQP requires an
average of (n + 2) number of function evaluations in each
iteration for n number of variables. For a maximum of τ
iterations of SQP and N non-dominated solutions, SQP takes
a total of τ ×N(n+2) function evaluations. Therefore, FES
left to PCX-NSGA-II is (5(105) − τ × N(n + 2)). Hence,
γ = (5(105) − τ × N(n + 2))/N number of generations
are allowed to PCX-NSGA-II. For example, for S ZDT1
problem with n = 30, N = 100, and τ = 50, the number of
generations allowed for PCX-NSGA-II procedure is 3, 400.
The above calculations ensure that FES of the proposed
procedure never exceeds the allowed function evaluations
(5(105)) [5] and it is also clear that the results shown at
5(105) FES used SQP procedure.

As an initial parameter study, we have chosen four differ-
ent values of σζ (range: 0.001–1.0) and ση (range: 0.001–1.0)
and three different values of τ (range: 20–50) and ε (range:
0.001–0.01). A parametric study on six of 19 test problems
was performed to find good combinations of σζ , ση , τ and
ε parameters. We have chosen two test problems with 2, 3
and 5-objective test problems. A total of (4× 4× 3× 3× 6)
or 864 runs were executed with 5(105) function evaluations
(FES) for each run. Hence, a maximum of 4.32(108) FES
were performed for tuning the parameters.

IV. SIMULATION RESULTS

A. R, Hypervolume and Covered Sets Indicators

First, we show the R-indicator values, which compute the
difference between the maximum value of the augmented
Tchebycheff utility function of the supplied reference set
and obtained solutions from the procedure. A negative R-
indicator means a better obtained utility function value than
that of the reference set. A value close to zero means almost
similar utility function value between reference and obtained
solutions.

The obtained results are presented in Ta-
bles I, II, III, IV, V, VI and VII. Best, median, worst, mean
and standard deviation of 25 runs for each test problem are
done for R and IH indicators.



First three tables show the values of R indicator at 5(103),
5(104) and 5(105) FES. Tables I, II and III indicate the
significance of local search using SQP while the procedure
is already converged in 5(104) FES. A negative R-indicator
value is obtained in seven out of 19 test problems after 5(105)
FES, meaning that a better utility function value than the
supplied reference set is found by the proposed procedure.
R-indicator values close to zero is observed in rest of 12
problems, meaning that a similar utility function value to
that of the reference set is found. On the basis of R-indicator
values, the proposed procedure has performed well for the
given test suite.

Tables V to VII show hypervolume indicator IH at 5(103),
5(104) and 5(105) FES. A lower value of IH indicator
corresponds to a better approximated set. In six out of 19 test
problems, the proposed procedure shows better IH indicator
values than the supplied reference set after 5(105) FES.
Except both three and five-objective WFG1 problems, in 11
other problems, the IH indicator value is close to zero.

Table IV shows the covered set indicator values for the
SYMPART test problem only. Best, median, worst, mean and
standard deviation values at 5(103), 5(104) and 5(105) FES
are presented.

B. Attainment Surface Plots

Attainment surface signifies a combination of both conver-
gence and diversity of the obtained solutions. Figures 1, 2, 3
and 4 show the 0%, 50% and 100% attainment surfaces
along with Pareto-front for two objectives test problems. For
three objective problems, Figures 5, 6 and 7 show the 50%
attainment surface.

It can be observed from the plots that for two-objective
test problems like OKA2, SYMPART, S ZDT1 and S ZDT2,
procedure shows a good convergence and spread. In the
remaining three, two-objective problems, the proposed proce-
dure shows a steady progress towards the respective optima
and the procedure is unable to solve within the specified
number of FES. It also shows a good attainment surface for
S DTLZ2, WFG8 and WFG9 problems whereas it does not
perform satisfactorily for R DTLZ2 and S DTLZ3. In case
of WFG1 test problem, the attainment surface plot depicts
the partial convergence and diversity.

Figure 8 shows pair-wise interaction among five-objective
problems for WFG8 (above diagonal) and WFG9 (lower
diagonal) problems. The function values are normalized in
the range [1, 2] using lower and upper bounds given in the
reference data set [5]. Median approximation set with respect
to R-indicator at 5(105) is used for plotting the same. Definite
structures between objective pairs are visible from the plots.

In comparison to another study [9] using SBX based
NSGA-II and SQP algorithm, the PCX-NSGA-II-SQP analy-
sis performed better in R ZDT4, S DTLZ2 M3, WFG8 M3,
R DTLZ2 M5 and S DTLZ3 M5 with respect to the R-
indicator. Similarly, in R ZDT4, R DTLZ2 M3, WFG1 M3
and S DTLZ3 M5 problems, PCX-based procedure showed
better results with respect to IH indicator. In the remaining

12 problems, the previous study with SBX operator per-
formed better than the PCX based algorithm of this study.

C. Algorithm Complexity

Table VIII shows the complexity of the procedure. T1 =
(
∑m

i=1 t1i)/m, where t1i is the computing time for 10,000
function evaluation for problem i and m is the total number
of test problems. Here m = 19.
T2 = (

∑m
i=1 t2i)/m, where t2i is the computing time for

the algorithm with 10,000 function evaluation for problem i.
Time complexity of the hybrid procedure is 8.191 seconds
which depicts fast convergence capability.

V. CONCLUSIONS

In this paper, we have presented a hybrid multi-objective
optimization procedure consisting of evolutionary and clas-
sical algorithms. PCX based NSGA-II is used as a global
optimizer and SQP as a local search method. The perfor-
mance of the algorithm is tested on 19 test problems and
assessment of performance have been done on the basis
of R , IH , covered set indicators and attainment surfaces.
Hybrid procedure has shown good performance for OKA2,
SYMPART, S ZDT1, S ZDT2, S DTLZ2, WFG8 and WFG9
test problems. For test functions S ZDT4, S ZDT6 and
WFG1, procedure has exhibited fair performance whereas
for R ZDT4, R DTLZ2 and S DTLZ3 test problems, the
performance has been reasonably well. Even in the case of
higher number of objectives, the procedure has shown good
convergence and diversity. Thus it can be concluded that the
present procedure can be applied efficiently to a wide variety
of multi-objective optimization problems. Time complexity
of the procedure reveals its fast convergence. Thus, we have
introduced a fast, efficient and hybrid procedure which solves
a wide variety of multi-objective optimization problems with
reasonable satisfaction.
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TABLE I

THE RESULTS FOR R INDICATOR ON TEST PROBLEMS 1-7 FOR M = 2 OBJECTIVES.

FES 1.OKA2 2. SYMPART 3. S ZDT1 4. S ZDT2 5. S ZDT4 6. R ZDT4 7. S ZDT6
Best -0.1002e-2 0.3265e-3 0.5994e-1 0.1164e-0 0.5944e-1 0.1609e-2 0.1351e-0

Median 0.4221e-2 0.5181e-3 0.8170e-1 0.1307e-0 0.8526e-1 0.3413e-2 0.1478e-0
5 × 10

3 Worst 0.4878e-1 0.6480e-3 0.9949e-1 0.1536e-0 0.1031e-0 0.3321e-2 0.1524e-0
Mean 0.9064e-2 0.5142e-3 0.7929e-1 0.1321e-0 0.8586e-1 0.3475e-2 0.1446e-0
Std 0.1145e-1 0.6464e-4 0.9340e-2 0.1070e-1 0.1146e-1 0.1247e-2 0.6041e-2
Best -0.8510e-3 0.2133e-4 0.2771e-2 0.6766e-2 0.4288e-2 0.3125e-3 0.5480e-1

Median 0.2349e-2 0.3465e-4 0.4591e-2 0.8032e-2 0.1085e-1 0.9415e-3 0.6143e-1
5 × 10

4 Worst 0.2322e-1 0.4838e-4 0.6587e-2 0.2463e-1 0.2029e-1 0.2333e-2 0.6572e-1
Mean 0.4922e-2 0.3478e-4 0.4710e-2 0.8911e-2 0.1142e-1 0.1035e-2 0.6071e-1
Std 0.6770e-2 0.6665e-5 0.1017e-3 0.3373e-2 0.3938e-2 0.4565e-3 0.3115e-2
Best -0.1065e-2 0.3692e-4 0.1956e-3 0.2165e-3 0.2485e-6 0.2720e-3 0.1547e-1

Median -0.3036e-3 0.6584e-4 0.7055e-3 0.8663e-3 0.2021e-5 0.7894e-3 0.1865e-1
5 × 10

5 Worst 0.1797e-3 0.8667e-4 0.1950e-2 0.3140e-2 0.3672e-4 0.1963e-2 0.2040e-1
Mean -0.1644e-2 0.6401e-4 0.7982e-3 0.9618e-3 0.5350e-5 0.8636e-3 0.1859e-1
Std 0.7360e-3 0.1561e-4 0.5025e-3 0.6136e-3 0.7894e-5 0.3779e-3 0.1316e-2

TABLE II

THE RESULTS FOR R INDICATOR ON TEST PROBLEMS 8-13 FOR M = 3 OBJECTIVES.

FES 8. S DTLZ2 9. R DTLZ2 10. S DTLZ3 11. WFG1 12. WFG8 13. WFG9
Best 0.2488e-3 0.3789e-3 0.3750e-3 0.5591e-1 -0.1282e-1 -0.8500e-2

Median 0.5923e-3 0.5286e-3 0.4402e-3 0.5665e-1 -0.8907e-2 -0.5319e-2
5 × 10

3 Worst 0.1126e-2 0.6297e-3 0.5731e-3 0.5751e-1 -0.6129e-2 -0.2414e-3
Mean 0.5972e-3 0.5268e-3 0.4487e-3 0.5666e-1 -0.9257e-2 -0.5136e-2
Std 0.2023e-3 0.5143e-4 0.5525e-4 0.4234e-3 0.2014e-2 0.2420e-2
Best 0.1376e-3 0.4608e-4 0.5768e-4 0.5551e-1 -0.2169e-1 -0.1042e-1

Median 0.2936e-3 0.1945e-3 0.8245e-4 0.5641e-1 -0.1777e-1 -0.6941e-2
5 × 10

4 Worst 0.6957e-3 0.2487e-3 0.1303e-3 0.5766e-1 -0.1298e-1 -0.5218e-2
Mean 0.3128e-3 0.1769e-3 0.8456e-4 0.5648e-1 -0.1738e-1 -0.6983e-2
Std 0.1253e-3 0.5926e-4 0.1629e-4 0.5139e-3 0.2179e-2 0.1114e-2
Best 0.6266e-4 0.1484e-4 0.2259e-4 0.4984e-1 -0.2925e-1 -0.1232e-1

Median 0.8778e-4 0.3731e-4 0.3079e-4 0.5202e-1 -0.2722e-1 -0.8973e-2
5 × 10

5 Worst 0.2945e-3 0.6610e-4 0.4006e-4 0.5393e-1 -0.2405e-1 -0.7119e-2
Mean 0.1010e-3 0.3688e-4 0.3028e-4 0.5211e-1 -0.2700e-1 -0.9422e-2
Std 0.5030e-4 0.1131e-4 0.4621e-5 0.1122e-2 0.1393e-2 0.1691e-2

TABLE III

THE RESULTS FOR R INDICATOR ON TEST PROBLEMS 8-13 FOR M = 5 OBJECTIVES.

FES 8. S DTLZ2 9. R DTLZ2 10. S DTLZ3 11. WFG1 12. WFG8 13. WFG9
Best -0.9820e-5 0.1468e-4 -0.1473e-7 0.4705e-1 0.5753e-3 -0.2153e-2

Median 0.1703e-3 0.5957e-4 0.1019e-4 0.4778e-1 0.3191e-2 -0.1144e-2
5 × 10

3 Worst 0.5041e-3 0.2013e-3 0.3281e-3 0.4812e-1 0.5143e-2 0.2422e-2
Mean 0.2002e-3 0.7245e-4 0.4553e-4 0.4777e-1 0.3001e-2 -0.7903e-3
Std 0.1858e-3 0.4652e-4 0.9115e-4 0.2339e-3 0.1109e-2 0.1190e-2
Best 0.1177e-3 -0.5195e-5 -0.1473e-7 0.4626e-1 -0.4038e-2 -0.2094e-2

Median 0.2530e-3 0.6128e-4 0.3461e-3 0.4731e-1 -0.5922e-3 -0.1030e-2
5 × 10

4 Worst 0.3749e-3 0.2836e-3 0.6230e-3 0.4806e-1 0.2346e-2 0.6813e-3
Mean 0.2587e-3 0.6924e-4 0.2876e-3 0.4731e-1 -0.6877e-3 -0.9847e-3
Std 0.5098e-4 0.6150e-4 0.2179e-3 0.4762e-3 0.1625e-2 0.7598e-3
Best 0.6832e-5 -0.9719e-5 -0.1473e-8 0.4325e-1 -0.7767e-2 -0.2118e-2

Median 0.1269e-3 0.6145e-4 0.4258e-3 0.4447e-1 -0.1112e-2 -0.9683e-3
5 × 10

5 Worst 0.1883e-3 0.2323e-3 0.6501e-3 0.4672e-1 0.2057e-2 0.8521e-3
Mean 0.1250e-3 0.7799e-4 0.3908e-3 0.4462e-1 -0.1655e-2 -0.8432e-3
Std 0.4623e-4 0.6743e-4 0.1705e-3 0.9060e-3 0.2567e-2 0.7226e-3

TABLE IV

THE RESULTS FOR COVERED SETS FOR TEST PROBLEM SYMPART.

FES 5 × 10
3

5 × 10
4

5 × 10
5

Best 1.0000e-0 1.0000e-0 1.0000e-0
Median 1.0000e-0 1.0000e-0 1.0000e-0
Worst 1.0000e-0 1.0000e-0 1.0000e-0
Mean 1.0000e-0 1.0000e-0 1.0000e-0
Std 0.0 0.0 0.0



TABLE V

THE RESULTS FOR HYPERVOLUME INDICATOR I
H

ON TEST PROBLEMS 1-7 FOR M = 2 OBJECTIVES.

FES 1.OKA2 2. SYMPART 3. S ZDT1 4. S ZDT2 5. S ZDT4 6. R ZDT4 7. S ZDT6
Best 0.1365e-2 0.9514e-3 0.2047e-0 0.2995e-0 0.1821e-0 0.5738e-2 0.3438e-0

Median 0.1166e-1 0.1513e-2 0.2676e-0 0.3547e-0 0.2736e-0 0.1066e-1 0.3780e-0
5 × 10

3 Worst 0.6194e-1 0.1888e-2 0.3392e-0 0.4221e-0 0.3185e-0 0.1993e-1 0.3895e-0
Mean 0.1640e-1 0.1499e-2 0.2676e-0 0.3569e-0 0.2674e-0 0.1147e-1 0.3690e-0
Std 0.1471e-1 0.1887e-3 0.3131e-1 0.3695e-1 0.3605e-1 0.3318e-2 0.1612e-1
Best -0.5200e-3 0.6332e-4 0.1275e-1 0.1333e-1 0.1282e-1 0.1090e-2 0.1294e-0

Median 0.2988e-2 0.1023e-3 0.1651e-1 0.1828e-1 0.3249e-1 0.3368e-2 0.1447e-0
5 × 10

4 Worst 0.3632e-1 0.1417e-3 0.2225e-1 0.2855e-1 0.5964e-1 0.7452e-2 0.1555e-0
Mean 0.7395e-2 0.1026e-3 0.1706e-1 0.1894e-1 0.3387e-1 0.3538e-2 0.1440e-0
Std 0.9413e-2 0.1955e-4 0.2453e-2 0.3251e-2 0.1173e-1 0.1405e-2 0.7805e-2
Best 0.3933e-2 0.1128e-3 0.1406e-2 0.1182e-2 0.3100e-5 0.8473e-3 0.3411e-1

Median 0.8539e-2 0.1981e-3 0.1650e-2 0.1490e-2 0.1083e-4 0.2868e-2 0.4099e-1
5 × 10

5 Worst 0.1387e-1 0.2598e-3 0.2357e-2 0.2204e-2 0.1742e-3 0.6117e-2 0.4511e-1
Mean 0.8563e-2 0.1927e-3 0.1693e-2 0.1532e-2 0.3475e-4 0.2965e-2 0.4132e-1
Std 0.2643e-2 0.4626e-4 0.2094e-3 0.2494e-3 0.4806e-4 0.1209e-2 0.2801e-2

TABLE VI

THE RESULTS FOR HYPERVOLUME INDICATOR I
H

ON TEST PROBLEMS 8-13 FOR M = 3 OBJECTIVES.

FES 8. S DTLZ2 9. R DTLZ2 10. S DTLZ3 11. WFG1 12. WFG8 13. WFG9
Best 0.1373e-1 0.8822e-2 0.8449e-2 0.2886e-0 -0.6884e-1 -0.4472e-1

Median 0.2071e-1 0.2385e-1 0.1203e-1 0.2919e-0 -0.5549e-1 -0.2968e-2
5 × 10

3 Worst 0.4505e-1 0.3077e-1 0.2211e-1 0.2960e-0 -0.2743e-1 0.2064e-1
Mean 0.2404e-1 0.2206e-1 0.1254e-1 0.2919e-0 -0.5312e-1 -0.8135e-2
Std 0.8692e-2 0.5646e-2 0.2762e-2 0.2136e-2 0.1174e-2 0.1853e-1
Best 0.2037e-2 0.4433e-4 0.1278e-3 0.2852e-0 -0.1286e-0 -0.4628e-1

Median 0.3931e-2 0.1754e-2 0.2226e-3 0.2895e-0 -0.1078e-0 -0.2631e-1
5 × 10

4 Worst 0.7329e-2 0.3043e-2 0.6266e-3 0.2960e-0 -0.8351e-1 -0.8911e-2
Mean 0.4069e-2 0.1600e-2 0.2395e-3 0.2898e-0 -0.1040e-0 -0.2692e-1
Std 0.1317e-2 0.9047e-3 0.1062e-3 0.2509e-2 0.1256e-1 0.9393e-2
Best 0.4475e-3 0.3109e-5 0.5943e-5 0.2592e-0 -0.1741e-0 -0.7253e-1

Median 0.1783e-2 0.3947e-4 0.1421e-4 0.2692e-0 -0.1578e-0 -0.4731e-1
5 × 10

5 Worst 0.2955e-2 0.1306e-3 0.2489e-4 0.2795e-0 -0.1359e-0 -0.2844e-1
Mean 0.1790e-2 0.3998e-4 0.1425e-4 0.2694e-0 -0.1579e-0 -0.4815e-1
Std 0.6700e-3 0.2982e-4 0.5933e-5 0.5202e-2 0.1104e-1 0.1301e-1

TABLE VII

THE RESULTS FOR HYPERVOLUME INDICATOR I
H

ON TEST PROBLEMS 8-13 FOR M = 5 OBJECTIVES.

FES 8. S DTLZ2 9. R DTLZ2 10. S DTLZ3 11. WFG1 12. WFG8 13. WFG9
Best 0.6815e-5 0.1739e-3 -0.4440e-15 0.5304e-0 -0.2356e-0 -0.2126e-0

Median 0.2029e-2 0.5988e-3 0.6980e-4 0.5374e-0 -0.1984e-0 -0.1982e-0
5 × 10

3 Worst 0.1835e-1 0.3249e-2 0.1870e-1 0.5404e-0 -0.1823e-0 -0.1326e-0
Mean 0.4126e-2 0.8342e-3 0.1364e-2 0.5371e-0 -0.2010e-0 -0.1918e-0
Std 0.5749e-2 0.7579e-3 0.4010e-2 0.2169e-2 0.1260e-1 0.1945e-1
Best 0.9943e-3 -0.8872e-4 -0.6661e-15 0.5223e-0 -0.3121e-0 -0.2119e-0

Median 0.4046e-2 0.6357e-3 0.2538e-1 0.5329e-0 -0.2622e-0 -0.1964e-0
5 × 10

4 Worst 0.1094e-1 0.7423e-2 0.6506e-1 0.5398e-0 -0.2070e-0 -0.1674e-0
Mean 0.4610e-2 0.8917e-3 0.2518e-1 0.5327e-0 -0.2592e-0 -0.1940e-0
Std 0.2273e-2 0.1447e-2 0.2141e-1 0.4513e-2 0.2648e-1 0.1207e-1
Best 0.5137e-4 -0.1517e-3 -0.1332e-14 0.4934e-0 -0.3623e-0 -0.2127e-1

Median 0.8622e-3 0.6235e-3 0.4432e-1 0.5054e-0 -0.2552e-0 -0.1939e-1
5 × 10

5 Worst 0.1758e-2 0.4338e-2 0.1212e-0 0.5268e-0 -0.2108e-0 -0.1683e-1
Mean 0.9661e-3 0.8260e-3 0.4353e-1 0.5068e-0 -0.2677e-0 -0.1919e-1
Std 0.4749e-3 0.9611e-3 0.2515e-1 0.8733e-2 0.4144e-1 0.1189e-2

TABLE VIII

COMPUTATIONAL COMPLEXITY (TIME IN SECONDS)

T1 T2 (T2 − T1)/T1
0.24 2.206 8.191
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