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Abstract. In this paper we present explicit and simple analytical formulae for the
energy eigenvalues E, (A) of one-dimensional anharmonic oscillators characterized
by the potentials imew?®x® + Ax2a with a =2, 3 and 4. A simple intuitive criterion
supplemented by the requirement of correct asymptotic behaviour, has been em-
ployed in arriving at the formulae. Our energy values over a wide range of n and A
are in good agreement with the numerical values computed by earlier workers through
very elaborate techniques. To our knowledge this is the first time that formulae of such
wide validity have been given. The results for pure power oscillators are trivially
obtained by going over to the w — 0 limit. Approximate analytic expressions . for
the low order even moments of x are also given.
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1. Introduction

The study of quantum anharmonic oscillators (AHO) has received considerable
attention in the literature because of their many applications and their importance
as simplified models for nonlinear fields. The main quantities of interest have been
the energy eigenvalues E,, moments of x2, x*. .. in various eigenstates and the matrix
elements of x, x2, x3,. .. between eigenstates of oscillators having Hamiltonians of
the general form
—_ ﬁ L 22 20, ' ’
2m+§_mcux F A x2e

fora =2,3,4, ... For accurate numerical computation of the energy levels the ordi-
nary (Rayleigh-Schrédinger) perturbation procedure is of no direct use. The reason -
is that E,()is not analytic in A at X =0 and the perturbation series is strongly
divergent. The nature of the nonanalytic behaviour has been studied in detail by
Bender and Wu (1969), Simon (1970) and Loeffel ez al (1969). Several kinds of pro-
cedures have been suggested and employed during the past few years for numerical
computations of E,(A). These include* the Borel summation of the (strongly diver-

*The literature on this subject is so vast that it is next to impossible to quote every important
paper. What we have included is only a sample based on personal taste and references to other
techniques can be traced from these.
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122 P M Mathews et ql

gent) perturbation series with the aid of Padé¢ approximants (Graffi et al 1970 for
@ = 2)*, the use of a WKB approximation carried to arbitrary order (Bender et al
1977) which however also yields only an asymptotic series though the nearest appro-
ach to the exact values is quite close, Hill determinant techniques (Biswas et al 1971,
1973) a method of continued fractions (Graffi and Grecchi 1975; Singh et al 1978),
variational methods (Bazley and Fox 1961; Graffi and Grecchi 1973) and a variety
of other methods of a more specialized nature (Lakshmanan and Prabhakaran 1973;
Mathews and Govindarajan 1977; Ginzburg and Montroll 1978; Richardson and
Blankenbecler 1979; Behera and Khare 1980; Magyari 1981). A variety of ot}ler
methods have also been devised by various workers, to obtain approximate analytical
formulae which give E,(}) directly or indirectly and to compute E,(A) numerically
to high accuracy. Montroll and co-workers (Hioe and Montroll 1975; Hioe et al
1976, 1978) have succeeded in presenting a number of such formulae which are accu-
rate in different domains of » and A. There is no way of deciding however as to
which of the formulae is the most accurate in a transition region between two such
domains. The numerical computations presented by them cover the relatively low
lying levels, for values of ) ranging from very small to very large. They have noted
that accuracy is hardest to obtain when 7 is small and ) js very large. The mo§t
extensive tabulation of numerica] values of E,(X) computed with high accuracy is
due to Banerjee and co-workers (Banerjee et al 1978; Banerjee 1978). They presel_lt
E(N) for both n and A varying from very small to very high values, for the quartic
(a =2), sextic (« = 3) and octic (¢ =4) oscillators. However, a single analytical
formula for a given « which is capable of vielding E,(A) with high accuracy for all

the tabulations of values available in the literature.

The essence of our method is the aetermination of a * renormalized ’ frequenc_y
@o(n, A) such that E,(}) is very closely approximated by {n|H|n) where |n) is
defined in relation to the renormalized harmonic oscillator,

Hylny =+ P ho, ‘[ n), 2m Hy = p? —.'—% mw? x2,

The details as to how (1, A) is determined for ¢ — 2, 3 and 4 are given in the suc- »
ceeding sections. It may be mentioned here that the work of Banerjee and co-workers
also rests on the use of g matrix representation for A in the basis of a renormalized

*The recent work of Caswell (1979) employs a renormalized perturbation series which is useful
for all # and A, : '

**This makes it possible to use

se the formula with confidence for accurate estimation of Eu(})
for any desired » and A for which tabulated values are not available,
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E,(}) but to compute E,(A) numerically to a high degree of accuracy (1 in 1015)
employing the Hill determinant method (used earlier by Biswas and co-workers
without * renormalization *). The freedom to split H into unperturbed and pertur-
bation parts in any manner has also been used in the early work of Chan et al (1964)
who evaluated the low lying energy eigenvalues and also some moments and matrix
elements of x. :

The plan of the paper is as follows: In the next section we take up the quartic
AHO (a =2; » # 0) and obtain an (approximate) expression for its energy eigen-
values. Approximate expressions for x2 and x* moments are also obtained using the
Feynman-Hellmann theorem. Results for the pure quartic oscillator (¢ = 2; w =0)
are shown to follow from the anharmonic case on letting w 0. Sections 3 and 4 -
are devoted to sextic (¢ = 3) and octic (o = 4) potentials. The last section is devoted
to a discussion of our results. :

2. The quartic anharmonic oscillator

The Hamiltonian for the one-dimensional quartic AHO is given by
P 1
H=_4"maw?x2 4 Ax5 (A > 0). (1)
2m 2 ,
We consider tiie matrix representation of H in a basis which diagonalizes
o 2 1 B
YHOEL—J‘—Em w? X2, @)

where the ‘renormalized’ frequency w, is a free parameter and we shall choose it in a
well-defined way. The matrix elements of H in the basis defined by the eigenstates
of H, are easily determined to be the following (Mathews and Venkatesan 1976):

= (e o oo 3 o

(n+2|H[n) = Kn|H|n+2) =H, y
=tag| = 20— WL (n et ) [{a+2 @+ 6w
(n+4|H[n) =Cn|H|n+4>=H, q. .

=ﬁw0(._§_) (+He+He +D @0 G
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All other matrix elements of H are zero. In the above equation vis a positive quantity
defined by ‘ ‘

V= wfw,, | @
and P = 2AR[m? B, ®)

is a non-dimensional parameter characterizing the relative strengths of the quartic
and quadratic terms in the potential. It is clear that the exact eigenvalues E, (A) of
the matrix H (with elements H,,) will be independent of the value of w,, We can
therefore use this freedom to our advantage and choose w, adapted to any particular
level n and ) such that the diagonal element H,, of H (in the HO basis of sucl.l wy)
closely approximates E,. Wechoose wy 50 as to make the matrix elements immediately

close to H,, (viz. H,.o »and H,, n.2) as small as possible. This gives the following
equation to determine v:

PV ==+, | ©

With the value of » determined, the (approximate) value for the nth energy level of
the AHO is to be calculated from (3a):
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it lies between zero and unity. Making use of the known WKB - large » and
A — results, the equation for » can be further refined as indicated below.
When (z + 1) p2is very large, the solution of (6) can be written as

v~Dﬁ@+ﬂ*%hﬁDﬁ@+ﬂwme- u ®

On substituting this in (), E, becomes*

3
E, ~ N8| 1389 By —_—
{ ¢+ {1 +28(n+%)2§
+ 0:262 (n 4 3)23 )-21s +] o €))

Let us compare this with the known WXB expression** (Hioe and Montroll 1975 ;
Pasupathy and Singh 1980);

EWEB _ yus [ 137651 e !
’ [ @+ @+bw@+@§

+ 026805 (n - )2 x-2 o ] (10)

*For ease of writing we have set f = M= =1in(9) and (10). Fuller expressions are given
in the Appendix.

**We collect the necessary WKB results in the Appendix and show how the constants a, b and ¢
(equation 12) are determined 1n terms of the WKB coefficients,

&
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We find that our expression (7) for E gives the same power dependence on »# and A
as in (10) but with slightly different coefficients. A little reflection shows that by a
modification of the defining equation for », the coefficients in the various terms in
the large (n -+ %) p? limit of (7) can be made to coincide with those in the WKB
expression. The modified form is '

2v3=u2. — — 2 ve -——c—_ 11
Pl e D )+ a1 ) (v

The role of the parameters a, b and ¢ in determining the various coefficients may be
seen from equations (A7) and (A8) of the Appendix. From these equations we find
that the values needed for a, b and ¢, in order that the asymptotic form should co-
incide with the WKB limit are

a = 0895647,
= —0125, . (12)
¢ = — (85.

We note incidentally that for all p* and n > 2 the above equation for » still admits a
positive root lying between zero and unity and it deviates only slightly from the
corresponding solution of (6).*

Equation (7) with v determined from (11) and (12) constitutes our result for the
quartic anharmonic oscillator. The E, are readily calculated, the value of v in each
case being obtained by numerical solution of the quartic algebraic equation (11).
The results obtained are displayed in table 1. As can be seen from the results, our
expression reproduces the energy values with a remarkably high degree of accuracy
for all # and A, though only the limit of large (# + %) p2 was used in determining the
parameters (12). Only the last one or two digits in the tabulated values differ
from the corresponding digits (shown in brackets below each number) of the accurate
values obtained by earlier workers through very elaborate computations.

Table 1. Energy eigenvalues of quartic anharmonic and pure quartic oscillators.

Anharmonic oscillator 2E,/h o Pg;giﬁgfgﬁic
Pﬂ . ) i . 2,\h4 1[3
~ 0-0001 1-0 10000-0 E, / (71—2-)
2 5.000 974 6 8.663 160.81 7.461
46 (55) (69) (56)
5 11.004 571 40 23:2998 457.677 21.238°94
(36) (74) (65) (37
10 21.016 550 53-450 1082.8971 50-256 38
(30) (49) (89) (25)
100 202.494 10 1035.544 35 21997-240 49 1020.990 00
(08 (18) 7 (89 99)
1000 2134252 21932-783 86  471075.928 46" 21865-262 120
43) (71 (38) as)
0 1.000 074 98(87 ) 1-39(7 8) 23.0%) 1-071
24) . (22.8 (60
1 . 3,000 374 91 4670 , 82:57 3-831)
[0)) (49) (81-90) (00)

*n=0 and n=1 are special cases and the results for them will be separately indicated below.
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A comment on the values given against n =0 and n = 1 may be in order. The
estimation of Ey(}) and E,(X) by our formula was not found to be quite so good as
. for n > 2, especially when 2 is large. The reason is basically that while for other
values of n, the effects of the off-diagonal elements H,,,w with m--m' < 2n are largely
counterbalanced by those with m -+ m' > 2n, for n = 0 and 1 there is an imbalance
because no non-vanishing H, With m 4 m' < 21 exist. The obvious remedy is to
add a correction to H,, to take account of the off-diagonal elements very close to Hy,
or Hy, as the case may be. What is shown against n = 0 in table 1 is therefore not
Hy, but the lower of the eigenvalues of the matrix

(HOO HOS)
H20 H22

in a representation with » taken as the relevant solution of (11) witha — 1 = b =

¢=0. Forn=1 also the effect of the nearest off-diagonal elements H; and Hy,
has been taken into account in a similar manner. *

2.1 Pure quartic oscillator

Results for the pure quartic oscillator (o = 0) are trivially obtained from our above
given expressions, by noting that as w-> 0, » also goes to zero such that

cu/v:wg#()andpzvg::-zﬂ;éo

2.3
mwo

The explicit expression for the energy value of the quartic oscillator is found to be the
following:

_A 1 12 1V 1 254 1/3‘ 13
E =24 +3) (n+3) +all B (%)

with A3 = 16(n + %)

T (13b)
a-+c/(n+ 32

Note that here A is given explicitly, unlike » of the anharmonic case which had to be
found as the solution of an algebraic equation. This simple formula (13) reproduces

with great accuracy the energy values of the quartic oscillator computed by Banerjee
and co-workers (table 1).

2.2 The even moments of x

For the Hamiltonian (1); the Feynman-Hellmann theorem (Quigg and Rosner 1979)
states that

3m® (X2, = 98,002, (14a)
and XD = 884/2M, (14b)

*A similar procedure has been adopted for getting the energy values for the 5 — 0 and n =1
levels of all the other oscillators considered in the rest of the ﬁper‘“ en

.
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where the expectation values on the left side are with respect to the exact eigenstate
of H with exact eigenvalue 8,. As we have seen above, our approximate expression
E, for the energy is quite close to 8,. Therefore we can derive (approximate) expres-
sions for {(x®), and {(x'), by replacing &, on the r.hs. of (14) by E, itself.
Explicitly

e S ey )
o g —me U\ T3) T a5l Ts) 3

[ b —a —2b? ]} (152)
GFD —20—F —D#lS |

. OF, _ 28% ()2(3 12, 1 1
md i = O3S + ] =214 3)ew

[% (»+ PP+ — (n+ $?la’ b’vglg , (15b)
3a" + @ —a')vt 4 bt
where a == a+cln+%?and ¥ =1—a b, (16)

and » is the relevant solution of (11). Once {x®>, and { x*), are determined,
all the higher even moments, {x%*}, can be computed by making use of the
moment recursion relations (Banerjee 1977; Richardson and Blankenbecler 1979).

Results for the pure quartic oscillator (w—>0) are particularly simple and we find
in this limit that (15) reduces to

(atpy e (ﬁ?)ml {(n + 1) LA @ —b) [(n N %) %

m\] A 2] BmFD A?
(-3 + 3
xth, == E,[32, | (16b)

with E, and A given by (13). The values of {x%>, obtained from (16a) are given in
table 2 and they compare very favourably with the accurate values of Banerjee et al
(1978). From the moment recursion relations one can deduce that {x%), = ¢,/3\.
Therefore our values of {x%>, given by (16b) have the same accuracy as the energy
values themselves. :

3. The sextic anharmonic oscillator

Since the procedure for obtaining energy expressions for the sextic (and octic) oscil-
lators is similar to the one adopted above for the quartic potential, we will keep the
details to the unavoidable minimum. “ ‘
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Table 2, Values of (x*), for the pure quartic oscillator.

n Q@Am/RHYE XY,
2 1:249 54 7)

3 1:562 (58)

5 2:107 4 (5 0)

7 2-590 (88)

9 3-031 2 (0 0)

0 0-348 (62)

1 0-889 (901)

The Hamiltonian for the sextic AHO is given by

H

-

H=—+imow®x A5, (A>0), an
2m

As before we approximate the eigenvalue E, of H by the expectation value H,, of H
in a HO basis corresponding to a renormalized frequency w,, which is so chosen that

the off-diagonal elements adjacent to H,, are made small. This requires that v = wlew,
be a solution of the equation

gt (=) :
IS(n+4p+1

(18)

The cnergy is then to be computed from

n - 5 '
Eu"“Hun::Li;é)[(1+v2)+'2pzv4%(n"l'%)z"['"z‘;]ﬁw: (19)
where  p? = 2082met,

Itss @5533' seen that for.all n and A, (18) admits a positive solution lying between 0 and
amy. As in the previous section, the equation for v has to be slightly modified in
uf::r'r 13 yu:;i the WKB limit with correct coefficients. The modified equation for v
i eund 1o

Pgﬁ"‘m“ (1”‘"”2)

—

s M{(”+%)2+ H[I +@—1) (1 — v?) + py2 +(n _:%)2], 21)

W‘}Zh @ o ﬁ“831488755, b = 0.213865, and o = —. 1'349. (22)
ftas very interesting 1 at i . .
for v 1 3;; M ‘;gstl;e:hat ! Contrast to the quartic case — the above equation

“dratic in 2 CICE We can solve fi : ,
for £, from (19) and (21) (table 2) are fouzgioolzev e oy The valucs obtained

e extensive tables of | ctal quite close to the values given in,
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3.1 Pure sextic limit

The results for this case are obtained as limiting values of w->0 in (19) and (21).
We note that this implies v — 0 such that

p® vt = p*wtwl —+ 2AA2[mPw}.

On using this we get the following éxplicit expression for E,:

E,=fm+DHA [1 + QS_A4 {(n + 9+ g%] (MR8 [mP)/4, (232)
where At =15 {(n + H? + 7/4} [4{a + c|(n + B)*}. (23b)

The results obtained from this expression for E are shown in table 3*.

4. The octic anharmonic oscillator

The expectation value H,, of the octic AHO Hamiltonian
J 8 “
H=:-4+ _-—maw?x>+ x5 (A>0), , 24
2m = 2

Table 3. Energy eigenvalues of the sextic anharmonic and pure sextic oscillators.

Anharmonic oscillator 2E,/hw lgégi?]:?ggc
N 0000 1 1-0 10000-0 2E,|(2Ah8/mB)LIe
2 5004 668 0 10-04 91-56 915
@ (9-97) (90-82)
5 11-042 642 30-639 293-22 29-308
(09) 23) 13)
10 21-278 1 78-963 771-474 77-129
(78 (58) (57 .
100 283-340 2287-793 74 22821-750 0 2282-118 23
(23) 6D (49 9)
1000 7346850 71700-060 51 716823-285 171 71682149 4
(38) (49)
0 1000 187 34 1-481 1218 1-215
23) (36) (11-48)
1 3-001 310 515 44-98 4-49
(09) (03) (43+46)

* Accurate numerical tables for the energy values do not seem to be available for pure sextic (and
octic) potentials, for comparison purposes. But in view of the excellent agreement seen in the
anharmonic case for high p? (i.e. with the sextic potential predominating) it can safely be presumed
that our resulis have accuracies of the same order also in the pure sextic (and octic) case.
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in the state | n ) of the HO with a renormalized frequency wy is given by

By = [ D (4w 4 220
2y 8

T+ 2+ 20 | o 25)
{(n+%)4+5(n+2) +1—85Jh , (
where Pt = 2X A8 [mfuS, (26)

The parameter v = w/w, is the solution lying between 0 and unity of the following
equation:

= =Tt B [+ 2] o

The WKB coefficients for this potential are correctly reproduced if we modify the
equation for v as

— 2 — ) oy . L
pzvsz(i v)[l—l-(a D (1—v%)+ v+(n_|_%)2]’ 5

T + 1) [(n +ir+2)

where the constants a, b and ¢ have values
@ =0-787 128 845, b = —0277 492 and ¢ = — 1:609. (29)
4.1 Pure octic potential

Inthelimitofw—>0the

above results simplify to give the following explicit expression
for the energy _

E,.=‘-§[<n+%)+8%{<n+%)4+;(n+%)2+%§](%t"8)1’5, (300)
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Table 4. Energy eigenvalues of the octic anharmonic and pure octic oscillators.

Anharmonic oscillator 2E,/hw g‘;ﬁﬁﬁggf
8 0-000 1 1-0 10000-0 2En/(2ARS/ 115
2 5025 83 11-25 66-48 10-52
(40) (10-99) (64-76)
5 11-362 36-588 224-56 35-564
(56) 09) (14)
10 23-744 100-879 628-42 99-564
(29) (57 (32
100 605-184 3693:329 0 23283-471 91 3690-100 5
(19) 87 (40) |
1000  23167-125 85 145860+545 64 920268-034 1 145852-450 91
10) (56) 366
0 1000 653 1-56 8-57 1:35
(46) (49) (778)
1 3-005 82 565 32:28 516
(73) 37 (30-11)

Table 5 Residual correction to the pure quartic oscillator eigenvalue with n = 49

6 = Eyy + en = 397141 342 + ¢,

€n Eyp + en
—0-304 058 396-837 284
—0-250 690 396-890 652
7 —0-001 154 397-140 188
12 -—0-000 012 397-141 330
14 —0-000 015 397-141 327
15 —0-000 015 397.141 327

Banerjee et al’s (1978) value: 397-141 327

expressions. It is interesting to note that the criterion adopted for determining the
renormalized frequency is the same for all anharmonic potentials (quartic, sextic, etc.)
A merit of our prescription for determining the value of wy(n, X) for a given n and A
is the following: Let us suppose that for a given A we wish to calculate the eigenvalue
of the nth level of the AHO Hamiltonian to arbitrary accuracy. Our approximate
expression E, for this eigenvalue is (as pointed out in the text) just the nth diagonal
element of the matrix whose elements H,,, are all calculated in the basis of the HO with
the renormalized frequency wy(n, A). Since E, is quite close to the actual energy,
the residual correction €, = (8,—E,) will be quite small and much less than the level
spacing (| 8,41 — 8x|). The value of e, can be estimated quite accurately by taking
into account more and more elements of the matrix around H,,. A systematic pro-
cedure for doing this has been developed by one of us (PMM) whose details will be
published separately. For a typical value of n =49 of the pure quartic oscillator
(w =0) we show in table 5 the numerical correction ¢, which is the smallest eigenvalue
of the matrix ¥ = H — H,, I, when J£ is truncated to be a @M + 1) X @M -+ 1)
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matrix whose central element is H,, The convergence rate is quite rapid and the
accuracy obtainable is limited only by the computer tolerance (1 in 10%), Finally
we wish to observe that our method (for obtaining approximate energy values) can
be extended to higher dimensional oscillators as well (Mathews et af 1981a).

LS
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Appendix

We collect here the WKB results for the one-dimensional AHOs and then outline
how the paramsters a, b and ¢ of the text are determined from the WKB coefficients.
The WKB expression for the energy of the general AHO Hamiltonian is given by

1 2a
A B2 ‘ ) —
E(W-KB)z( )a+1[ S 1 a %1_] a
" ) T
2 5 |
(n+Pa+1 (m w)2 (h?)*‘_p‘l‘
Y 2 didiag % )a 4 A2

('a - 2) - 2a
where Xg = 2e T U7 (41 I‘(I/a):,a 1

T2 (1/2 ) ’ (A3)

2- 2
and o= 2(1_““‘:)

%@+DPWﬂa1FW@ﬂGﬂ@ (Ad)
L T*(124) T Gle) T2 (12 a)
For the quartic AHO, Hioe and Montroll (1975) have estimated 8, to have a value
of ~0-02650. Ina recent paper Pasupathy and Virendra Singh (1980) have obtained
an analytic expression for the first two terms of the WKB series for pure x2¢ poten-
tials. More precisely, Pasupathy and Singh’s result is for s-waves of the three-dimen-
sional potential ¥ = M*, but as is well-known, the results for three-dimensional

_ QRa—1
8g = W 0 cot (m/2a). (A5)

For a =2, the above expression gives 8, = 1/127 = 0-02652 ; : i
Hioe and Montroll’s value i / " '652 " sgwoment with

.
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We shall now indicate how we have obtained the value of a, b and ¢ (equation (12))
for the quartic anharmonic oscillator. For large » and A, equation (11) gives the
following value for v ‘

1—2a+5b

v [af2p (n -+ D §1+ .

262 (n + D)2 + % (A6)

Substituting this in (7) , we obtain

7~ Ah4 13 1M4/3 C
roe (B) 4@ 1t s
B+ e a2 (f‘-)/ = | (A7)
il m ;
) 1/4\13 3a
with A"‘i(a) (1+3)
1 fay IV
BWE(Z) {1—{—(1—[—17 2a)(-2- 55)% (A8)
1,3 3
C“c( 32 F(4+3.:z))+4(4~;-3a)

Comparing (A7) and (A8) with (A2) and (A3) we obtain a, b and c in terms of the
WXKB coefficients. Using the values of the latter the parameters are determined to
have values as given in (12). In a similar manner, the parameters of the sextic and
octic AHOs have also been obtained. Incidentally we may point out that the leading
WKB coefficient of the sextic AHO in equation (A2) viz x5, has a value 1-34683 and
not 1-346760 as given by Hioe et al (1976).
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