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Abstract. A recently-formulated residue-squaring method for perturbation prob-
lems is subjected to an exacting test in its application to the problem of diagona-
lising the Hamiltonian of the nonlinear oscillator with quartic anharmonicity, Un~
like other methods, this new iterative diagonalisation method enables several eigen-
values to be calculated simultaneously with little more labour than for a single
eigenvalue. Values obtained for the four lowest even-parity levels of the anharmonic
oscillator from just two or three iterations are shown to agree well with earlier

accurate calculations. An approximate analytical formula for the energy levels is
also presented.
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1. Introduction

In this paper a variant of the iterative method for perturbation problems pro-
posed by one of us (Mathews 1975), is apphcd to the anharmonic oscillator des-
cribed by the Hamiltonian H = 4 x? 4 1 p* 4 4Axt. The method is basically
a prescription for taking a dlagona.l-dommant matrix to its diagonal form by
a series of similarity transformations which reduce the off-diagonal part (of order
X compared to the diagonal part) successively to orders A% A4, 2.... A study of
the anharmonic oscillator by this method is of considerable interest, firstly
because of the intrinsic interest of the oscillator itself as a model physical system
and secondly because it would provide an exacting test of the power of our itera-
tive method. It is well known that however small the coupling parameter A may
be, the ratio of the off-diagonal to the diagonal elements of the Hamiltonian in
the unperturbed representation, e.g., H,,i/H,, becomes of order unity for
sufficiently large n, so that the anharmonicity is not really a small perturbation.
(This is reflected in the behaviour of the Rayleigh-Schridinger perturbation
series which is strongly divergent.) For our purposes what is more pertinent
is the ratio Hpy/(Hpm — H,n) Which, far from being small, diverges linearly with-m
for fixed (m — n). Desplte this seemmgly unpromising initial appearance, a

closer inspection of the iterative formula (see below) suggests that dlagonallsatlon
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of the Hamiltonian might be accomplished by the new method, and the
work presented here shows that this conjecture is indeed valid.

The anharmonic oscillator, as a highly interesting physical system, has been
studied by a number of authors in recent years. Following the determination of
the asymptotic behaviour of the coefficients in the Rayleigh~Schrédinger perturba-
tion series by Bender and Wu (1969), the analyticity ‘properties of" the energy
eigenvalues in the complex A-plane have been discussed by Simon (1970), whilé-
Loeflel et al (1969) have demonstrated the use of Padé approximants in extracting
from the Rayleigh-Schriodinger series a converging sequence of approximations
for the eigenvalues. Determination of the cigenvalues by a Borel summation
method applied to Rayleigh-Schrodinger scries has been accomplished by Graffi
et al (1970). Prior determination of the Rayleigh-Schrodinger series to a very
high order is required for accurate calculation using either of these °improper’
summability methods. A more practical calculational method is that of Biswas
et al (1971) who have reduced the problem to finding the roots of an infinite Hill
determinant, and used a recurrence relation existing between truncated determi-
nants. of different dimensions to carry the evaluation of the determinant to suffi-
‘ciently high order till the roots converge. More recently, Graffi and Grecchi
{1975) have shown how to reduce the eigenvalue problem for an oscillator with
anharmonicity of the type Ax*”" to the determination of the poles (with respect to
the energy parameter) of an m X m matrix expressed as a .continued fraction;
successive approximations, with rather fast convergence, being obtained by in-
creasing the number of stages of the continued fraction which are taken into account.
Finally we may mention another recursive approach employed by Hioe and
Montroll (1975) wherein an iterative scheme is set up for the n-th eigenvalue; the
scheme is based on the straightforward expansion of the truncated characteristic
determinant of the Hamiltonian matrix (in a suitably chosen harmonic - oscillator
basis), the truncation being around the (1, 1) element. Besides these methods, which
in principle can be carried to any accuracy, there is also a formula due to- Mathews
and Eswaran (1972) for -quick estimation of energy elgenvalues (for not too low
quantum numbers).

Before presenting the details of our method we mention two of its features
which give "it a ‘considerable advantage over the others. Firstly, it is relatively
easy to extend it to cases of mixed anharmonicities (e.g., when both x* and x¢
terms are present); the computational labour involved in mixed cases is not
much more than that in the quartic case. Secondly, it gives any number of eigen-
values simultaneously in principle, and in practical evaluation, the computation

of a number of exgenvalues costs little additional labour over that of a single
elgenvalue

2. The method

The diagonalisation technique introduced by Mathews (1975) is based on a separa-

‘tion of the matrix H to be dmgonahsed into purely d1agona1 and oﬁ’-dmgonal
parts D and AR respectively: -

H= D+ AR ¢y
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and the application of a similarity transformation H’ = (1 + AS)t H(l -~ AS)
with § chosen in such & way as to ensure that the off-diagonal part of H’ is
O (A*). Then H' takes the form H'= D'+ X* R’. In the present problem
wherein the Hamiltonian H is expressed in terms of operators a, at with simple

commutation properties, it is advantageous to modify the above procedure slightly
and define

H' = gM H M

pl

— H—A[4, HI+ 5, [4, [4, H] — 5, [4,[4,[4, K]l +

= D+ MR—[4, D} + 2 —[4 R+ 3[4 14 DI} +... @

If 4 is chosen such that
[4, D] =.R’ (3)3
then H' differs from the diagonal part D only by terms of order a? or higher_

Hence the diagonal part D" of H' differs from D by terms of O (A%); and the
off-diagonal part R’ of H’, being also O (X\2) can be written as A2 R:

H =D+ 2R

A2 23 3x
that is . | .
, N (—DF (e— D L
H = D— 2 il ~--- R, . (4y
p=2 ' ' -
where _
Rupn=[4,R]p=1,2,.. (5)

It is to be noted that (4) is not a simple power series in ). This is because R,
itself’ depends on A through the A dependence of 4, arising ultimately from the

fact that D in eq. (1) includes the diagonal part of the perturbation proportional
10 A '

The process which led to H' from H can now be repeated by constructing
H" = eM H'etd' = D" 4 MR"

and so on. The last step is ensured by choosing A such that [4', D'l = R'". It
may be noted that D" — D’ will not involve powers of A less than X and simi-
larly D" — D" will be O (A*) and so on. '

3. Applicaiicz to the anharmonic oscillator .

The anharmonic oscillator Hamiltonian which we seek to diagonalise is
H= 3G+ p) + 4 5t |
=3 QN+ D+ A(a+ ab,
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where N = afa and a, af are the annihilation and creation operators obeying
the commutation relations

[a, at] = 1,[N, a]l = — a, [N, at] = at. M

In the unperturbed representation in which N is diagonal, the diagonal and ofi-
diagonal parts D and AR of H are given by

D=4@N+ 1)+ 3A@N2 4 2N+ 1) 8 a
2
R= XY I[at® R, (N)+ R, (N) a¥] (8 b)
lm
with ‘
Ry, (N)= 4N + 6 ' CX)
R, ()= 1. CF))
The operator A, determined by the condition (3), is readily seen to be
A= 3 [af™ A, (N) — 4, (N) @] - (10)
me=1
4 (N)_“(12w+18,\ +1) (11 a)
1
= 115
A (N) = (48AN 120X 4 4)° ' ( )
In view of the forms (8 b) and (10) of R and A it is obvious that
R, =[A,R], Ry=[A4,R,), ...., R, = [4, R, ;] (12)
which appear in the expression (4) for H' can be written as _
R, =3 [at¥ Ry (N) -+ Ry, (N) @ (13)
=0

On substituting (13) and (10) in (12) one gets a recursion relation connecting R+,
to the R, ,. It can be written in the succinct form

Ryia (W)= 3 [Ap (N + 21— 2m) Ry (N)

- Am (N) R,u,!—m (N _I_ 2m)] ' (14)
by introducing the definitions
N!
A, (N)= — A4, (N—2m) X ! (m > 0) (15 a)
N!
Ryt (N)= R, (N—2I) X (JV—TI)'— (I >0). (15 0)

The recurrence relation (14) is the basic formula to be employed in evaluating

H’. Once the R,; are determined from this relation, starting with (86) and (10),
one has, from (4) and (13),

oo 2u
, 1) |
wep— ) E=DED G r, Wt RaWel A0
He=o =0
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The diagonal part, which gives the eigenvalues at this stage of the diagonalisation
procedure, is

oo ' :
— 1) )&
D’-’f_’ D—2 2 ._(.Lﬁ'_)z\_ R,u,o (17)

pm2

The next stage of the iterative process is to start with H' and determine H”
by the same procedure as above. The only difference is that unlike in R and 4,
where powers higher than a* and a** do not appear, in R’ and A’ such a limita-
tion does not exist. In practice one finds however that the contribution of ofi-
diagonal elements decreases rapidly with distance from the diagonal, so that one
does not have to consider high powers of a and af. Further, for values of A
which have been considered in the literature, we have found that it is not neces-
sary to proceed beyond D",

4. Results

As we have noted earlier, in taking D’ to be an approximation to the diagonalized
form, we are in error only in respect of terms proportional to A* and higher. If
such terms are ignored, the eigenvalues are given by D’, eq. (17), omitting terms
with ¢ > 3. To this approximation, our calculation gives

=3@n+ 1)+ 3AQn2+ 20+ 1)+ F(n)— F (n— 4)

+Gn)—G@m—2) (18)
where
+ ) Az )3
F(n)= - (12&13& T [-— 71+ 5 @+3)@n+ 5 @n+ 7)]
19
and (19 a)
2! 2n + 3)2 A3
G (n) = ng”(jz'm) jfzfgj +)1) [- 20 — I (4 4 18n? - Tdn - 84)]
(19 &)
In particular, for the ground state emergy we have
_ 6X% (7 + 114X)
L R (o WS 17 R 20)

Cluriously, though the procedure of Hioe and Montroll (1975) is quite different
from ours, they have also obtained a part of the formula (18)— the part remain-
ing when the terms in A% within the square brackets in eqs (19) are dropped.
As a test of our iterative procedure we have performed numerical calculations
for the energies of the lowest four even-parity levels for A= 0-025 and X = 0-125.
In order to get accuracy to the eighth decimal place in Ey for A = 0-025 we
found that it was necessary to determine the coefficients up to p = 12 in the first
stage of the calculation, while in the next iteration the R',;for u up to 3 only
were needed. To get sufficient accuracy in the higher levels also we extended the
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above scheme to p= 16 in the first iteration, x = 8 in the second iteration and
¢ = 4 in the third iteration. With this we obtain accuracy to six decimals even
for E,. In all cases and at every stage of the iteration, it was found that terms
with I > 10 could be ignored as they were too small to make any difference, to
the accuracy aimed at. Our results for the lowest four levels aré given in table 1.
The accuracy indicated is that which is expected from the: magnitudes of the off-
diagonal elements at the last stage of the calculation and the residue-squaring
nature of the procedure. The only other accurate computation for excited levels
is .that due to Biswas et al (1973). Their results are also shown in the table,
for comparison. It will be noticed that our expectation regarding accuracy is justi-
fied by the agreement between the two sets of results. Incidentally, the analytical
formula (18), from which the values given within brackets in table 1 are com.
puted, is seen to yield quite reasonable results for the lower value of A for low-
lying levels. , .

The rapidity with which the eigenvalues converge as one proceeds through
successive stages of the iterative process may be seen from table 2.

Table 1. Energy eigenvalues of the first four even-parity levels of the anharmonic oscillator
‘ [Quantities within brackets are calculated using eq. (18)]

A =0-025

A = 0-125
Ours Biswas ours Biswas’
E, 0-55914632 0+ 55014632 0-696176 "0:6961758
(0-558936) (0- 6860)
E, 3-13862428 3-1386243 4-32753 4-32752
. (3:127) (4-264)
E, 6-2203008 6-2203009 - 9-0288 9-0287
~ (6-162) . (9-148)
E; 9-657839 9-657839 14-417 14-4176
(9-517) (15-25)
Table 2. Approximations to eigenvalues at various stages of the iteration
Approximation to
A Stage of P
iteration E, E, - E,
0-025 1 0-55914810 3-1388680 6227620
2 0-55914632 3-1386251 ' 6-220318
3 0-55914632 3-1386242 6-220300
0-125 1 0-698177 4-49349 10-0155
2 0-696258 432917 9-0473
© 0-696176

© 4-3275

9-0288
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Accuracy to the number of figures shown is expected from the magnitudes of
the off-diagonal elements remaining at the last stage -of iteration; and the agree-

ment with the results of Biswas ez al (table 1) shows that this expectation is 1ndecd'_
well founded. :

5. Discussion

‘The root cause of the difficulties in devising fast-converging approximation pro-
cedures for determination of the eigenvalues of the anharmonic oscillator lies in
the fact that the off-diagonal elements H, ,., grow indefinitely (like %) as n
increases. This behaviour is responsible for the explosive increase in magnitude
of the Rayleigh—Schridinger coeflicients with increasing order in the standard
perturbation theory. It is of particular interest to note that in our method, the
correction to the diagonal terms which arise at each stage of the iterative pro-
cedure is, for large values of the quantum number n, of the order n?: there is
no worsening of the n-dependence as one proceeds with the iterations. Actually
this may appear surprising since the off-diagonal matrix 4 has matrix elements
App = — Hpo|( H oy — H,,) which increase linearly with 7, and the successive
terms in the expression (4) contain increasing number of factors 4. What happens
is that in evaluating the commutator [4, R, ,], the leading power of n gets can-
celled between the two terms of the commutator. This may easily be verified,
starting from known forms of 4 and R, = R. One finds, in fact, that
R,1 (N) c N-%=2 for large N, so that the matrix of at® R, ;(N) is O (n*) for
large n, as stated earlier. Having convinced oneself of this result for the multiple
commutators occurring in H’, one can use similar arguments to extend this result
to H” and so on.

We also note that the method presented here goes through without appreciable
increase in complexity if higher powers of x (besides x*) are also present in
the perturbation. While this will produce further off-diagonal terms in R and
hence A, this makes a difference only in the first stage of the iterative process
(since terms distant from the diagonal are already present, in principle, in H’,
H’, etc.). However we have already mnoted that in the multiple commutators
appearing in H’, H", etc., off-diagonal elements far removed from the diagonaj
have little effect. For this reason, the presence of extra terms in the perturba-
tion does not make any great difference to the diagonalisation procedure.
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