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- ABSTRACT

Many formule have been proposed to express numerically the rapid
increase of the rotatory power of quartz with decrease of wavelength.
An examination of these formul® shows that they are wholly inappropri-
ate for the case of quartz. It has been shown that the entire range of
data from the visible to the extreme ultraviolet is accurately represented
by a new type of formula involving only two constants, viz.,

_ kA2
P
where &k = 7-19 and A, = 0-0926283 u. A theoretical interpretation
of the new formula has been given on the basis of a simple coupled oscil-
lator model.

INTRODUCTION

THE phenomenon of optical activity was discovered in the year 1811 by
Arago in pieces of quartz cut perpendicular to the optic axis. Soon after-
wards, Biot showed that the rotatory power in the visible region of the
spectrum varies inversely as the square of the wavelength, ie., p = k/A%
The rotatory dispersion of quartz has subsequently been the subject of ex-
tensive experimental study. This has been reviewed by Sosman in his book
on the properties of silica (1927) and by Lowry in his treatise on optical
rotatory power (1935). More recently, measurements have been pursued
into the remote ultraviolet upto 1500 A by Servant (1939). It is evident
from these determinations that Biot’s Law fails completely as we move away
from the visible spectrum. Indeed, from 6000 A to 1500 A the rotatory
power increases by nearly 40 times instead of 16 times as required by the
inverse square formula.

There have been several attempts in the past at expressing the rotatory
dispersion in terms of assumed characteristic frequencies. In the present
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paper, these formul® have been examined and it is shown that they are
completely unsatisfactory for the case of quartz. A new type of formula

" has been suggested, a single term of which fits the whole range of data from

the visible to the extreme ultraviolet very accurately. On the basis of a
simple coupled oscillator model, a theoretical interpretation has been given
to this formula. It is proved that the new formula is not open to the same
theoretical objection which disqualifies all the earlier formule, which are
principally of the Drude type.

EARLIER FORMULE FOR THE ROTATORY DISPERSION OF QUARTZ

The first attempt at a theoretical formula for the rotatory dispersion of
quartz was made by Drude in his Lehrbuch der Optik (1900), where he pro-
posed the form

p= I, 0

where p is the rotatory power in degrees per millimetre, Q, is a constant
corresponding to the characteristic absorption wavelength A, in microns,
the summation being performed over all the r absorption frequencies.
Drude found that the then available data could be fitted by a two term
formula, where

Ql = 12.2, Qz = 5046,

A% =0-010627, A2 =0,

the negative term being unambiguously indicated to be necessary.

Lowry (1912) found that Drude’s formula is not accurate enough to
fit his first series of extended measurements and hence altered it to

__ 11-6064 _ 4-3685 13-4 T
P= 0010627~ X TR 2

the additional third term corresponding to the infrared absorption band.
The later and more accurate readings of Lowry and Coode-Adams (1927)
required a further modification of (2), and their final formula is

_ 95639 _ 2:3113
P= X=0-0127493 ~ AT = 0-000074

— 0-1905, 3)

where, instead of the single absorption band at 1031 A used in the previous
formule, two new characteristic wavelengths at 1129 A and 312 A have
been used, the effect of the infrared being substituted by a constant.
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However, all these formulz fail to represent the measurements of
Duclaux and Jeantet (1926) extending up to 1854 A. These authors have

proposed the formula

7.284
P = X 0-015114 “)

to approximately fit their data. But, as the discrepancy with this simple
formula is quite considerable even in the near ultraviolet, another was
worked out by Bradshaw and Livens (1929), viz.,

845694 0-40235
P= X=0-01274912) ~ (\¥ — 0-01274912)*
8384320 0-1331233

~ (" —0-0120800) ~ (A* = 0-0120800)2

4305794 2119-117
+ @ —380:00) T (¥ — §0-00)% ©)

It will be noticed that the rotatory power in this formula is expressed as a
difference of two very large terms of nearly equal magnitude but of opposite
signs involving two absorption wavelengths respectively at 1129 A and 1099 A
and that the influence of the infrared has been retained. The formula, how-
ever, deviates notably from the newer measurements of Servant (loc. cit.)
in the far ultraviolet region. Servant (1940) has therefore fitted his results

with the expression

1032 + 0-515
— 4 )
P =10 137955 % 10720 — 17639 x 10-A% - 2-076) ©)

where A is the wavelength of light in vacuum expressed in A. He has
assumed the existence of two characteristic wavelengths, one at 1064 A, and
another at 362 A. The formula fits the entire data from 7000 A to 1500 A
well. Later, the same author (1941), realising that a multiterm formula
involving numerous unknown constants is very artificial and arbitrary, has
rejected (6) in favour of the simpler formula

165-6 .
p= '+ 2 e = 1325 ¢

where n, is the ordinary reffactive index of quartz. The characteristic
absorption assumed here lies at 1150 A. The formula is approximately
valid from 8000 A to 2000 A and fails farther out in the ultraviolet.
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Finally, Radhakrishnan (1947) has proposed the formula

4948 n 4-617 2-311
P= X=0-0I4161 " A2—0-011236 ~ AT —0-000074

0-000815
~ (E—o-01982 — V190> ®

This one is largely a refinement on the work of Lowry and Coode-Adams.
The absorption at 312 A is still retained, but the single term at 1129 A has
been split into two terms at 1060 A and 1190 A. In addition a square term
at about 1400 A, almost at the limit of continuous absorption of light in
quartz, has been introduced. The formula gives a tolerable fit.

Thus we see that a variety of formulz involving numerous hypotheti-
cal absorption frequencies have been suggested to express the rotatory
dispersion of quartz. Even a cursory examination of these formule shows
that most of them are extremely complicated and arbitrary in character and
all, except one, are unsatisfactory in accounting for the actual observed
facts. Apart from this, there is an even more serious objection which may
be raised against them.

KunN’s SUMMATION RULE

A fundamental theorem concerning the optical rotatory power of
molecular systems was derived by Kuhn (1929) in the first instance by
considering the behaviour of a model consisting of two coupled resonators,
The theorem states that the sum of the numerators determining the contri-
butions of the different absorption frequencies to the rotatory power should
vanish, i.e.,

if
a, v?
P=2 a0 9
then
> a, =0.

Proofs of this summation rule involving no special assumptions regarding
the molecular model have since been given by several authors (vide reviews
by Condon, 1937; Kauzmann, Walter and Eyring, 1940; Mathieu, 1946).

It is clear that the criterion furnished by this summation rule should be
taken into account in deriving any formula, theoretical or empirical, which
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claims to express rotatory dispersion. Without entering into the detailed
numerical calculations, even a rough estimate of

Zar (= Z Qi

in formule (1)-(8) shows that the summation rule is far from fulfilled by
any one of them. As there is little justification in working out complicated
expressions if we do not restrict ourselves to the basic requirement of the
theory we may conclude that all the earlier formul® are wholly inappropriate
for the case of quartz.

A New Formura

The present writer has found (1952, 1954 b) that the rotatory dispersion
of quartz from the visible to the extreme ultraviolet region of the spectrum
is accurately represented by a simple formula involving only two constants,
ViZ.,

kx? -
S -0

The formula approximates to Biot’s Law when A3 A,. Also for a given
value of A,, the rate of variation of the rotatory power with wavelength in
this formula is much greater than in the Drude type of formula. The
constants which the experimental data are

k=719, A2=0-00858 or A,=0-0926283 p.

Here p 1s in degrees per millimetre and A 1s in microns. The correct proce-
dure 1s to express A as the wavelength of light in vacuum. Servant has done
so for his measurements in the remote ultraviolet, but the other authors have
given the wavelengths in air. However, in the process of trying to fit a
rotatory dispersion formula, Servant has effected the necessary corrections
for a few wavelengths, extending from 1525 A to 7000 A. The rotatory
powers for these wavelengths along with the values calculated with the
above formula are set out below (Table I).

The agreement is very good from 6000 A to 1525A. The error in
this range, which never exceeds about two parts in a thousand, is not of a
progressive nature. Data are available for many more wavelengths. The
present writer (1954 ¢) has verified the validity of the formula for over 80
wavelengths extending from 6000 A to 1520 A. The fit is found to be ex-
tremely good over this range, the error being sometimes positive, some-
times negative. There is a slight discrepancy as we proceed towards the
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TABLE I
Asgo- (in 1) p (expt.) p (calc.) p (expt.)—p (calc.)
1525 776-0 7763 03
1550 724-0 724-1 —0-1
-1650 564-5 563-1 +1-4
1750 4535 453-1 104
1850 374-0 374-2 —0-2
11950 315-5 3153 10-2
2000 291-3 291-3 £0-0
- 2250 205-9 205-9 +0-0
12500 154+ 60 154-56 10-04
A 13000 97-72 97-61 1011
4000 50-26 50-17 +0-09
5000 30-86 30-84 10-02
6000 20-93 20-96 —0-03
7000 1513 15-20 ~0-07

infrared from the red end of the spectrum. This is no doubt due to the
contribution of the infrared bands which have not been included in the
above formula. Lowry’s measurements upto 3:7p definitely indicate the
necessity of introducing a small infrared term.

It can easily be shown that the single characteristic wavelength at
0-0926283 u used in the above formula lies in the region of the spectrum in
which the ultraviolet bands of quartz appear. A one-term dispersion formula
for the ordinary refractive index of quartz has been fitted up using this same
wavelength. The formula proposed is of the Sellmeier-Drude type which
is theoretically valid irrespective of whether a polarisation field exists or
not (Krishnan and Roy, 1956). The formula is

1-35 A2
n,2— 1= XT:TOE , ‘ 1

7
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where |
Ao? = 0-00858.
A (in p)  n, (expt.) n, (calc.)
-18547 1-676 ' 1-673
-20006 1-649 1-649
-21107 1-634 1-635
-2428 1-605 1-606
-3034 1-577 1-578
-3587 1-564 " 1:564
-4300 1-550 1-550
-5893 1-544 1-544
-7065 1-540 1540
-8447 1-538 1-538

The agreement is reasonably good over the whole range. This indicates
that the characteristic wavelength at 0-0926283 p is approximately the
effective average of the absorption spectrum of quartz in the ultraviolet,
Of course, it is well known that the average characteristic wavelength opera-
tive in refractive dispersion and in rotatory dispersion formula need not
necessarily be the same, simply because the form of the expressions in the two
cases are different (Condon, loc. cit.), but in the particular case of quartz
they happen to roughly coincide.

The rotatory power normal to the optic axis was measured for the first
time by Voigt (1905). There have been a number of subsequent measure-
ments, the most recent being those of Bruhat and Weil (1936), who have
summarised their results as follows: the ratio of the rotatory powers of
quartz perpendicular and parallel to the optic axis is independent of the
wavelength for the spectral interval 5780 A -2 40 A, the ratio being—0-54
to within an accuracy of 0-5%.

Evidently, the rotatory dispérsion normal to the optic axis should also
be expressible by a formula of the same type as (10) with A, unaltered and
k reduced in the ratio of—0-54.
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DiscussION

In their article in the Handbuch der Physik, Born and Goppert-Mayer
(1933) arrive at the general formula

P, A2

P, A%
P—Z(Az )\2)2+ Q )+‘\:"()\21J

Q
W=y (2

It will be noticed that in addition to terms of the Drude type certain quadra-
tic terms of the same form as suggested earlier are also present. We have
now discovered that these terms play a predominant role in determining the
rotatory dispersion of quartz. The simplicity of the new formula and the
accuracy of its fit clearly shows that terms of the Drude type do not contri-
bute in any observable measure to the rotatory power of quartz in the
visible and ultraviolet region of the spectrum.

After this work had been completed, it was found on going through
some of the very early literature on the subject that in 1883 Lommel had

suggested a formula of the type

a?

PR
for quartz and a few optically active liquids. He found that the available
data for quartz from 8000 A to 2200 A were expressed tolerably well when
log a=0-8555912 or a=7-17119 and log A,>=7-9341257—10 or
Ao = 00928032 p. :

Lommel’s work has apparently been overlooked by most of the authors
who have since been interested in this crystal. 'We have now found that this
formula fits the data even up to the extreme ultraviolet. In addition, as we
shall see later, we have been able to give it a theoretical basis while actually
Lommel’s work was done before any proper theory of optical activity had
yet been put forward.

THE THEORY OF COUPLED OSCILLATORS

The idea that optical activity arises from a particular spatial distribu-
tion of coupled oscillators was developed by Born, Oseen, Gray, de Malle-
mann and others (vide reviews by Condon, loc. cit.; Kauzmann, etal,
loc. cit.; Mathieu, loc. cit). Later, Kuhn contributed greatly to the
subject by putting forward a simple model which demonstrated all the
essential features of the phenomenon. Kuhn’s model consists of two
linear anmisotropic resonators having natural frequencies of free vibration
v, and v, respectively which are coupled with each other. Each resonator
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is a charged particle which is assumed to be bound elastically to its own
equilibrium position and capable of vibrating along a line. The analysis
shows that the system has two modes of vibration, in each of which both
resonators take part, one with frequency »; and the other with frequency v,.
The contributions of the two modes to the rotatory power turn out to be of
opposite signs when the frequency of the incident light is less than that of
either resonator.

In this model v, and v, are assumed to be very different, so that the
change of frequency brought about by the mutual coupling has been neglected
altogether. This is, however, not permissible when v; and v, are very close
to each other. In fact, in the limiting case when v = v,, each frequency is
actually split into a doublet, the magnitude of the splitting being dependent
on the strength of the interaction between the resonators.

We shall now discuss the optical behaviour of two identical linear
anisotropic resonators coupled with each other. Let the natural frequency
of vibration of the charged particle in each resonator be »,, when uncoupled.
As a result of the coupling, v, would be split into two frequencies », and »,.
In one normal mode of vibration, the particles in the two resonators would
vibrate with equal amplitude and in the same phase, and in the other normal
mode they would vibrate with equal amplitude but opposite in phase.

Let the first resonator be situated at the origin of the co-ordinate system
and let its vibration direction be OX. Let the second resonator be at (0, 0, d)
with its vibration direction parallel to OY. Suppose the charge and mass
of the particle in each resonator to be g and M respectively. For convenience,
we shall put ¢ = fe and M = fim, where e and m are the charge and mass
of the electron and f the oscillator strength. We shall call this coupled
system the compound resonator. Let us examine the action of a light wave
on such a compound resonator.

Let right circular light given by
x=FE, cos wt
y = — Eo Sin wt

be incident along OZ. The force exerted by the light wave on the charged
particle of the first resonator is

F,=feE, cos wt.

The force on the charged particle of the second resonator which is rotated
through 90° about the Z axis with respect to the first one is

Fy= —feE;sin (ot — ¢),

A 8



- Hence, the dipole moment induced
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where
__ 2mid
D

i being the mean refractive index of the medium. Since ¢ is small
F, = — fe E, (sin wt — ¢ cos wf).

Now, the compound resonator has two normal modes of vibration and the
force may be expressed in terms of the two normal co-ordinates as

|
Rt, =V‘§(F1‘|"F2)

|
R¢, = '\72“ (F1 — Fy) '
Substituting for F, and F,, we get
Rg, {i/Fi" [(1 4+ ¢) cos wt — sin wi] 1
= a’y_fe Eycos (ot + o),

where (a"s)? = (1 + ¢), neglecting higher powers of ¢. Hence, the equa-
tion of motion of the particles would be of the form

.5.1 + w3 = ag, f—e——MEﬂ cos (w! + o).

Therefore,

R

. EERY

¢ = a'y, fe Egcos (wt + o)
P M(e) — o?)

W

o E
= @a P §r =y L
' E
() \2 o ‘
- (a g;) — wg

putting M = fin. The dipole moment could be expressed as two compo-
nents at right angles to each other, say mg and my, where
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}; - and

o= [ 0

mw — w?

These results are for a single compound resonator. If there are N such
compound resonators all lying with their axes parallel to OZ but assuming
different orientations about it, the mean polarlsablhty per unit volume would
be N (mg + my)/2 E,. |

Hence

— P

e r
(m® — 1)g, = 2'”N (arfx.z m wlﬁj '

In a similar manner, we get for the other normal mode

_ 2 /
E* (np? — 1)g, = 27N (a"y) m -

W, — w?’
where |
(@)2=1-—¢.
Let us write |
mt — 1= (2 — 1), + (= g,
For left circular light given by

x = E, cos wt
y = E, sin oo,
we have similarly

| gt
(m? — 1y, = 27N (a'y)? %, o ./: @’
where
(@) =1-4,
(@) =1+34,
and
m? — 1= (m?— Dy, + (m? — N,
Therefore,
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It will be noticed that the numerators in the two terms are equal in magni-
tude but opposite in sign and this is in conformity with Kuhn’s summation
rule.
Let

w? = 0 + 2

wot = wy? — 2mle

We shall assume that the resonators are not very strongly coupled so that
¢ is a small quantity. Putting

m+ne=2, ¢= g’-?-ei
and
wy = 2 v,
we get
Nezd  fe

n—np =
! r MA (V02 - V2)2

neglecting 2 in the denominator. Hence

7 A\
P=7\(’l.l"”r)=(‘x‘r_£—x'z“)‘zs
where
wNe%dA, fe
T omct

If the compound resonators were randomly oriented we would have to
introduce a factor % in the expression for the rotatory power.

Ay=

If, as a more general case, we assume that the first resonator (0, 0, 0)
has direction cosines «, B, y and that the second resonator (0, 0, d) is rotated
through an angle 8 about the Z axis with respect to the first one, it may be
shown that

_ AN
P= = A (13)
where
| A = mNe¥d sin 0 (a? + B?) Aife
0 3 mc*

It will be seen from (13) that the two enantiomorphous forms will have
opposite rotatory powers, since pe< sin 8.
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Thus, by means of an extremely elementary model we have been able
to derive the correct expression for the rotatory dispersion of quartz. It
should be exphasised that the new single term formula intrinsically satis-
fies Kuhn’s summation rule and is therefore more justified than any of the
earlier formule worked out for this crystal.

We shall now try and interpret these results in terms of the structure
of quartz. a-Quartz belongs to the space group D;* or the enantiomorphous
D,%. The unit cell has three SiO, units spaced at equal intervals along the
vertical screw axis, each of which is turned through 120° with respect to its
predecessor. It is this screw structure which is responsible for its optical
activity, the individual constituent units themselves being optically in-
active. In view of the foregoing theoretical considerations, it can scarcely
be doubted that the rotatory power of quartz arises primarily as a result of
an interaction in the nature of a resonance between the similar polarisable
units constituting the crystal. This type of interaction causes a splitting of
the characteristic frequency of each individual unit and consequently, the
rotatory dispersion formula is of the form (13). By a simple extension of
the model which we have just considered, it may be shown in an approximate
way (Chandrasekhar, 1954 ¢) that for an hypothetical crystal with a screw
structure built up of such compound resonators, the rotatory dispersion
formula for propagation of light along and normal to the optic axis are both
of the quadratic form (13), a result which agrees with the experiments of
Bruhat and Weil (loc. cit.).

The same type of formula is also found to fit the data for cinnabar,
benzil and sodium chlorate (Chandrasekhar, 1953, 1954 a, 1954 ¢) quite well
and, in fact, much better than any of the previous formulz proposed for
these crystals. It may be remarked that, like quartz, the rotatory power of
these crystals is present only in the crystalline state and not in solution.

In conclusion, I have great pleasure in expressing my thanks to
Professor Sir C. V. Raman, F.R.S., for the valuable discussions I had with
him during the course of these investigations. I am also grateful to Dr. S.
Ramaseshan for his kind advice and interest.
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