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Abstract. We give an elementary treatment of the defining representation and Lie algebra of the
three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra,
which is an eight dimensional real linear vector space, are developed in an SU(3) covariant manner.
The f and d symbols of SU(3) lead to two ways of ‘multiplying’ two vectors to produce a third, and
several useful geometric and algebraic identities are derived. The axis-angle parametrization of
SU(3) is developed as a generalization of that for SU(2), and the specifically new features are
brought out. Application to the dynamics of three-level systems is outlined.
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1. Imtroduction

The unitary unimodular group SU (2) in two complex dimensions is the simplest
nontrivial example of a nonabelian compact Lie group. Its many uses in physics—spin of
the electron, proton, neutron,..., isotopic spin of nucleons, description of two-level atoms
and two-level quantum systems in general are very well known. At the same time its
adjoint representation coincides with the three-dimensional real proper rotation group
S0(3), with its associated concepts of three dimensional vectors in R> and their algebra.
The Pauli matrices oy, j = 1,2,3 mediate in a natural way between the defining two-
dimensional and the adjoint three-dimensional representations. Being the generators of the
defining representation, the expression of a finite SU(2) element as the exponential of a
generator in closed form is also well known. Thus one has the familiar collection of
results:

[0y, 0% = 2ie oy,

{oj, o} = 2815 7 (1.1a)
a-cb-c=a-b+ia b-g; ' (1.1b)

a(&,0) = exp(ifé - g) = cos 0 +.ié - o sinf € SU(2),
6] =1, 0<6<2m ’ (1.1c)
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Here a,b are (real) three-dimensional vectors, € iS the Levi—Civita symbol (structure
constants of SU(2)), and (&,0) are axis-angle coordinates for the general element
a(é, ) € SU(2). The two-to-one homomorphism SU(2) — SO(3) determines an element
R(a) € SO(3) for each a € SU(2): '

R(a); = 5T1(oja0r a'),
R(d')R(a) = R(d'a), d,a € SU(2). (1.2)

The next group after SU(2) in the classical unitary family is the eight-dimensional group
SU(3) of unitary unimodular matrices in three complex dimensions. Many representation
theoretic complications expected for compact Lie groups in general, but not yet seen with
SU(2), do show up with SU(3), making it quite nontrivial in comparison. Its use in
elementary particle physics [1, 2] often exploits the canonical subgroup chain
SU(3) D U(2) D SU(2) D U(1), while its use in the nuclear physics context involves

the chain SU(3) D SO(3) D SO(2). The description of three-level systems [3-5] in -

general quantum mechanics (atoms, for instance) also involves SU(3).

The purpose of this paper is to present a generalization of relations of the forms (1.1,
1.2) from SU(2) to SU(3), bringing out the algebraic and geometric features of the eight-
dimensional octet or adjoint representation of SU(3). In doing so we describe the
minimum and unavoidable new features in both algebraic and geometric aspects that one
must accept in the SU(2) — SU(3) transition. Among real eight component vectors in
R3, apart from the Euclidean inner product, two kinds of bilinear products of vectors
leading again to vectors — one antisymmetric and the other symmetric — play important
~ roles, and are essential in developing a formula generalizing equation (1.1c). One of our
results will indeed be an axis-angle description of SU(3) elements, namely a closed-form

expansion of the exponential of a general matrix in the Lie algebra SU(3) of SU(3)
yielding a general finite SU(3) matrix. This will be seen to be considerably more
complicated than the SU(2) result (1.1c). In general our aim is to develop useful identities
which help in getting closed form expressions, and to build up geometric pictures in some
situations. ,

The contents of this paper are arranged as follows. Section 2 recalls the definition of
the group SU(3) and the generators — the A-matrices — in the defining representation.
From their commutation and anticommutation relations the structure constants fr, and
symmetric invariant tensor d, can be read off. Their independent nonzero components
are listed. Section 3 discusses the eight-dimensional adjoint or octet representation of
SU(3). Based on the available invariant tensors fyy, dry, two kinds of vector products
among octet vectors — elements of R® — are defined: an antisymmetric wedge product and
a symmetric star product. Both are SU(3) covariant. Apart from the geometric expression
of the trilinear Jacobi identity using wedge products, several other identities involving
these products and the Euclidean scalar product on R are developed. In § 4 we take up a
detailed analysis of the algebraic properties of a single generator matrix in the defining
representation of SU(3). The geometric tools of §3 are used to get convenient forms for
products, inverses, powers, determinants and the minimal equation for a general three
dimensional generator matrix. A convenient way of characterizing the eigenvalue spec-
trum of a (suitably normalized) generator matrix, and the notion of its ‘rest frame’ or
specific diagonal form, are developed. At all stages the SU(3) covariance of the
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procedures is kept in view. Section 5 introduces the concept of axis and angle parameters
for SU(3). This is a way of describing general one-parameter subgroups in the group. The
essential differences compared to SU(2) are emphasized. We also obtain a closed form
expression for a general element of SU(3) expressed as the exponential of a generator
matrix; for this the method of going to the ‘rest frame’ is exploited. Section 6 briefly
describes the features of Hamiltonian dynamics for three level quantum systems, based
on a generalization of the Bloch spin equation familiar from two level systems. Section 7
contains some concluding remarks.

2. The defining representation of SU(3) and the )\-matrices

The defining representation of the group SU(3) is given by [6,7]
SU(3) = {A = 3 x 3 complex matrix |[ATA =1, det A = 1}. (2.1)

This is an eight-parameter compact Lie group. The U(2) and SO(3) subgroups are
identified (up to conjugation) by [8]

v@ = {A(“) - (g (detou)'l)

SO(3) = {A =3 x 3 real matrix |ATA =1, det A =1} C SU(3).  (2.2b)

ue U(Z)} C SU(3); (2.2a)

The generalization of the Pauli matrices oy, in a form adapted to the U(2) subgroup, leads
to the eight hermitian traceless generators A, r = 1,2,...,8 defined as follows [6,7]:

010 0 —i 0 1 0 0O

>\1 = 1 00 y )\2 = 1 0 O y /\3 = 0 -1 0 s
0 0 0 0 0 O 0 0 O
0 01 0 0 —i 0 0O

M=|0 0 0, =00 0], =10 0 1],
1 00 i 0 0 01 0
0 0 O 1 1 0

M=[0 0 —i 3 01 (2.3)
0 i O 0 0 -

These are trace-orthonormal in the sense
Tr(A\ ) = 26,5, 7,8 = 1,2,...,8. (2.4)

The commutators and anticommutators among the \’s, lead to the completely anti-
symmetric structure constants f,,, of SU(3) and to the completely symmetric d-symbols
(for which there are no SU(2) analogues):
[Ar, Ax] = 2lfrst )‘ta .
{)\r, AS} —_ %5)'3 + zdr_gf At; (2.5&)
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V3
fis=1; fiss =fors = -
fia7 = faas = fos1 = foas = fs16 =foar = 1/2; (2.5b)

dirg = dopg = dizg = —dgag = 1/V/3;
digs = dis7 = —das7 = dase = daas = dass = —dagg = —dzr = 1/2;

dusg = dssg = degs = drg = —1/2+/3. (2.5¢)

(Here only the independent nonvanishing components of f,; and dy are given). The
product of two \’s involves three kinds of terms:

Ar>\s - %67'.9 + (drst + ifrst)}‘t- (26)

The U(2) subgroup generators are Aj, g, As (for S U(2)) and )g, while those of SO(3) are
i )\2, )\5 and )\7.

3. The adjoint representation of SU(3) and the geometry of octet vectors

The adjoint representation of SU(3)[7] arises upon conjugation of the A’s by general
A € SU(3) and expressing the result in terms of the A’s. It is a faithful representation, not
of SU(3), but of the quotient SU(3)/Z3, where Z; is the centre of SU(3):

Zy={A=¢"1lw=0,2r/3,4r/3} C SU(3). (3.1)

Thus we have a three-to-one homomorphism SU(3) — SU(3)/Z3. Each A € SU(3) is

mapped onto an eight dimensional real orthogonal matrix D(A) = (D(4),,) € SO(8),
whose matrix elements are easy to calculate:

A€ SU(3) — ANAT = D(A), As,
D(A),, = 1Tr(\ AN AT),

D(A"\D(A) = D(A'A). (3.2)-

Thus these matrices D(A) form a very small part of the full twenty-eight dimensional
group SO(8). In comparison, the adjoint representation of SU(2) is the same as SO(3).

Let us denote general real eight component vectors in R® — octet vectors — by &, S,
7, - --. Among them we have the usual Euclidean inner product B

a-fB=a/f. (3.3)

We now define two ‘vector products’, one an antisymmetric wedge and the other a
symmetric star, both of which lead to octet vectors again:

Qaé € R8: (Q/\_:B_)r =frst asﬁta |

apf=-8,0
(@*p), = V3d, 0 B, ,
axf=pfx*o (3.4)
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The basic SU(3) covariant properties of these products follow from the fact that f,; and
dys are invariant tensors:

A € SU(3): D(A)aAD(A)B = D(A)(aA B),
D(A)a+ D(A)B = D(A)(a * f)- (3-5)

To express the components of aA fand o * 3 in convenient forms in terms of those of
o and Q, it is useful to assemble the components oy, as, ag, a7 of « into a two-
component complex column vector (a):

8. _ [ a—ias
aeRhua) = (210). 3:6)
(This is related to the fact that the A’s are adapted to the U(2) subgroup (2.29) of SU(3)).
Then we have these expressions for the components of o,

(2,8 = g owfy + §Imp(8)'o; (e);

(@, 0 = 2 m(@)p(o)

Bs+V3B  Pi—ib
Bi+iBy  —Bs++30s

Similarly for the components of o * 8 we have:

¥a,0) =3 ( )w@ ~(@e ). 37)

(a* f); = osf; + Pecyj + %—gRMP(_@TGj P(a);
(e B)s = oy — asfls — 3 Rep(B) (e

V3B V3(B1 — i6) N | o
vlaxf)= (\/—(ﬁl+lﬂ2) —ﬁﬁs-ﬂs)w(“)+(g B (3.8)

Now we consider some cubic relations, identities involving triple vector products, with
wedges and stars in various combinations. The first of these is just a statement of the
Jacobi identity for the structure constants f,,; and involves two wedge products:

a,B0+8,0,e+7, (a,f)=0. (3.9)

Other relations arise by calculating the triple product - A 8- Ay- A in two ways and
comparing the results. We have the equality

2i 2 1
Q-AQ-AIA=3 axf: 7+3_ B+ [—gf_ﬂ_ﬁg(g*ﬁ)*z

S

- )+ (@) 1+ @ d), v)} A

- 0,8 )+ (e res (_m»] A (310)
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The A-independent terms lead to the obvious results
Ca-Bay=ab, (3.11a)
a-Pry=axf-7, ' ' (3.11b)

similar to properties of the triple scalar product of vectors in R>. The \-dependent terms,

upon separation of real and imaginary parts and some rearrangement, lead to further
relations at the vector level:

a*(Bry)—yx(Bxa)=2(a-By-7 Ba)+38,(a\y), (3.12a)
x @) = ax(y,B)+7*(a,\f). (3.12b)

These are respectively antisymmetric and symmetric in the pair o, 7. .
The relations (3.9,11,12) are the basic SU(3) covariant cubic vector relations involving
three independent octet vectors.

4. Algebraic relations for SU(3) generator matrices

A general traceless hermitian three dimensional matrix is of the form ¢ - )\, & € R8. Fora
pair of such matrices we have from eq. (2.6) the product (and square) rules

a-A8-A -3- ﬂ-}-Toz*ﬂ Atignf-A,
(gl-A) ='§_0_4 +~\}—3-g a-, | | (4.1)

which generalize eq. (1.1b).

Now we develop the properties of a single matrix ¢ - ) in some detail. The determinant
is easily worked out in terms of the star product:

deta- A=—= 2 o-ax

3v/3
If cvp is a ninth ‘scalar’, from the SU(3) covariance property
Alag +a- N)A™ l—ao-l—a A
D(A)a, (4.3)

and invariance of the determinant we see that we must necessarily have

IQ

4.2)

det(ao+a A)-a0+caoa +——_a_ O *Q

W (4.4)

with no term quadratic in ag, and with some constant c. Let us now diagonalize o - A
using a suitable SU(3) transformation. We shall refer to this as ‘putting & - \ into its rest
frame’, and will refine this notion in the sequel. Then

oy +a- A = diag(ag + s+ ag/V3, a0 — az+ ag/\/g,ao —2ag/\/§),

2
det(ag +a- A) = of ~ ap(0d + of) + ~\—/—§ag(a§ —a2/3). (4.5)
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This fixes ¢ = —1, so we have the general relation

det(an +a-A) =0 — apa? + —=0-a* @ ) (4.6)

‘\/’— _
valid in any ‘frame’.

Turning to matrix inverses, and assuming cp is not an eigenvalue of —q - A, again
SU(3) covariance dictates the general structure

(a0 +a- N7 = (c10d + e20? + c3pa - A+ cagx - A) fdet(on +a - A),
4.7
for some constants cy, ..., cs. Using eq. (4.6) and transposing terms we have
(c10d+ cro?+ csap - A+ cag* ) (ot @ A)=det(on +-A).  (4.8)

Comparing powers of g gives c1 =1, ¢, =-1/3, c3= ~1, ¢4 = 1/+/3 and also the
relation ‘

ax(a*xa)=od’a-iv3(a*a)a - (4.9)

which we shall understand in another way in a moment. So for matrix inverses we have
the SU(3) covariant result

(co+a- X)) = (aﬁ —%gz-— aog-A-%—\%g_*g.-A)/det(ao+_a_-A).
(4.10)
From the determinant relation (4.6) we see that the minimal (cubic) equation for ¢ - A is
(@A) =cd’a- A+3\/_._ a*a. (4.11)
If we substitute (4.1) here for (¢ - _}\_)2 and compare coefficients we get the two relations
an(a*a) =0, (4.12a)
ax(ax*a)=da, (4.12b)

which explain the earlier result (4.9). Incidentally the first result above is obtainable from
eq. (3.12b) by setting a = 3 = . We also obtain the following useful property of octet
vectors, which generalizes the result in three dimensions that g \b vanishes only if b is
parallel to a:

2,8 €R%,\f=0% f=cia+ cr*acip constants. ' (4.13)

That there are no more terms here follows from the relationship of octet vectors to
traceless hermitian matrices in three dimensions. 7
Let us now trace the consequences of the minimal equation (4.11) in more detail. For
brevity, denote o * o by o for the moment. Then eqs (4.1), (4.11) read
2 1,

(Q‘A)Z“EQ +—§_ A
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1
(@A) = %94’2 + —3-g’ xo -,
2 .
(@A)’ =cda _>3+§*—3"94_'9£/- (4.14)

Now we substitute the first relation here into the second and keep simplifying till we have
only linear terms in ¢ - A and o - \:

%a +—\}—-_q xo A= 3((Q-A)2?§g.2>2
=3(a- ) ~42’(a- M)’ +z ()’
=%( o) + 3—— da-A- %—;Q_I-A- (4.15)
This implies as consequences for any ¢, upon substituting o/ = o * a:
(a* o) = (2% (4.16a)
(@*@)*(a*a) =20 a*xaa-da*a (4.16b)

This last relation is to be contrasted with the result of taking the star product of (4.12b)
with ¢, which is

ax*(ax*(a*a)) =la*a (4.17)

We are now in a position to deal in more detail with the eigenvalue spectrum of a single
generator ¢ - ), and in the process refine the idea of the ‘rest frame’ form of o - A. Let us

hereafter assume o is a unit vector, & = 1. Then the eigenvalues of & - \ are p1, 2, U3
obeying

P+ pg +p3 =0,
W+ B+ =Tr@- 2 =2. (4.18)

We can easily see that they can be ordered according to py > py > 3 and the ranges can
be fixed as follows:

_ 1 [{_ 32
M3 =—zpp* I"Zﬂza

2 1 2 »
= Sm<-—=<m<—<m <. 4.19
73 M3 7 H2 1 3 ( )

A convenient parametrization of all three eigenvalues is by an angle ¢ in the range [r/6,
7/2)] as follows:

2 . 2 . 2 .
M1=—ﬁsmtp, Mzzv_gsm((p-i- 21/3), ;Lg:\—/-_—gSln(go—}- 4m/3). (4.20)

The three angles occurring here are in strictly non-overlapping regions. We now define
the ‘rest frame’ of & - ) to be that unique diagonal form in which we have
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. .2 . .
G-A= dlagﬁ (sin g, sin(p + 2m/3), sin(y + 47/3)),

&3 = cos(p +47/3), &g = — sin(p + 47/3),
&1=d2=d4=&5=545=&7=0, 7T/6§(p$71‘/2. (4.21)

In this ‘frame’ for &, we find that &* & has similar nonzero components and is by
eq. (4.16a) also a unit vector, but is not in its own ‘rest frame’:

2 .
&*a- )= diag —ﬁ(sin(&p —m/2),sin(2¢ + 51/6), sin(2p + 7/6)),

(& * &)y = 28365 = —sin(2p + 2m/3),

(& * &)y = &5 — & = cos(2p + 27/3),

(@+a&),=0 forr=1,2,4,56,7. (4.22)

The angle ¢ can be inferred from the value of the invariant € = & - & * & = — sin 3¢:
since —1 < £ <1 and 7/2 < 3¢ < 37/2,¢ fixes the value of ¢ uniquely.

5. Axis-angle parameters and finite elements of SU(3)

In this section we derive the SU(3) analogue of eq. (1.1c) for SU(2). It is easily seen, for
instance by going to the diagonal form, that every A € SU(3) can be obtained by
exponentiating a suitable traceless antihermitian matrix. We now compute in closed form
the matrix

A(6,0) = exp(ifé - \) (5.1)
set up in analogy to eq. (1.1c) for SU(2). The unit octet vector & is the axis, and @ is the

angle, for the element A(&, ). The range for 6 is discussed below. The sole SU(3) scalar
we can form from & is the angle ¢ given by

G- GG = —sin3p, :
T/6 << 7/2. (5:2)

Upon expanding the exponential in eq. (5.1) and using (4.1, 4.12b), we see that the
only terms that arise are multiples of the unit matrix, of & - ) and & * & - A\. We therefore
write

) A :

A(dfa 9) :—\/-56(9, ‘P) +a(01 (P)&A+b(0’ ()0)55*0"A3 (53)
and proceed to determine the three SU(3) scalar coefficients. For this we go to the rest
frame (4.21) of & - A — then & * & - ) is also diagonal (cf. eq. (4.22)) and so is A(&, 6).

Equation (5.3) reduces to

exp (—2\/% -isin cp)

a(6, )
A(p) | b(6, ) =§ exp(%-isin(tp+2ﬁ/3)) )
c(8, v)

exp (%/% -isin(¢p + 47r/3))
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sin sin(2p —7/2) 1
A(p) = | sin(p+27/3) sin(2p+57/6) 1 |. (5.4)
sin(p +4n/3)  sin(2p+7/6) 1,
The determinant of A(yp) is

det Ayp) = 3—\2Z—§cos 3¢, (5.5)

so A(¢p) is nonsingular for 7/6 < ¢ < m/2. In this range we have

—sin2p sin(2p + 7/3) sin(2p — 7/3)
Alp) ™" = , (5.6)

—cosp sin(p+7/6) —sin(p —7/6)
1

3cos3p 1cos3p 2 cos3p 1 cos3gp

and the solution for the coefficients a(6, ), b(6, ), c(0, p) is

a(f, )= { — exp (—\—2/——% -isin go) - sin2¢p + exp (—;27_% -isin(p + 27r/3)>
x sin(2¢+ 7/3)+ exp <—2\7—9§ - isin(p+ 4#/3)) sin(2p— 7r/3)}/
V3 cos 3,

b(6,¢) = { — exp <—f7—9§ - i sin <,a> - COS (p + exp (-\2/—95 isin(p + 27r/3)>

x sin(p + 7/6) — exp (f/—% -isin(yp + 47r/3)) sin(p — 71'/6)}/

v/3 cos 3¢,

c(8,¢) = { exp (:2/% isin<p> + exp (—%\% isin(p + 27r/3)) :

+exp (\2/_% -isin(p + 477/3)) } / 24/3. | (5.7)

With this the computation of A(&, 6) in closed form in the generic case is complete.
The two limiting cases ¢ = 7/6 and ¢ = 7/2 correspond respectively to & x & = —&
and & * & = @&. In these cases we find after some algebra:

2
V3
a(t?, 7{'/6) — {elg/'\/g — 6—21'8/\/5}/\/1

0= n/2: A(6,8) =—=el0,m/2) +alb, /)6 )

0 =7/6:A(G,0) = —=c(8,7/6) + a6, 7/6)é - A,
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a(6,7/2) = —{eV3 — 21V3} )3,
c(6,7/2) = {2e7#/V3 1 e26/V3} 121/3. (5.8)

Now we consider the question of the range of the angle variable 4. Here the situation is
more intricate than in the SU(2) case. With Pauli matrices, & - g always has eigenvalues
*+1 independent of &, so in eq. (1.1c) we have a fixed range 0 < 6 < 2. Equivalently, all
U(1) subgroups of SU(2) are conjugate to one another. With SU(3), however, there are
infinitely many inequivalent U(1) subgroups available. This means that while every
A € SU(3) lies on some one-parameter subgroup and can be written as A = A(&, 8) for
some & and 6, the range of 6 depends on &, more specifically on the SU(3) invariant
angle ¢ associated with &. The determining factor is the nature of the eigenvalues u;, u,
u3 of & - \. The case yup = 0, p1 = —pu3 = 1 leads to the range 0 < § < 27, which occurs
for ¢ = /3. For u, # 0, we need to distinguish between the cases of rational and
irrational ratios p/u,. For rational p/ua, when ps/ps is also rational, the elements
A(&,0) lie on a cyclic U(1) subgroup in SU(3) and # can be taken to be in some finite
interval from zero to a maximum determined by p,. For irrational p1;/p2, when ps /s is
also irrational, the character of the one-parameter subgroup is very different — it is the real
line R, not a cyclic U(1), so § € (—o00,00). This then is an essentially new feature with
axis angle parameters for SU(3) as compared to SU(2).

6. Hamiltonian dynamics of three-level systems

Consider a three-level quantum system whose state is represented by a density matrix p.
The properties

pl=p>0, Trp=1 ‘ (6.1)
allow us to expand p in terms of the A’s, bringing in a scalar ¢ and a unit octet vector 7:

p=%(1+6ﬁ'2‘_)3

¢ < ?cosec(go +7/3), | (6.2)

state case corresponds to ¢ = 7/2 and ¢ = +/3: then #i % /i = / and the eigenvalues of p
are (1,0,0). '

Let H be a general (time-independent) Hamiltonian which we express in terms of an
octet vector £ and a scalar hg:

H=L(ho+h-)). | | (6.3)
The equation of motion for p (with ¢ and # regarded as functions of time),
dp .
| —=|H - 6.4
! dt [ 7p]1 | ( )

is independent of Ay and at first leads to

¢+ ch = chyh. | | (6.5)
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However since 7 and h 7 are both orthogonal to 7, we get ¢ = 0 as expected, and the
equation of motion for 71 becomes: ‘

A = bR, (6.6)

This is the three level version of the Bloch equation for the spin vector familiar from two-
level systems. One can now use some of the identities derived in earlier sections to verify
that 72 - 7i % 71 is a constant of motion:

d, . . i . .. . oz
—hA-A*xA=R-A*n-F+20-A%n
d:
=hpft- (A*7)+ 270 A x (huR)
= B pGA) + 20+ (g B) + B (5 )
=2h- (A * A7)\

=0. (6.7)
Here we used eqs (3.11a, 4.12a) and eq. (3.12b) with o = 3 = #,+y = h to simplify terms

at various stages. Thus, as expected, both the scalar ¢ in p and the SU(3) scalar angle ¢
- characteristic of 7 are constant in time. This is consistent with the fact that 7(f) evolves
essentially according to the octet representation matrix D(A(#, k)) where in the notation

of eq. (5.1) the time ¢ is the angle and the vector h the axis of ‘rotation’.

7. Concluding remarks

We have presented a set of practical tools for carrying out calculations with finite
matrices of SU(3) as well as with its Lie algebra, exploiting both algebraic and geometric
aspects of the situation. The space of octet vectors bears the same relation to SU(3) as
does ordinary Euclidean three-dimensional space to SU(2). The constructions we have
given for working with these vectors should prove useful in dealing with three level
system dynamics. The existence and interpretation of the cubic invariant ¢ - o * o and the
general solution (4.13) to @, 8 = 0 are noteworthy. We have also brought out the fact that
in contrast to SU(2), there are infinitely many distinct kinds of one-parameter subgroups
in SU(3), and this shows up in the axis-angle description in this case.

The main new feature in the SU(3) situation, absent with SU(2), is the occurrence of
the d-symbols. However, for all groups SU(n),n > 4, nothing new apart from such a d-
symbol is expected since one cannot in any case go beyond the commutators and
anticommutators of the generators in the defining representation. It therefore is to be

expected that the methods of this paper can be systematically extended to these hlgher
dimensional groups as well.
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