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The Hamilton-Jacobi equation revisited
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Abstract, A new analysis of the nature of the solutions of the Hamilton-Jacobi
equation of classical dynamics is presented based on Caratheodory’s theorem con-
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Introduction

The equations of classical dynamics can be put into several mathematically equi-
valent forms, each of which has certain characteristic features associated with it.
The Lagrangian form is associated with a configuration space statement of a
principle of stationary action. The Hamiltonian form leads directly to a phase
space description of dynamics, with the accompanying canonical transformation
theory. Finally, we have the formulation via the Hamilton-Jacobi equation,
whose importance lies in the fact that the solution of a dynamical problem in-
volving several degrees of freedom is reduced to the determination of a single
function of configuration and time.

[t has been pointed out by Dirac (1951) that the Hamilton-Jacobi formulation
of dynamics leads to an interesting structural element that is not at all apparent
in the other two formulations. Oneis led to a grouping of distinct classical states
of motion into families, each family corresponding to one solution of the Hamilton-
Jacobi equation. The significance of this grouping lies not so much within
classical dynamics as in the fact that the Hamilton-Jacobi equation is the classical
analogue of the Schrédinger wave equation in quantum mechanics (Messiah 1970),
making suitably constructed families of classical states of motion somehow ana-
logous to single quantum states of motion.

Traditionally there have been two rather distinct ways of treating the Hamilton-
Jacobi equation, which may for simplicity be called physical and mathematical,
For a dynamical system described by 2n phase space variables Q;, Qs, ..., O,,

Py, P,, ..., P, and a Hamiltonian H (Q, P, ¢), the Hamiltonian equations
are

_H(Q, P, 1) dH (Q, P, 1)
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while the Hamilton-Jacobi equation reads

2501\, 8@ 1) _
H(Q, By ‘*’)J‘“’TF—‘O (B)

The latter is in general a nonlinear partial differential equation for a function S
of the configuration space coordinates Q and time t. In the physical approach,
one tries to find some solution to (B) which depends in an essential way on » inde-
pendent constants of integration ay, as, .. ., «, as parameters; using such a solution
as a generating function, one then constructs a canonical transformation which
is naturally time dependent and which takes one from the variables O, (¢), P, (t)
to a time-independent canonical set a,, B,. (see, for instance, Goldstein 1950;
Whittaker 1927 §142) (The «, automatically have vanishing Poisson brackets with
one another, the £, are their canonical conjugates.) Such an approach to (B) is
geared to the problem of producing the most general solution to Hamilton’s
equations (A) in an explicit form.

This physical treatment is to be contrasted with the mathematical approach to
the Hamilton-Jacobi equation posed purely as a problem in the theory of partial
differential equations, in fact as a boundary value problem in time. (Caratheo-
dory 1965, Ch. 3). Such an analysis leads to the following result: Given any func-
tion s (Q) on configuration space, thereis a unique solution S (0, 1) to (B) such that
at a chosen initial time ¢, this solution reduces to the given s(Q): S (Q, tp) =
s (Q). One has therefore an infinity of solutions to the Hamilton-Jacobi equation,
cach solution uniquely determined by its value at 7 =¢, This characterisation
of the manifold of solutions is however somewhat unsatisfactory in the sense that
no reference is made to the functional form of the Hamiltonian. On the other
hand it is the analogue of what we know concerning the Schrodinger wave equation
in quantum mechanics: here the knowledge of the wave function at one time ¢,
suffices to determine it for all other times.

The aim of this paper is to present a new approach to the Hamilton-Jacobi
equation, and to analyse the structure of its solutions from a novel point of view.
Our main interest is in getting new insight into the manifold of solutions of (B),
and not in discovering new ways of finding solutions to (B). Such an approach
is intended both to reconcile and to clarify the relationship between the two tradi-
tional approaches described above. The main tool in the analysis is Caratheo-
dory’s theorem, which is an elegant characterisation of canonical transformations
in classical dynamics (Caratheodory 1965, Ch. 6). What will be of primary
importance is the fact that dynamical evolution vie Hamilton’s equations
(A) is known in advance to be a one-parameter family of canonical transformations,
the particular family depending on the particular Hamiltonian. The classification
of the solutions that one gets in this approach will turn out to depend intimately
on the functional form of the Hamiltonian; in this sense, therefore, it is more
interesting than the result from the theory of partial differential equations quoted
in the previous paragraph.

The material of this paper is arranged as follows. In section 1 we recapitulate
briefly some features of the phase space description of classical dynamics, canonical
transformation theory, and Caratheodory’s theorem. Section 2 is devoted to
the construction of certain special solutions of the Hamilton-Jacobi equation
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which ‘we call a principal set of solutions; it is the enumeration and structure of
these that are directly determined by the form of the Hamiltonian. Section 3
describes the construction of a much larger class of solutions starting from the
principal set, and shows how the infinity of solutions promised by the mathe-
matical approach is generated. In the concluding section, the relation of these
results to analogous results in quantum mechanics is indicated. In an appendix
we give an elementary but instructive demonstration of the fact that the generating
functions of one-parameter families of canonical transformations, whose existence
Caratheodory’s theorem guarantees, can always be chosen so as to obey the
Hamilton-Jacobi equation.

I. Canonical transformations and Caratheodory’s theorem

For the phase space description of a classical dynamical system with 2n degrees
of freedom, we may unite the position variables ¢, and the conjugate momentum
variables p,, r=1,2,...,n, into a single 2r component entity w,: w, .= ¢,
Wy == P1, Wy == (g, Wg = Doy « « .y Wan_1 = Gy W, = p,. The Poisson Bracket (PB)
of two phase space functions f (w) and g (w), which is again a phase space function,
can be compactly written as

(.5 (@) = o LD

(1.1)

with the help of the numerical antisymmetric nonsingular matrix || €,, || whose only
nonvanishing elements are

612:634:... -':362"_1,2":'—‘1 .
€y == €43 T ... TE €y, en1 = — | (1.2)

(unless explicitly stated otherwise, a summation from 1 to 2n over repeated Greek
indices is understood). The inverse to the matrix || ey, || will be written || e ||.

A canonical transforimation is the replacement of the phase space coordinates
w, by a new set 'y, the latter being 2n independent functions of the former,-such
that all PB relationships are preserved. This condition can be expressed as -

dw'p dw'y E BEPTLERG
W S Sy = S wy
We are interested in the description of canonical transformations with the help
of generating functions. Such descriptions are implicit rather than explicit ones
in this sense: one expresses # of the old variables and # of the new ones in terms
of the balance of n old and »n new variables. Let x = {x,} denote a subset of.n
variables picked out of the complete set of 2n variables w, in the following manner:.
from each canonical pair (q,, p,) we retain one variable and drop the other. It
is.clear that there are 2" such subsets that one can form. In the set{x,} we place
zeros in those positions that correspond to dropped variables. Given any .one
of these subsets x, the collection of variables not included in x will be written

X ={J~cﬂ}; X is also an allowed subset and we always have

Xy F Xy =wy  p=12,...,2 ' AR (W)
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Let a canonical transformation w — ' be given, and choose any allowed subset
x' from the new variables. The possibility of describing the transformation using
a generating function is now based on Caratheodory’s theorem which asserts that
for each possible choice of the subset x’ of ', there exists at least one choice of
a subset x of w such that the 2n variables contained in x and x' together form a
complete independent set of phase space variables. The PB condition (1.3) can be
alternatively stated as the condition that the differential expression

ﬁﬂy (-;G'ly‘ dx,y e xapldxy)

be the differential of some phase space function, ie., be exact. Since x’ and x
together constilute a complete set of variables, this function can be explicitly
expressed in terms of them as, say, S (x'; x), and one then has

¥ (¥, dx', — x,dx,) = dS ('; %) (1.5)

The function S (x'; x), which is determined up to an additive constant by the
canonical transformation and by the choices of the two subsets x' and x, is called
a generating function for the transformation; and the equations that implicitly
determine the transformation follow on identifying the terms on the two sides of .

eq. (1.5):

~ W (x"; xy = S (x'; x
x#=—€#,,-——5-xT-—), Xy = €uy b)a-—-*) (16)

We shall express the fact that the two subsets of variables x’ and x together
contain 2n independent variables by saying that they are compatible subsets. The
real content of Caratheodory’s theorem is therefore the statement that, given a
canonical transformation w - «’, for each choice of x' out of ' there is at least
one choice of x out of w compatible with it. And associated with each such
compatible pair (x', x) there is one generating function S (x'; x) leading to equations
of the form (1.6). Thus a canonical transformation can be described via generating
functions in at least 2" ways. The génerating functions S (x'; x) and S’ (3';y)
associated with two compatible sets for one and the same canonical transformation
are connected essentially by a Legendre transformation:

SOy =8SE;5x+ & — ) (1.7

This equation, which will be used in the sequel, is of course valid up to the
presence of additive constants.

Two canonical transformations can be multiplied, i.e., applied one after the other,
to yield a third such transformation. We need an equation that determines the
way the corresponding generating functions combine. Let (x', x) be a compatible
set of variables associated with the first canonical transformation w <> ', and
(x", x") be similarly associated with the second transformation o' — w”; the
corresponding generating functions may be written Sy (x'; x), Sy (x”; x') respec-
tively. In general, it is not true that the pair (x", x) forms a compatible set with
respect to the product transformation w — w”. However, fiom Cafatheodory"s
theorem we know that a subset y out of the w can be found, which will be compa-
tible with x". By using equations such as (1.5) for S; (x';x), S,(x";x") and
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S3 (x": »), the last of which is a generating function for the product canonical
transformation o — »”, and taking into account the replacement of x by y, we get
the following composition rule for generating functions:

Sa(x";¥) = Sa (x"; x7) + Sy (x5 x) + ¥yux, 1.8)

This rule of combination corresponds to the multiplication of two canonical trans-
formations to produce a third one. In interpreting it, one must realise that one
is supposed to express the sets of variables x” and x, which occur explicitly on the
right hand side, in terms of the complete set of variables (x”, y) before one obtains
the function S; (x”; y); thus a process of substitution of variables is involved.
With the help of eq. (1.7) one can generalise the combination rule (1.8) so that
the subset x’ of ' is not necessarily repeated in the generating functions describing
w—> o' and w' > w”, and similarly x” is not repeated in the generating functions
chosen for o' — " and w — »”; that is, one can easily express the most gereral
generating function for w —> " 1n terms of general ones for w — »’ and o’ — ",
However, we do not need this generalisation and so will omit it. As with eq. (1.7),
eq. (1.8) is also valid up to the presence of additive constants.

To conclude this section, we would like to make a division of the set of all
canonical transformations into two distinct types possessing different physical
interpretations (see for instance, Sudarshan and Mukunda 1974). Certain
canonical transformations can only be thought of as changes of coordinates in
phase space; the points of phase space remain the same, but the labels attached
to each point get changed both in nature and in value. We shall call such canonical
transformations passive transformations. An elementary example is the passage
from Cartesian coordinates and momentum variables for a particle to spherical
polar ones. On the other hand, certain other canonical transformations arise
basically from a mapping of phase space on to itself; in the transformation w—w’,
both w and «’ are variables of the same nature, and we may picture o’ as being
the coordinates of the point which is the image under the mapping of the point
with coordinates w. In this interpretation, the same underlying canonical coordi-
nate system in phase space is used throughout, and w and ' are the coordinates of
two distinct points; as w runs over the whole of phase space, so does its image «’'.
A canonical transformation susceptible to such an interpretation will be called
an active transformation. Dynamical evolution via Hamilton’s equations (A),
expressing the canonical coordinates at one time in terms of those at another time,
is an example of an active canonical transformation. Even with an active canoni-
cal transformation one may wish to undo the mapping and interpret the trans-
formation as merely a change of coordinates in phase space; however what
distinguishes an active from a passive transformation is the fact that for the latter
no interpretation in terms of a phase space mapping is possible. This distinction
between these two kinds of canonical transformations will be important for the
analysis of the Hamilton-Jacobi equation.

Caratheodory’s theorem and eqs (1.7, 1.8) for generating functions are apph.
cable to all canonical transformations, whether active or passive. They are state-
ments about the functional forms involved in a canonical transformation w — «’,
expressing ' as functions of w, independent of the nature of the transformatjon,
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2. Principal solutions of the Hamilton-Jacobi equation

Let us consider a dynamical system following the Hamiltonian equations of motion
(A) obtained from some definite Hamiltonian. We shall write Q,, P, for the phase
space coordinates of the system at a general time ¢, and g¢,, p, for the coordinates
at an initial time #,. Itis well known that the equations that express Q,, P, in terms
of ¢,, p, (and t, t,) are the equations of a canonical transformation; the solution
to equations of motion in Hamiltonian form leads to a phase space mapping that
is an active canonical transformation. Caratheodory’s theorem then tells us that
this transformation can be described via generating functions, one for each com-
patible pair of subsets of variables (X, x); here X is an allowed subset of the
variables 0, P and x is then suitably chosen from g, p. The Hamilton-Jacobi
equation (B) singles out the configuration space coordinates Q, from out of the
complete set of variables Q,, P,. We will therefore also make the special choice
X=0Q, ie, X,=0,X3=0,X;=0;,..., X, =X; = ... =0. There will
then be certain subsets x, chosen out of ¢,, p,, which are each compatible with Q.
A method for determining these in terms of the Hamiltonian is developed below.
These subsets x may be labelled by an index o, say x'®); there will be at least one
such subset, and of course not more than 2". Choosing one such subset x(®),
we see that there exists a corresponding generating function S, (Q, x'%; ¢, #,),
and eqs (1.5, 1.6) take the form

n ~

S P dQ, — & 5, dx® = dS, (Q. % 1, 10);

P —_ b‘S’t:l, (Q’ x(a); f9 tO) ); (a,) = ¢ aSa (Q: x(a); t: tO)
r bQ, L uv bx,,(“)

(For the moment, the time ¢ is treated purely as a parameter). The physical
significance of the statement that (Q, x‘) is a compatible pair, or that the 2n
variables in Q, and x,® are independent ones, is the following; on independently
choosing any set of values for the n position coordinates Q, at time 7, and any
set of values for the n quantitics x,'* at time #,, one picks out an (in general) unique
solution of the equations of motion obeying these boundary conditions.

Each of the generating functions S, (Q, x(*); ¢, #,) is known up to an additive
constant (constant over phase space) which can bowever be a function of ¢ and #,.
A simple analysis given in the appendix shows that one can adjust this freedom so
that each S, is a solution of the Hamilton-Jacobi equation

H(e, % z)+%‘%=o_ 2.2)

We obtain in this way a special set of solutions of the Hamilton-Jacobi equation,
which we will call the principal solutions. The main point we wish to emphasize
is'that these are uniquely determined solutions, there being no ambiguities in the
functional form of S, expressed in terms of Q, x'®), ¢ and t,. Further, each S,
Kas its own characteristic explicit time dependence, determined by the choice of
x®. In particular, even if the Hamiltonian has no explicit time dependence
(in which case S, depends on ¢ — ¢, alone), the dependence of S, on ¢ need not
be linear, In eq. (2.1) the time ¢ was treated as a parameter. We can now

(2.1)



The Hamilton-Jacobi equation revisited 7

combine eqs (2.1, 2.2) to get a statement in which the (2n 4-1) quantities Q,, x,/*
and ¢ are all capable of independent variation (¢, continues to be a parameter):

5 PdQ, — %, @ dx,® = H(Q, P, 1) dr + dS, (0, x@; 1,2, (2.3)
r=1

The variables P, and fﬂ‘“’ are then the dependent ones, being definite functions
of O, x*, ¢ (and t,). Equation (2.3) will be used in the next section in building
up the general solution to the Hamilton-Jacobi equation.

We next develop a criterion to determine which subsets x,, are compatible with

Q at time r. From the Hamiltonian equations of motion (A), we find that the
phase space coordinates Q,’, P," at a time ¢ -}- 8¢ are related to those at time ¢ by

P,
0/ =0, +30, =0, + 2 ELD g
Py =P, +5p,=p,—H (%59 @.4)

Let X,” be an allowed subset of the variables @', P’. Since O, P obviously form
a complete independent set, it follows that (Q, X’) form a compatible pair if and

only if the Jacobian

(0, X)
d(Q; P)

(only the nonzero components of X’ being retained) is non zero. This immediately
simplifies to the condition that the Jacobian determinant

2 (X)

> (P)
be non zero. It is enough to evaluate this determinant to order 8¢ only. We
will make the assumption that if for a small time interval 8¢, Q and X’ are compatible
then they remain compatible even for finite time intervals. This is a kind
of stability condition on the Hamiltonian. The rule for picking up subsets x(®
at ¢, compatible with Q at ¢ can then be set up in this way. Construct a rectangular

matrix || Asull, ¥ =1,2,...,mp =1,2,...,2n with matrix elements
22 H (g, p,t
Ar,u. = 82r,1.c + E;Lv"—‘“'—(q 2 )Bt (2.5)

apraa’u

Out of || A ||, form the 2" square matrices with n rows and » columns by retaining
one of the first two columns of A and dropping the other, retaining one out of
the third and fourth columns and dropping the other, and so on. Corresponding
to each nonsingular n X n matrix, || D || say, obtained in this way, one has one
subset x,, of g, p compatible with @ at time ¢:included in x are those components
of w, (=g¢,, p,) that correspond to values of u that denote columns of || A ||
retained in || D |]. For a system with a finite number of degrees of fieedom, one
can introduce a natural order into the set of 2" square matrices obtained from || A I
in the manner described above; and each of the nonsingular ones, which may be
labelled by an index a, leads to one set x!* compatible with Q, which then signals
the existence of a corresponding principal solution of the Hamilton-Jacobi equa-

tion.
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The qualitative behaviour of these principal solutions, as ¢ — #,, can be easily
described. Only with the choice x!® = p, is the determinant | D | of the form
1 40 (32); for every other choice of x'*, some of the ¢, will be present in x®
and | D | will be directly proportional to 8¢. This just corresponds to the fact
that only (Q, p) remains a complete and independent set as ¢t —¢,, and no other
set (0, x'*) has this property. As a result, provided the stability assumption
on the Hamiltonian is valid, the generating function S (Q, p; t, t,) is always a
principal solution to the Hamilton-Jacobi equation, and it has a well-defined limit,

S@pitt)> 3 O, ~ 2.6)

=1
as t —t,; but every other principal solution S, (Q, x'*; t, t,) is necessarily singular
as r —t,.
In most discussions of the Hamilton-Jacobi equation, the particular solution
S(Q, g; 1, 1,) plays a special role (Whittaker 1927, § 143). Our criterion shows
that this solution exists only when the determinant of the matrix

|PEer]

is nonzero. This is also the case in which the Hamiltonian may be obtained from
a Lagrangian starting point, without any constraints being present. In that
situation, S (Q, g:¢, t,) is in fact the time-integral of the Lagrangian along the
trajectory of the system determined by the values of Q, ¢, ¢ and ¢,:

S0 q;t,10) = :};'L(q (), g (£, ') dt’ 2.7

A principal solution differing from this one can then be expressed in terms of the
Lagrangian by use of eq. (1.7):

Q¢ .
Sa (@ x5t t) = [ L(q@),q() t)dt'+ & x, g,

xa), to
Q,1 .
- x(afi t L (q (), q ("), t’) dt’ - x' ¥ g + x,Y g, + . .. (2.8)
240

It is understood that those g, on the right hand side that do not occur in x* must
be expressed in terms of O, x?, ¢, ¢, While this discussion holds for a dynamical
system with a Lagrangian basis, the general results concerning the principal solu-
tions of the Hamilton-Jacobi equation are valid for any form of Hamiltonian.

To conclude this section, we shall illustrate the concepts introduced by means
of two simple examples, namely, a free particle in one dimension, and a harmonic
oscillator in one dimension. The former is described by the Hamiltonian
H =1} p?; using the criterion developed above, we find that (Q, ¢) and (Q, p) are
both compatible sets, as is physically reasonable; and the corresponding
principal solutions to the Hamilton-Jacobi equation are

S0, 45 1 ta)=%(—g_“_——%2;

S (@ pitite) =Qp — 3 p2 (1 — ty) 2.9
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The behaviours as ¢ — ¢, are as expected. For the harmonic oscillator, the

Hamiltonian is H = % (¢% + p?); again, (Q,¢q) and (Q, p) are compatible sets;
and the principal solutions are:

S(Q, g; 1, to) =[(Q* + g°) cos (t — to) — 20q]/2 sin (£ — #0);

50 P31 = oty 3 (@ PG — 1) 2.10)

3. General solutions of the Hamilton-Jacobi equation

For a given Hamiltonian, each principal solution of the Hamilton-Jacobi equation
1s one possible generating function with which to describe the active canonical
transformation constituting dynamical evolution. These solutions are uniquely
determined by the Hamiltonian. As stated in the introduction, however, there
is actually an infinity of solutions to the Hamilton-Jacobi equation, one determined
by each arbitrarily chosen boundary condition at time z,. We shall analyse now
how this infinity of solutions arises by combining the above-mentioned active
canonical transformation (which, for a given Hamiltonian, is unambiguous) with
an arbitrarily chosen (passive) canonical transformation ¢, p — u, v at time #,. The
generating functions combine according to eq. (1.8) and lead to new solutions
of the Hamilton-Jacobi equation.

We shall for definiteness deal at first with the so-called complete solutions of
the Hamilton-Jacobi equation (Caratheodory 1965, Ch. 3). A complete solution
i1s one which reduces at time ¢, to a preassigned function of the » position variables
Q, and of n other parameters u,, there being an essential dependence on the latter.
Also, to start with, we consider solutions that remain finite as r—¢,. The
only principal solution with this property is S (Q, p; ¢, t,), its limiting behaviour
being given by eq. (2.6); we also know that this solution exists for any choice of
Hamiltonian. We therefore make use of it in constructing the complete solu-
tions.

Let some function s (g, #) of the ¢, and n parameters u, be given, obeying the
condition

d%s (g, u)

D (s) = det 57, o,

# 0 , 3.1)

One can then convert the u, into phase space functions by imposing the.cquations

__ds(q, w)
g,

r

(3.2

In fact, condition (3.1) is the necessary and sufficient condition under which one
can turn eq. (3.2) “inside out” and express the u, as functions of ¢, p. [Had
the determinant D (s) of (3.1) vanished, imposition of eq. (3.2) would have been
inconsistent with the fact that the g, and p, are independent variables, since by
elimination of the u’s from eq. (3.2) one could have produced relations among the
g’s and p’s by themselves.] Further, the u, will be mutually independent func-
tions on phase space, with their PB’s with each other vanishing: -

{u, u} =0 (3.3)
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They can, in fact, be regarded as the““¢'s” of a new canonical coordinate system
in phase space. We set up n other phase space variables v, to be conjugate to the
u's and complete this new coordinate system by the equations

__u(gw) 3
P du, (3.4
Since the u, are functions of g, p, so are the »,. We now have, in addition to
eq. (3.3), the following relationships:

{’D,, 'vo} =0, {u,, 'Us} = ars; (a)}
Y (pdg, —vdu) =ds(gw) ()

r==1
Summarizing, we see that eqs (3.2), (3.4) lead directly to eq. (3.55); from
eq. (3.56), as is well known, the PB conditions, eqs (3.3), (3.5 a) follow; and
these PB conditions ensure that the w,, and »,, ate 2z independent phase space
functions. The passage ¢, p —u, v is therefore a canonical transformation which
must in general be thought of as passive; it is such that (g, u) form a compatible
pair, and s (¢, ») is the corresponding generating function.

We now have the two canonical transformations ¢, p -4, v and ¢, p — Q, P,
with the respective compatible pairs (g, #) and (p, Q); the former is passive and
the latter is active and time dependent. The transformation w,v — Q, P is,
therefore, also a time dependent canonical one, and from physical continuity we
may assume that for each f, (Q, ) form a compatible pair. The dynamical signi-
ficance of this last remark is that we may choose values for the variables Q,, u,, ¢
independently (¢, being fixed), and that then fixes a unique state of motion, ie.,
a solution of the Hamiltonian equations of motion. The truth of this statement
can be seen by thinking through the various changes of variables, as follows. We
start from the knowledge that on independently choosing values for p,, Q,, and

(3.5

t, a definite state of motion results. In particular, the values of ¢, (and P,) would

be determined. Knowing both p, and g, (the latter in terms of p, Q, t), the values
of u, are determined. All in all, we may meaningfully write equations of the form

Uy :qsr(p:Q;ta £o) (36)

Now we know that for fixed ¢, v, and Q, form 2n independent phase space func-
tions. It must therefore be the case that on choosing values for , and Q, inde-
pendently, at any ¢, values for p, can be found so that eqs (3.6) are satisfied.
This is the same as saying that the functions ¢, appearing in eq. (3.6) permit us
to solve these equations for the p, in terms of u, Q, ¢:

by = llllr (Qa u, s to)- | . (3.7)

It is now clear that the values of Q, u and ¢ do determine a state of motion uniquely.
One can then think of the ¢, also as functions of Q, u and ¢:

gr =X, (0, u; 1, 1) (3.8)
The X’s will then reduce at ¢ = £, to the Q’s:
X (O, u; 1o, 2,) = O, (3.9)

We will use this in the sequel.

"



The Hamilton-Jacobi equation revisited 11

As a particular case of eq. (2.3) we have
2 (PAQ, +9q,dp) =H(Q, P, 1)dt +-dS(Q, p; 1, 1) 3.10)

with O, p and ¢ independent. By combining this with eq. (3.55) we can get a
generating function to describe the time-dependent canonical transformation
u, v —>Q, P:

2 (P, dQ, — v,du) = H(Q, P, 1) dr

r=1

+d[S(Q,p; tt) +s(gu) — 3 q,p,] (3.11)

rom]
Since by eqs (3.7). (3.8), both g and p are expressible in terms of Q, u, t we see
that the generating function of type (Q, ) for the transformation u, v — Q, P
is given . by

S(Q ust, 1) =S(Q,p; t, o) +5(g,v) — X q,p, (3.12)
r=1
it being understood that on the right hand side one substitutes for ¢ and p from
eqs (3.7), (3.8). Equation (3.12) is a particular case of the composition law,
eq. (1.8). This function §’1is, as is clear from eq. (3.11), a solution to the
Hamilton-Jacobi equation,

H(Q, o5 )+ 2 =0 . | (3.13)

and it reduces at time 7 = ¢, to the given s; use of egs (2.6), (3.8), (3.9) imme-
diately shows that

S (Q, u; to, o) =5(Q,u) | (3.14)

Finally, the uniqueness of the solution S’ given the boundary value s, follows from
the fact that for a given canonical transformation (here », v —~Q, P) and compatible
pair [here (Q, )] the generating function is unique up to an additive constant.

We see in this way how complete solutions to the Hamilton-Jacobi equation,
obeying arbitrary initial conditions, are synthesized. The really important point
in the construction of S’ from S using eq. (3.12) is this: while S by itself is a solu-
tion, the process of substitution for ¢ and p in terms of Q, u, ¢, though it introduces
fresh dependences on Q and ¢ in each term on the right hand side of eq. (3.12),
does not prevent S’ from also being a solution. Direct demonstration of this
fact would have been somewhat involved; our derivation makes it essentially
automatic, though no less important.

The above construction of an infinity of solutions of the Ham11t0n—Jacob1 equa-
tion can be somewhat generalised by making use of a principal solution other
than the particular one S (Q, p; I, ;). However, these new solutions will gene-
rally be singular as ¢ —-1,. We start with a principal solution S (Q, x; ¢, t,), say,
of the Hamilton-Jacobi equation, omitting for simplicity the label « on x and S.
Next we consider an arbitrary (passive) canonical transformation g, p — u, v for
which (g, #) need not be a compatible pair. To describe this passive transfor-
mation, -let the subset x of ¢, p (the one appearing in the principal solution) be
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compatible with a subset & of u, v, the associated generating function being

s(x; £):
e (x,dx, — £,/d&,) = ds (x; &) (3.15)

Finally, with respect to the (time-dependent) canonical transformation u, v —
Q, P, let the subset Q be compatible with the subset £ of », v. On working through
the relationships among these variables, one can convince oneself that a choice of
values for Q, £ and ¢ determines a state of motion uniquely; and the sets of vari-
ables x,, £,/ for instance, can be expressed as functions of @, ¢ and 7. Combining
eqs (2.3) and (3.15), and allowing for the replacement of ¢ by £, one gets in a
straightforward manner the result

2 PdQ, — & £,d¢, = H(Q, P, 1) dt

+d[S(Q, x31, to) + s(x, &) — ¥ £,/E,)] (3.16)

We have thus produced a new solution S’ (@, ¢: t, ¢,) to the Hamilton-Jacobi
equation: it is given as

S(Q, &5 1, t)) =S(Q, x5 8, 80) + 5(x, &) — 7 E]E @3.17)

with the understanding that on the right hand side one substitutes for x and &'
in terms of O, ¢ and t. Once again, the really important point to appreciate is that
this process of substitution of variables does not violate the Hamilton-Jacobi
equation. (Of course, in the new solution one identifies P with 3S’/2Q while in
the old solution one had P =23S/dQ, but this is automatic.)

The behaviour of S’ (Q, &; ¢, t,) as t — t, is qualitatively determined as follows:
if the subsets ¢ of g,p and £ of u, v are compatible, the limiting form of
S’ (0, & 1, to) Will be finite, otherwise it will be singular. Only the former kind of
solution is already covered by our earlier discussion of complete solutions of the
Hamilton-Jacobi equation with nonsingular behaviour at 7z =1, Naturally,
in the nonsingular case, the form of S’ at # = ¢, must be determined entirely by the
passive transformation ¢, p - 1w, v; we easily deduce:

S$'(Q, &5 t,t) ——  Is(x, &) — ¢ (E)E + 9u%)] esa (3.18)

¢ >t

The meaning of the right hand side is this: we first use the equations of the trans-
formation g, p — u, v to express x, and £, as functions of g and ¢ inside the square-
bracketed expression, and then write @ for g everywhere. [The symbol ¢, of course
stands for (g, 0, g2, 0,...)]. ’

To conclude this section, we discuss briefly solutions of the Hamilton-Jacobj
equation which are not as general as the complete solutions. Each such solution
reduces at 1 =1, to a corresponding preassigned function s5(Q) of the position
variables, but s (Q) need not involve any parameters. (In fact, it is such solutions
that were referred to in the introduction when discussing the mathematical approach
to the Hamilton-Jacobi equation). There is then no possibility of first pcrforming
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a passive canonical transformation at time f, with the help of s (g), and then
following the steps outlined earlier to obtain a complete solution. But one can
prove the following result (details of the proof are omitted): First replace s (g)
by a function 5 (g, ) as follows:

5(g,w) =s(@)+ fg, v (3.19)

f (g, u) can be any function of g and n parameters #, subject to only two condi-
tions: (i) it should vanish at u = 0; (i) § (g, u) (in fact f (g, ) should obey the
condition (3.1). With s (g, ), a complete solution S’ (Q, u; ¢, t,) to the Hamil-
ton-Jacobi equation can be constructed, unique for a given f. Setting u =0 in
this complete solution, we get a solution 8’ (Q,0; 1, 1,) =8 (Q; 1, t) to the
Hamilton-Jacobi equation, obeying the boundary condition

S'(Q; to, to) = 5 (Q)s (3.20)

and, most important, independent of the way s is extended to 5, i.e., independent
of the choice of . The uniquencss of S’ (Q;¢, t,) for given s (Q) follows. This
S (Q;t, t,) can also be directly described in a manner similar to eq. (3.12),
without going through the intermediary function § (g, u). A given initial phase q,.
p, at time ¢, determines one state of motion, hence one set of values for Q, at time
t. TInitial phases of the particular form (g,, ds (¢)/d¢,) lead to a special family of
states of motion, one element in the family for each choice of g, (see introduction
and Dirac 1951). In general, only one member of the family will reproduce a
desired set of values for Q, at a desired time 7. In this way, elements of the family
can be labelled by, and the initial phase variables (g,, p,) = (4., 25 (¢)/2g,) become
functions of, @, and ¢ We then find that

S0 1) =S pitt)+s@) — X ab, (3.21)

el

with the understanding that on the right hand side we substitute the above-derived

dependences on Q, and z for g and p. Such substitution again does not violates
the Hamilton-Jacobi equation.

4. Concluding remarks

We have presented a new analysis of the Hamilton-Jacobi equation and its solu-
tions, based on the theory of canonical transformations in classical dynamics.
The structures of both the so-called complete solutions and less general parti-
cular solutions have been clarified. While we have not been concerned with finding
new methods for solving this important equation, we have made clear what kind
of solutions do in principle exist and what relationships different solutions bear
to one another. It is true that the Hamilton-Jacobi equation always possesses
infinitely many solutions, whatever the Hamiltonian. But at the core of this
infinity is a * small ” number of basic or principal solutions (in fact a finite number
if the number of degrees of freedom is finite) which are completely determined by the
Hamiltonian and which really characterise the particular dynamical system. By com-
bining one of these principal solutions with an arbitrary canonical transformation on
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phase space, having nothing to do with the Hamiltonian, an infinity of solutions
gets built up. The principle underlying this construction is the composition law
for generating functions of canonical transformations, which involves the process of
substitution of variables. The fact that this process does not violate the Hamilton-
Jacobi equation is the most important element of our structure analysis.

In setting up the principal solutions to the Hamilton-Jacobi equation, we have
limited ourselves to the descriptions of a canonical transformation by generating
functions corresponding to compatible sets of observables. Existence of such
sets is guaranteed by Caratheodory’s theorem. The question arises: given a
canonical transformation. g, p — Q, P, suppose we pick the subset @ and then
a subset x of g, p not compatible with Q i.e., such that the 2» variables in x and
O are not an inaependent set; can the transformation still be described via a gene-
rating function depending on Q@ and x? The answer is that this can be done;
however the generating function will depend on some additional variables, A say,
apart from Q and x; these extra variables are Lagrange multipliers, there being one
of them for each independent relation existing among the @ and x (Whittaker
1937, §126). The equations for the canonical transformation do finally deter-
mine each A also as a phase space function, such that in the totality of variables
O, x, A there are precisely 2n independent ones. We are therefore led to consider
new principal solutions S (Q, x; A; ¢, t,) to the Hamilton-Jacobi equeztion,
where Q and x are not compatible, and A are new (time-independent) variables.
However, we do not pursue the analysis of these solutions any further because,
unlike the principal solutions we defined in section 2, these new ones have some
ambiguity in functional form: this is caused by the freedom we have to state
functional relations among O and x in different ways. But one must not leave
these solutions completely out of consideration, if only for the reason that they
do possess quantum analogues (see below).

All the results of this paper have interesting analogues in quantum mechanics.
Elsewhere we have proved an operator form of Caratheodory’s theorem, appli-
cable to unitary transformations in quantum mechanics (Mukunda 1974). If
g, P F=1,2,..., 1, are an irreducible set of hermitian operators obeying the
usual basic Heisenberg-Dirac commutation relations and U is a unitary operator

a new irreducible hermitain solution to the commutation relations is given by
Q. = Uq, U, P, = Up, U, r=1,2,...,n » .1

It then happens that to each complete commuting set X chosen from Q, P there
corresponds at least one complete commuting set x from g, p such that X and x
are together irreducible; we shall again say that such pairs (X, x) are compatible.
(This word is not used here in the sense of quantum measurement theory).
Choosing U to be the unitary operator of time development from ¢, to 7 for a
given Hamiltonian operator H (g, p, t), and setting X = Q, to each complete
commuting set x from ¢, p compatible with Q@ (¢) there corresponds one basic
solution to the Schrédinger wave equation. Following the notation for Feynman
kernels (Feynman and Hibbs 1965), we write these soiutions as

K(Q',t; X, te) =( Q" t|x" ) “4.2)

what appears here is the scalar product of an eigenvector of Q (¢) with eigenvalue
O’ and an eigenvector of x (¢,) with eigenvalue x’. Here the eigenvectors depend
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on time. The allowed complete commuting sets x (f,) and the corresponding
kernels, are in principle determined by the Hamiltonian; it is justified to call these
‘a principal set of kernels. The characteristic property of the kernel in eq. (4.2)
following from the compatibility of Q (¢) and x (¢,) is that it is nonzero for all
values of Q' and x’. While the number of principal kernels is finite (for finite n),
we know that the Schrodinger equation has infinitely many solutions, each deter-
mined by its boundary value at r.=r,. A particular time - dependent wave
function ¢ (Q’, t) describing a particular state of motion in quantum mechanics
is obtained from its form att = t, by means of

b (Q, 1) = J dx' K(Q', 15 X', 1) (¥, to) (4.3)

On the right appears the wave function or representative of the state vector at
time t, in the basis determined by x (¢,). Equation (4.3) is analogous to eq. (3.21)
in the classical case; one can say that the process of integrating over x’ in eq. (4.3)
which is the same as summing over a complete set of states, is the quantum analogue
of the process of substitution of variables implicit in equations such as (3.21)
(Dirac 1958). Just as the latter does not violate the Hamilton-Jacobi equation,
the sum-over-states does not violate the Schridinger equation because that equation
is linear. However, in expressing this analogy in terms of states of motion, one
must realise that whereas eq. (4.3) refers to one quantum state of motion, its ana-
logue in eq. (3.21) refers not to one but a family of classical states of motion
constructed in the special way indicated just before eq. (3.21).

In the context of quantum mechanics it is clear that all knowledge about the
development in time of the system is contained in any kernel K (Q’, t; X', t,) even
if O (t) and x (t,) are not compatible. With the help of such a solution to the
Schrodinger equation one can still follow the time development of any state, and
eq. (4.3) remains valid. The property that Q (¢) and x (#,) do not form an irre-
ducible set has the following consequences: (i) K (@', f; x’, ¢,) will be propor-
tional to a product of delta functions whose arguments involve Q' and x’; (ii) if
one insists on giving a generating-function like description of the unitary time
evolution operator using the operators Q (¢) and x (z,), one is forced to introduce
additional operators A which are quantum analogues of classical Lagrange multi-
pliers! (Dirac 1945). Such Kkernels are thus somewhat like the solutions
S (Q, x; A; t, o) to the Hamilton-Jacobi equation that fall outside the principal
set, though in the kernels K (Q’, t; x', t,) there do not appear any variables other
than those indicated.

A particular kernel K (Q', t; x', t,) may be based on a set of operators Q ®),
x (t,) which are compatible and irreducible for ¢ + ¢,, so that for unequal times
K is non-singular and as stated earlier nonvanishing for all Q" and x’. However,
if Q (t,) and x (¢,) possess operators in common, which happens if x (t,) 1s not
the set p, (¢,), then as ¢ — ¢, the kernel must become proportional to delta func-
tions in the eigenvalue differences of these common operators. Such singular
limiting behaviour is the exact parallel of the fact that a principal solution
S(Q, x; t, t,) to the Hamilton-Jacobi equation must necessarily be singular as
t—>t, if X7 p,. In fact, for simple linear systems, the Feynman kernel K (Q’, ¢; ¢', t,) -
is very closely related to the exponential of the solution § (@, q; ¢, t,) to the
Hamilton-Jacobi equation; this happens for the free particle and the harmonic
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oscillator. (Feynman and Hibbs 1965 §3.5). And the singular behaviour
of § (0, g; ¢, fo) as f — 1o in eqs (2.9), (2.10) is indeed directly responsible
for K(Q', t; g', t,) reducing to 8§ (Q" — q’) as t =,

For simplicity, we have used the language of point mechanics throughout our
discussion. However, formally there is no difficulty in extending our results to
relativistic mechanics on the one hand, and to systems involving fields on the other.
Equally interesting would be the extension of our considerations to constrained
dynamical systems (Dirac 1950). Wehope to examine these questions elsewhere.
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Appendix

We give here an elementary proof of the fact that the generating functions
S, (Q, x'*; ¢, t,), which were introduced in eq. (2.1) on the basis of Caratheodory’s
theorem can always be chosen so as to obey the Hamilton-Jacobi equation (2.2).
We consider for definiteness the particular generating function S (Q, p; 1, 1,)
corresponding to the choice x = p, since this exists for any Hamiltonian; other
choices of x can be handled similarly. The following notation is useful: given
any phase space function f (Q, P,¢), we shall denote by (f(Q, P, 1))s the
function on configuration space obtained by making the substitution

bS (Q, p; t, t())

P, — 30,

in f, ie.,
(f(Q, P, 1)ys =f (Q, g—% , ¢ (A.1)

~ Of course, both f and (f)s can have explicit time dependences, and the latter will
also depend on those vanables other than Q, that are present in S, in the present
instance p, and ft,.

Equation (2.1) reads, in the present case,
5 (PAQ, + ¢,dp) =dS(Q.p; 1, 1o). (A.2)
r=1

Keeping t, fixed throughout, a choice of values for p,, 0, and ¢ determines one
definite state of motion, with the momenta at the time ¢ having the values
DS (Q, p; ¢, 1)/0Q,. A slightly altered state of motion is produced by considering
p, O, and r + At, where At is small; the coordinate values O, which were attained
attime ¢ in the previous state of motion, are attained at time # + At in the altered
state. The phase at time ¢z 4 Af in the altered state is then given by the coordi-
nate and momentum values Q,, 35 (Q, p; t + Aft, 1)/0,; by Hamilton’s equa-
tions of motion, the phase at time ¢ must then be

0./ =0, — (aH (0, P, t)) AL
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, WSO, ps t Athty) YH(Q, P, 1)
b= 20, (), b (A-3)

But eq. (A.2) applied to the altered state implies
P/ :(DS(Q/:»[); ta tO) .

r DQTI 2 (A‘4)
combining eqs (A.3), (A.4), we see that we must have:
DS(Q’,[); f:t())__DS(Qapat"i_ Af’ TO)_ DH(Q,P,I)
20 50, ()
ie.,
AN IRAD o 0880, pi i t)
Z 20,00, (Qs — Qs -+ 30,51 At
S=1
, (OH(Q, P, 1) _
(55 )6 =0
ie.,
(aH(Q, P, t)) n Z (DH(Q, P,f_)) S (0, p; 1, 1)
DQr S — bPS S er bQS
028(Q, p; ¢, 1,
$25@PLN (4.5
ie.,

d S S
0, 7 (259 1) + 5] =0
Similarly, by imposing the condition that

(Prs Qs 1) and (py O, + QH(Q, P, 1)DP)s AL, t + Al)

determine the same state of motion so that there should be no net change
in the initial position ¢,, we obtain:

225 (0, p; 1, 1) 038 (Q, p; 8, to) (AH(Q, P, 1) —
op,ot Ar 0p,r 005 0P )sAt =0
ie., .
d S 28
o[ (25 1) +57] =0 49

The last lines of eqs (A.5), (A.6) imply that the square-bracketed expression is
constant over phase space and can only be a function of ¢ and f,. Since in any
case eq. (A.2) leaves S (Q, p; t, t,) arbitrary up to an additive function of ¢ and
ty, we see that the generating function S can be so chosen that it will obey the
Hamilton-Jacobi equation (2.2). Once this is done, the only arbitrariness in S is
that a time-independent constant may be added to it.
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