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Abstract

Many of the oscillations observed at the solar surface have been identified with
resonant normal modes of the entire solar body. Accurate measurements of frequencies
of these modes enable us to study the internal structure and dynamics of the Sun.
Helioseismology has provided a handle to measure the depth of the convection zone and
the primordial helium abundance, as well as the sound speed and the rotation velocity
throughout much of the solar interior.

1. Introduction

Soon after the discovery of solar oscillations when the solar physicists were
debating over the nature of observed oscillations, there was an interesting paper by Mark
Kac (1966) on "Can we hear the shape of a drum ?". This question sounds absurd at first
sight since one normally associates a shape with seeing rather than hearing. However, it
is well known that the sounds of drum makes when it is struck are determined by its
physical characteristics i.e. the material used, its tautness and the size and shape.
Drums vibrate at certain distinct frequencies called normal modes. The problem which
Kac posed is as follows .

Suppose a drum is being played in one room and a person with perfect pitch (i.e.
one who can identify exactly all the normal modes of vibration) hears but cannot see the
drum. Is it possible for her to deduce the precise shape of the drum just from hearing
the normal modes of vibrations ?

Though this question still remains unanswered in the rigorous mathematical sense,
it is found that a lot can be learnt from the frequency spectrum. This is essentially
similar to the question the helioseismologists face today: What can be learnt about the
internal structure and dynamics from the frequencies of the normal modes excited in
the Sun?

As a result of the interplanetary medium it is not possible to "hear" the Sun
directly. But interestingly enough it is possible to '"see" the sound waves. This was
achieved by Leighton (1960) and Leighton et al. (1962) by observing the Doppler shift
in the solar spectral lines. It is well known that for small velocities the shift in wave-
length is proportional to the line of sight velocity of emitting medium. Thus if we
find the spectral lines to oscillate back and forth, then we can conclude that the solar
surface is oscillating. Initial studies revealed a roughly oscillatory pattern with velocity
amplitudes of about 1 km/s and a period of roughly five minutes. These were therefore
referred to as five minute oscillations. Now we know that the pattern is actually a super-
position of some 107 different modes, each having a amplitude of the order of 10 cm/s.
More information can be obtained if one takes a fourier transform of the velocity,
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Aw) = JSv(t) explint) dt,

in order to get the power or amplitude A as a function of frequency w. This showed that
most of the power is concentrated around a frequency of 3 mHz, although the individual
modes could not be resolved properly.

As soon as this discovery was announced about a dozen theories were put forward
to explain the oscillations. Each of these theories managed to get the period correct in
such a simple manner that it was embarassing for the theorists to explain why these
oscillations were not predicted earlier. These early theories have been reviewed by
Stein and Leibacher (1974).

Ulrich (1970) and Leibacher and Stein (1971) independently proposed that these
oscillations may be acoustic (or sound) waves trapped just below the solar surface. Ulrich
further showed that the frequencies of such modes will depend on the horizontal wave-
number ki (or wavelength ZTT/kH). For obtaining the spatial information in addition to
the temporal data the observations have to be repeated over a series of points on the
solar disk. using a slit which was perpendicular to the solar equator Deubner (1975) made
Doppler velocity measurements spanning many hours over an equatorial strip on the solar
disk. The Fourier transform in longitude and time resulted in power spectrum,

Alk,w) = S Sv(x,t) explilkx + wt)] dxdt.

Figure 1 shows the more recent results of Deubner et al. (1979), also shown are the
frequencies calculated from two different solar models. The general agreement between
the observed ridges in the power spectrum and the theoretical frequencies essentially
confirmed the hypothesis of Ulrich regarding the nature of five minute oscillations.
This marked the beginning of the subject of helioseismology. The agreement between
theory and observation was of course not perfect and itwas realised that it can be
improved if the thickness of the convection zone in the solar model is larger than what
was supposed in contemporaneous models. Thus for the first time helioseismology provided
us with a measure of thickness of the solar convection zone.

Comprehensive reviews of helioseismology are available and should be consulted
for more details (cf. Brown et al. 1986, Christensen-Dalsgaard et al. 1985, Daubner
and Gough 1984, Leibacher et al. 1985). here we will only consider a brief review of
helioseismology in order to introduce some of the basic concepts and notation used
in the subject. -

2. Classification of Normal Modes

It is well known that every finite object like a tuning fork, a drum or a string
stretched between two fixed points has a set of normal modes of vibration and when
distrubed will oscillate in some combination of these normal modes. For example in the
case of a string stretched between two fixed points a distance D apart, the normal modes
correspond to wavelengths of 2D/n, where n is any positive integer, and hence only the
corresponding frequencies can be excited. The Sun being a three dimensional object
three integers would be needed to specify a normal mode.

A gas sphere such as the Sun may be subject to many forces, for example gas
pressure, gravity, electromagnetic forces and rotation. If such a gas is disturbed then
these forces can act to restore the gas towards its initial state if it is in a stable equili-
brium or to drive it even further from initial state if the equilibrium is unstable. If the
initial configuration is stable, the gas will return to its initial state, but if dissipation
is small it will overshoot the equilibrium state and will keep oscillating about its initial
position. The normal modes of the Sun can be analysed by considering an infinitesimal
disturbance from its equilibrium structure with the help of the usual equations of fluid
mechanics. Since the perturbations are infinitesimal the equations may be linearized by
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Fig.1. Contour of ¥2times power in (v,2) plane from
Dubner et al. (1979). The continuous curves are the predic-
tions of a solar model with a helium abundance Y = 0.25,
the dashed curves are for Y = 0.19. The Y = 0.19 model
gives the correct observed neutrino flux.
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neglecting all higher order terms in perturbations to get a system of linear homogeneous
equations (cf. Unno et al. 1979) leading to an eigenvalue problem. Such equations can
have nontrivial solutions only under special circumstances giving the eigensolutions or
the normal modes.

For a spherically symmetric equilibrium stucture the normal modes can be expres-
sed in terms of the spherical harmonics vgm(e ,0), to express perturbations in the form

p(r,0,0,t) = po(r) + pnﬂ,n‘gr) Yg'm(e,d)) exp(i wymt),

where p could be any physical quantity like pressure, temperature etc., po(r) is the
equilibrium value while the second term represents the infinitesimal perturbation. Further
if the perturbations are adiabatic i.e. there is no heat exchange between different
fluid elements then w would be real and in that case W can be identified with the frequency
of the normal mode. The time period of oscillation is given by P = 2T/w. It is customary
to measure the frequency in Hertz which is given by V= 1/P = w/2n. The integers
2 and m detrmine the horizontal structure for the given mode, while n determines the
number of nodes in the radial direction. The integer % is referred to as the degree of
mode and can assume any non-negative integer value, while m is called the azimuthal
order of the mode and can take on values in the range of -% to +& For m=0, & gives
the number of nodes as 6 varies from O ton while for m= +2it gives the number of
nodes in¢. For other values of m the structure is more complicated. For purpose of
illustration the contour diagrams for a few of the spherical harmonics are shown in
Figure - 2. The horizontal wavenumber associated with the mode can be identified by
klil: 2(%+ 1)/r2% Further if the equilibrium state is spherically symmetric then Pnhgm and
WngmWill not depend on m since results should be independent of the choice of coordinate
axes.

The simplest case is for £= m = 0 when the perturbations are independent of 6 of ¢
and hence spherical symmetry is maintained even in perturbed state, and the entire
solar surface oscillates in phase. Such oscillations are termed radial oscillations and
most of the classical pulsating stars do execute radial oscillations. For £ >0 the peturba-
tions are not spherically symmetric and are referred to as nonradial modes. Further the
modes for & £3 are referred to as low degree modes, while those for 4 S22100 as
intermediate degee modes and for 2 2100 as the high degree modes. This classification
is mainly because different observational techniques are used to study these different
classes of modes.

The frequency of oscillations is essentially determined by the restoring force
and the inertia of the gas involved. Perhaps the simplest restoring force is compressibility
or gas pressure. This gives rise to the sound waves or the acoustic modes. In the absence
of other forces these follow the simple dispersion relationw?= kzcg, where ¢g is the
sound speed.

Another important force in the Sun is gravity or buoyancy giving rise to the gravity
modes, sometimes referred to as internal gravity modes to distinguish them from the
surface graity waves. As compared to the pressure which is isotropic, gravity is a direc-
ted force and hence the properties of gravity modes are quite different from those of
acoustic modes. Consider a small fluid element at radial distance r and displace it radially
by a distance Ar. Assuming that the element moves adiabatically, i.e. without exchanging
heat with the surrounding medium, and further as it reaches its new position it will
achieve instantaneous pressure balance with the surrounding provided its speed is much
less than the sound speed. Hence the density of this fluid element will be

_ 9p
Pe = Py - (BP)ad AP,

where p, is the initial density and AP is the decrease in pressure between the two
levels. The subscript ad denotes the adiabatic derivative. The density of the surrounding
medium is
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SAMPLING OF SPHERICAL HARMONIC Yzm MODES OF THE SUN

Fig.2. Contour plots of a sample of spherical harmonics Yy ;. Continuous curves represent
positive values while dotted curves represent negative values.
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_ dp _ do
; =Rt ar Ay = Po - (dP)SunAp

Hence the difference in densities is

_ rdpe,
-0 = Gsun

dp "

(GPlag 1 4P s

If pg < pg the element will continue to move upwards away from its equilibrium posi-
tion and the fluid configuration is regarded to be unstable and in fact such a condition
leads to convection. This condition is realised in the stellar convection zones. On the
other hand if Pe > Ps then the element being heavier will come down to its equilibrium
position. In this case the element will execute & simple harmonic oscillation about
the equilibrium position with a frequency given by

2 B g ap dP
__5 F)Sun (BP)ad”drI

The frequency Npgy is called the Brunt-Vaisala frequency. It is obvious that gravity modes
will require differential movement of fluid elements. Thus, if we consider the radial
modes where the entire surface moves in phase there will be no difference in density
between two neighbouring elements at the same radial distance and consequently there
cannot be any buoyancy forces and as a result there cannot be any radial gravity modes.
For nonradial modes we can have buoyancy forces and clearly there can arise gravity
modes. Further the maximum of Brunt Vaisala frequency in the solar interior provides
an upper limit to the frequency of gravity modes.

For the Sun to resonate with well defined frequencies these waves must be trapped
inside a cavity within the Sun, just like the case of a string stretched between two
fixed points. Obviously the Sun does not have any rigid boundaries and hence a cavity
can form only if the waves are reflected by some mechanism. If we consider a sound
wave travelling inwards in the Sun, then as it goes inside the temperature and hence
the sound speed increases and the wave is refracted more and more away from vertical
until the phase velocity becomes horizontal and the wave is reflected back. The radius
where this happens is roughly given by

2 AR+ 2
o= =g, = L

This frequency L is referred to as the Lamb frequency. Thus waves with high frequency
will penetrate deeper down before being reflected, while increasisng the value of 2 will
result in raising the level from which reflection takes place. In the atmosphere the
waves are reflected by steeply declining density and hence a cavity is formed within
which the acoustic modes are trapped.

If one writes down the equations for adiabatic oscillations, ignoring the perturba-
tions in gravity, it can be easily shown (cf. Eckart 1960) that waves will propagate
only if

(a) w? > NZBV and w? > L? (corresponding to acoustic waves)
or b)) w? < NéV and w? < L2 (corresponding to gravity waves)

In other situations the waves cannot propagate and are said to be evanescent, in which
case the amplitude generally falls off exponentially with distance. What this means in
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mathamatical terms is that in the propagating case the eigenfunctions have spatially
it tllatory character (i.e. of form Sin(kr) or Cos(kr)), while in the evanescent case
the sigenfunctions have an exponential form (i.e.. exp(zkr)).

In the Sun the frequencies L and Ngy,. vary with depth and hence the nature
il waves will also change with depth. Figure 3 shows the variation of L and Npgy for L=
willy radial distance in the Sun. Note N gy is independent of & but L is roughly proportlonal
i b oand so far higher £ the L curve can be raised up appropriately. The brunt Vaisala
froquency has two peaks, one in the interior of about 470 uHz and one in the. atmosphere
uf abhout 5 mHz, while in the convection zone NBV is negatlve. If we consider a typical

ij mode (gravity mode) frequency vy then for r< ry, w? >Ngy and w*l?® and the mode
i evanescent, for r,; <r <rp, W <N and w?< > and the mode behaves like a gravity
Wflw for <r <r3, w? <N2 and u\),z>l_2 and the mode is evanescent, for ra <r< Ty,

\JHV and w?>1% and the mode behaves like an acoustic wave, for r > ry, & NE
u|u| w?>1% and the mode is evanescent. Thus the mode is trapped in two different cavities
it one of which it behaves like a gravity mode, while in the outer cavity comprising
mostly of the convection zone it acts like an acoustic mode.

At higher frequencies (v 2 470 uHz) like v, the situation is more clear as for r<rs
and r >rg this mode is evanescent and hence it is an acoustic mode (or p-mode) trapped
in the region rs<r <re It is clear that for frequency v 2 5 mHz the modes will not be
trapped in the Sun, and hence at such frequencies we do not expect sharp resonances
from the Sun. Of course in solar corona the temperature once again rises to a million
degrees Kelvin or more and hence the sound speed and so the Lamb frequency will
once again rise and the high frequéncy modes can also be trapped in region including
the chromosphere and corona. But since these regions are neither very stable in temporal
lerms nor are the horizontal variations negligible and as a result we cannot expect
sharp resonant frequencies in such cases. It is interesting to note that the observed spec-
lrum also does not extend beyond about 5 mHz thus supporting the general picture out-
lined above.

We have noted that there may not be a sharp distinction between gravity and
acoustic modes in the Sun, as the same mode can act as acoustic mode in one region and
gravity mode in another region. Nevertheless, a unique scheme has been devised for
the nomenclature of the normal modes (cf. Unno et al. 1979). For a fixed value of % the
modes can be grouped in two series: the acoustic modes pi, p2, P3, ..... fOrm a series
with increasing frequency, while the gravity modes qi, g2, g3, .... form a series with
decreasing frequency and a limit point at v= 0. In addition we also have the so called
f-mode or the fundamental mode with frequency in between the gi and p: modes, and
in general its eigenfunction does not have any nodes. As% »0 the frequencies of acoustic
modes tend to a finite onzero value while those of gravity modes tend to zero. Frequen-
cy of all the modes increases with £ and for the gravity modes it tends to a finite
limit equal to the maximum of Ngy in the interior while for acoustic modes the frequency
tends to infinity with &.

A major difference between the normal modes excited in a string as compared to
those in the Sun is that in the case of a string all the modes are trapped in the same
region while in the Sun different modes are trapped in different regions. This is a very
significant feature which gives the diagnostic power for helioseismology. Since each mode
samples a different region, by analysing a large number of modes we can study the
stratification inside the Sun. For example the frequency of acoustic modes is in some
sense a measure of sound travel time across the cavity and hence by measuring the
frequencies of acoustic modes for a range of & and-nvalues we can study the variation
of sound speed with depth (cf. Gough 1986). Such a study shows that the sound speed
agrees reasonably well with that predicted from the standard solar model.
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Fig.4. Power spectrum with frequency v of low degree full-disk Doppler observations.
The upper figure shows the observations of Claverie et al. (1984) for p-modes, carried
out in 1981 over a period of 88 days from Tenerife and Hawaii providing upto 22 hours ol
coverage per day. The lower figure shows the results for g-modes from combined data of
Stanford and crimea (Scherrer and Wilcox, 1983).




ST RSN WS R

TR U

TR

SRR TR

Helioseismology 15
3. Modes of Intermediate and High Degree

The observation of modes of intermediate and high degree require spatial resolution,
inn addition to the temporal resolution. If we measure the radial velocity on a grid of
points on the solar surface then by appropriate combinations we can isolate the modes
with a given value of £ and m. In principle we can use the orthogonality to isolate
the modes,

an(t) = [ [ v(6,0,t) Yzm(e $)de d¢ ,

where, agm(t) is the amplitude of signal due to &, m modes. ag ., could be fourier
transformed to get the frequencies wpg y, for different values of n. However, there is a
problem here because the orthogonality can be used only if we have observations over
the entire solar surface, while unfortunately all observations are necessarily restricted to
half the solar surface which is visible from a given point. Further there is a projection
offect as we can only measure the line of sight component of velocity. At the center
ol the Solar disk the line of sight component will coincide with the radial velocity
but at other points there will be a contribution from horizontal component also. Because
ol these effects it is not possible to completely isolate modes for any fixed £ and m
values. Nevertheless, we can find an appropriate combination which enhances modes
with given £ and m as compared to other modes. Thus the other modes will not be
completely absent but will appear with a significantly lower amplitudes. Thus in this
case it is possible to identify the & and m values of a given mode purely from observa-
tions. The value of n can also be determined by counting the ridges on v, plane in
the power spectrum (Figure 1).

The acoustic modes of high degree were first identified by Deubner (1975) while
those of intermediate degree were first observed by Duvall and Harvey (1983). For
intermediate degrees Brown (1986) has measured frequencies for modes with all values of
% and m and using these departure from spherical symmetry (for example those due to
rotation) can be studied. Such studies have enabled helioseismologists to observe the
variation of rotation velocity with depth &nd latitude over almostthe entire solar interior.
Il turns out that the rotation rate decreases slightly between 0.3 - 0.5 Ry, while the
core itself could be rotating 2-3 times faster than the surface. The rotation velocity
ol the core is not very reliably measured since very few of the modes studied penetrate
into the core.

A. knowledge of the internal rotation profile allows us to deduce the shape of
Sun's gravitational profile, with departure from spherical symmetry m=asured by the
(quadrupole component Jz. The value 6f Jz is very important for the test of general
relativity by measuring the advance in the perihelion of planet mercury, since a large

"value of J, will produce the advance in perihelion by purely Newtonian effects due

lo departure from spherical symmetry. It turns out that the value of J, most recently
cstimated from helioseismology is consistent with the theory of general relativity.

No gravity modes have been reliably identified for & 2 4 and it is generally belie-
ved that the amplitudes of these modes at the solar surface will be too small for detec-
tion. From theoretical considerations it can be shown that gravity modes of intermediate
and high degree are severely attenuated in the convection zone where they are evanescent,
and in fact the attenuation increases exponentially with &.

4. Modes of Low Degree

The most accurate measurement of these modes has been from the so called full
disk observations, where the light from the entire solar disk is used to study the oscilla-
tions. One significant feature of these observations is that such observations can also be
carried out for other stars. The first detection of five minute oscillations in integrated
sunlight wasreported by Claverie et al. (1979). They found a set of discrete frequencies




16 H.M. Antia

with uniform spacing of 67.8 uHz with an amplitude of 10 to 30 cm/s, and interpreted
them as global oscillations of low degree. Grec et al. (1980) based on continuous observa-
tions from the South pole for five days, have identified similar globe oscillations.
Using observations from the solar maximum mission satellite, Woodard and Hudson (1983%)
have detected the same oscillations in intensity of solar radiation, with an amplitude ol
a few parts in a million.

It is quite clear that the modes of intermediate and high degree will average out
to essentially zero when integrated over the full disk, and so only modes with 2= 0,1,2,%
can have significant signals in such a power spectrum. In principle there is no way
to assign the value of 2or m for a given peak in such a power spectrum since there is
no spatial information associated in the spectrum. Thus we have to appeal to theory
in order to identify the value of R for these modes. For n>>2 the frequency of acoustic
modes satisfy an asymptotic dispersion relation (Vandakurov 1967) of the form

Vg = n+2/2 + a)\)o +e o
where a and v, are constants and epng is a small correction to the first term. Thus we can
see that for a fixed % the frequencies would be uniformly spaced to a first approximation.
Further vng = Vn-q,g42 and hence modes of degrees 0 and 2 and the modes of degrecs
1 and 3 should contribute alte rnately to the grouping of peaks in full disk spectrum
Indeed, this is what is revealed by observations. To identify the value of £ we have
to consider the difference

dnﬂ, = Ve o \)n-1, 2+2
It turns out that this difference is always positive and further for the same value of n,
dng 1s proportional to (22+3). Thus, by considering the fine spacing between the series ol
roughly equidistant pairs of frequency we can uniquely identify the value of 2. This
identification was further confirmed by the spatially resolved observations of Duvall
and Harvey (1983). The n value cannot be identified except by direct comparison with
intermediate degree results. For the Sun vy = 136 uHz while dng = 10uHz.

For compensating the lack of spatial resolution we need very high temporal resolu
tion in these observations in order to separate the individual modes with their frequencies.
This requires a long and continuous observation since the resolution of an observation
Av ~ 1/T, T being the total duration of observation. Thus to accurately measure the small
separation dng we require an observation spamning several days. This is clearly impossible
from most of the places on the Earth. That is why Grec et al. (1980) carried out their
observations from the south pole. But even there because of weather conditions il
is not possible to have continuous observations for more than a week or so. An alternative
is to combine data from more than one station and this is done by the Birmingham
group (Claverie et al. 1984) and their results are shown in Figure 4. They used two
stations one at Hawaii and other at Tenerife in the Canary islands to get a better
coverage of the Sun. The analysis of power spectrum is not trivial since there are large
number of peaks, many of which are spurious. The most important effect comes in
because of regular interruption of observation due to the (day-night) diurnal cycle and
this gives the so-called side lobes separated by Av= 11.6 uHz on either side of the
actual peaks. Further, even a random data can generate lots of peaks in power spectrum
and sometimes it is not trivial to isolate actual peaks from the noise. In fact quite
a few observers have claimed to detect (spurious) oscillations which were not confirmed
by subsequent work and several controversies have arisen in helioseismology. To gel
long continuous observations of the Sun a Global oscillation Network Group (GONG) is
being considered, which poposes to use six sites around the world to observe the Sun.

Full disk measurements should in principle detect g-modes as well but to this
date there is no unambiguous confirmation by observations. There have been a few
reports of identification of g-modes by different groups (Scherrer 1984, Isaak et al. 1984,
frohlich and Delache, 1984) but in all cases the frequencies do not agree with each
other. The only mode which has been detected by more than one observer is the 160.01
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min oscillation first reported by Severny et al. (1976) and Brookes et al. (1976). Even this
mode is conspicuously absent in some of the observations (Kuhn 1986), and in any case it
in impossible to identify the n or & value from observations as most of these observations
have no spatial information. Figure 4 shows the observed power spectrum in frequency
range of g-modes due to Scherrer and Wilcox (1983). None of the peaks other than the
160.01 min have been conclusively identified with solar oscillations.

The asymptotic formula for g-modes frequencies in the limit of n>> 2(cf. Tassoul
1960)

2 . AR
(n+3Z +b)v o= Py
Po L
or the period P (n+35 +b),

LS N D) 2
where b and P, are constants. Thus in this case the periods will be uniformly spaced.
Observers have tried to use this property to identify the g-modes, but the identification
is not completely satisfactory so fan

The main problem with g-modes is that in addition to the low amplitudes at
the solar surface, the g-mode spectrum is very dense. Consequently, a very high resolution
is needed to separate the peaks in the power spectrum. Further since the periods are
large a very long span of observation is needed to measure the frequencies with sufficient
nccuracy. The knowledge of g-mode frequencies is very crucial for understanding the
atructure of solar core, since these are essentially the only modes which penetrate to the
center of the Sun.

5. Conclusions

Helioseismology has made rapid advances in the last decade, though so far most of
the deductions about the internal structure and dynamics of the Sun have been based
on the observation of acoustic modes. The close coupling between theory and observations
has enabled us to achieve this rapid progress. But of course a lot remains to be done
both on observational and theoretical sides. Although the observations have put a number
ol constraints on theoretical solar models, so far the theoreticians have not been able
to produce a solar model which is consistent with all the observations.

There are basically two different approaches which can be used in helioseismology.
ne of these is the so called inverse methods in which using the observed frequencies of
the modes one attempts to actually construct a solar model that should reproduce these
abserved fequencies. Such approaches have been successful in terrestrial seismology,
and are being attempted in solar seismology as well for determination of sound speed or
rotational velocity in the interior (cf. Gough 1986).

The other approach is the so called direct method in which one computes the
frequencies of a known solar model and compare them with observations. In general the
two will not agree and so we can go back and change some of the parameters or even the
physics adopted in the construction of theoretical models and try to get a better fit to
unhservations. This approach has already yielded some constraints on the primordial
holim  abundance in the Sun (cf. Christensen-Dalsgaard and Gough 1980, 1981). The
l-howledge of the helium abundance of the Sun also has a bearing on cosmological theories.
Ihe estimated value of 25% by mass for helium abundance is consistent with the predic-
tion of the big band nucleosynthesis.

Despite a concentrated effort by a large number of helioseismologists it has not
been possible to generate a model which is in perfect agreement with ‘observations. The
hest results are obtained for the so called standard model which has frequencies differing
by less than 10uHz from the observed values. This corresponds to an error of about 0.3%,
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but it should be noted that this is much more than uncertainties in observations which is
now down to 1uHz. This implies that the standard model is essentially correct though
possibly there are still sorme small uncertainties. The known uncertainties in theoretical
models come from following sources: (1) equation of state of solar matter, (2) opacities
of solar matter, (3) nuclear reaction rates, (4) the improper treatment of radiative
transport in the atmosphere, (5) uncertainties in stellar convection theories, (6) non-adia
batic effects on solar frequencies, (7) turbulent pressure, (8) effects of magnetic field.

Most of these sources have been examined by various workers and in many cascs
uncertainties of a few microhertz have been ascribed to these effects. Customarily the
theoretical frequencies are calculated by neglecting all non-adiabatic effects in perturba-
tion equations. Of course we know that this approximation is not strictly correct sincc
there is radiative and convective transport of energy inside the Sun. However, it is
generally assumed that these effects are small and further there is no satisfactory way to
treat convection. Christensen-Dalsgaard and Frandsen (1983) have shown that non-adiabatic
effects due to radiative tansfer alone can explain about half of the difference between
observed and theoretical frequencies for the low degree p-modes. Similarly Ulrich and
Rhodes (1984) have found that uncertainties in stellar convection theories can change
the frequencies by a few microhertz.

Apart from these sources of uncertainties one could question the basic principles
involved in standard solar model, for example we can assume that there has been some
mixing in the core (Schatzman et al. 1981) or we can assume abnormally low helium
or metal abundances. Most of these nonstandard models were proposed to explain the
solar neutrino flux, but these can be ruled out by solar oscillation data. Only nonstandar
model that yields better results for frequencies is that using the so called WIMPs to
transport a part of energy flux in the interior (Faulkner et al. 1986, Dippen et al.
1986). However no one has yet constructed a model including WIMPs which agrees
with all the known frequencies of oscillations and hence it is difficult to say how much
better agreement can be obtained by these models. Further if some of the effects
mentioned above like the non-adiabatic effects are included in calculating the frequencies
than the agreement of WIMPs model with observations will most probably become worse.
Since the frequencies of the p-modes in this mode is not very different from standard
model it is difficult to distinguish between them using p-mode results. For this low
degree g-modes would be more useful. The period spacing P, between two consecutive
g-modes of same degree can be calculated for all models and that will enable us to dis-
tinguish between these models. For example the standard model predicts R, between
35-37 min, WIMPs model yields 32.6 min while the model with mixing in the core yield
57 min. On the observational side Scherrer (1984) has reported a value of 38.6 + 0.5 min
while Isaak et al. (1984) have reported 41.32 + 0.12 min. Thus if the observations are
confirmed then the WIMPs model can also be ruled out.

Although helioseismology has come a long way from its modest beginning with the
work of Deubner (1975) and it promises to let us probe the inside of the Sun in sufficient
detail for testing the premises of stellar structure and evolution theory, but the excita-
tion mechanism of these modes still remains a matter of controversy among helioseismo-
logists. The modes may be driven stochastically by turbulence in the convection zone (cf.
Goldreich and Keeley 1977) with the excitation and damping proceeding almost continuously
in a spatially distributed manner. In analogy with the standard stellar pulsation theory il
may happen that the modes are self excited, being able to extract energy from the
radiation field by something like the K-mechanism (Ando and Osaki 1975) or by convec-
tively driven instabilities (Antia et al. 1982). So far very little observational information
is available about variation in phases, amplitudes and lifetimes of these modes, and on
the other hand it is not easy to theoretically predict the amplitudes of these modes since
that will depend on nonlinear effects.
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