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In this article, we have developed a simple mathematical model that captures the vital mechanisms
of the hypothalamic-pituitary-adrenal (HPA) axis self-regulatory activities. For this, a system of three-
component non-linear delay differential equations has been proposed and analysed to observe the ultra-
dian and circadian variabilities of the hormone secretion of the HPA axis in normal subjects. Our analysis
reveals that a feedback mechanism is sufficient to show the ultradian variability of the hormone secre-
tion pattern but fails to show the circadian variability. A central nervous system-driven pulse generator
coupled with the primary feedback mechanism can exhibit the ultradian as well as circadian variability
in the hormone secretion of the HPA axis. The model can also predict different dynamics of the normal
HPA axis following physiological changes (viz. adrenalectomy and hypophysectomy) and pathological
changes (viz. infusion of different hormones).
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1. Introduction

The application of the methods of mathematical modelling and dynamical system analysis is playing
an increasingly important role in the study of metabolic and endocrine processes, both in physiol-
ogy and in clinical medicine. In complex biological systems, not everything can be measured and that
is why mathematical modelling becomes very useful there. The proper use of such techniques can pro-
vide better understanding of the nature and behaviour of the complex processes that occur in physiology.
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38 N. BAIRAGI ET AL.

Recently, researchers are interested in using the mathematical models to describe the mechanism of
endocrine and nervous systems (Cartwright & Hussain, 1986; Hunding, 1974; Jelic et al., 2005;
Lenbury & Pornsawad, 2005;Smith,1980).

The hypothalamus and pituitary gland form a unit that exerts control over the function of several en-
docrine glands—thyroid, adrenals and gonads—as well as a wide range of physiological activities. Many
experiments on humans and other animals show that plasma concentrations of corticotropin-releasing
hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol manifest pulsatile (ultradian) and
rhythmic (24-h circadian) features (Antoni, 1986;Carneset al.,1988;Desiret al.,1980;Kriegeret al.,
1971;Weitzmanet al.,1971). These are classified into two classes. One assumes the existence of a ‘neu-
ral clock’, a pulse generator that forces the hypothalamic secretion of CRH and thus drives the entire
system (Caufreizet al., 2002;Cermakian & Boivin, 2003;Dijk & Lockley, 2002). In the other class, it
is assumed that the pulsatile secretion of hormones is generated by the inbuilt ‘feedback’ mechanism of
the hypothalamic-pituitary-adrenal (HPA) system (DeRijik et al., 2002;Dinan,1996;Kellendonket al.,
2003). In the analytic portion of this paper, we consider the (autonomous) feedforward–feedback mech-
anism of the HPA system (autonomous) to observe that pulsatility is a consequence of the interaction
between the three components of the HPA axis and neglect the (generally non-autonomous) neural pulse
generator term. One of the reasons is that the neural clock models do not describe the inhibitory mech-
anism of cortisol on the output of CRH and ACTH from the hypothalamus and pituitary, respectively.
Furthermore, in the intact animal, the autonomous system may principally govern the total system be-
haviour, with the forcing terms only producing small perturbations (Smith,1980). Also, the models that
incorporate an external driving function to mimic the oscillations are of limited value in understanding
the system. And finally, the analysis of the non-autonomous system must begin with the analysis of the
associated autonomous system (Smith,1980). The feedback mechanism is sufficient enough to show
ultradian variability of the HPA axis but fails to show the circadian variability. Therefore, in the numer-
ical section, we consider a neural pulse generator term coupled with the feedback system to observe the
24-h circadian pattern of the HPA axis.

CRH is secreted from hypothalamus and reaches the pituitary through portal blood vessels to stim-
ulate secretion of ACTH from the anterior pituitary. The normal range for plasma ACTH is 2.2–11.1
pmol/L (Greenspan & Strewler,1993). Its episodic secretion causes wide and rapid fluctuations in its
plasma concentration (two to four oscillations per hour) and in that of cortisol (Greenspan & Strewler,
1993;Porterfield,2001). ACTH reaches the adrenal cortex through general blood circulation and stim-
ulates it to secrete glucocorticoids (cortisol and corticosterone) (Ganong,1999). Negative feedback of
cortisol on ACTH secretion occurs at both the hypothalamus and the pituitary levels (De Souza & Van
Loon, 1989;Greenspan & Strewler,1993;Jacobson & Sapolosky, 1991;Larsenet al.,2003;Veldhuis
et al.,2001) and involves two distinct mechanisms—fast- and slow-feedback inhibition. ‘Fast feedback’
is sensitive to the rate of change in cortisol levels, while ‘slow feedback’ is sensitive to the absolute
cortisol levels (Greenspan & Strewler,1993;Larsenet al., 2003). Detailed human studies have shown
that circulating cortisol levels exhibit a predictable diurnal pattern, peaking between the morning hours
of 6 AM and 8 AM and steadily declining to a nadir at about 1 PM (Van Cauter, 1990). This circa-
dian rhythm is endogenously driven by the central nervous system (CNS) (Liotta & Krieger, 1990).
Although this general pattern is consistent, there is considerable intra- and inter-individual variability,
and the rhythm is also changed by stresses, pituitary and CNS disorders, Addison’s disease, Cushing’s
syndrome etc. (Greenspan & Strewler,1993;Trainer & Grossman,1991). The average concentration of
plasma cortisol is 0.28–0.33 pmol/L and during stress it becomes 1.1–1.6 pmol/L (Burtis & Ashwood),
whereas the basal level of CRH in normal subjects ranges from 0.44 to 6.16 pmol/L (Linton et al.,
1987).
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VARIABILITY IN THE SECRETION OF CRH, ACTH AND CORTISOL 39

Different mathematical models were proposed to represent the HPA system (Dempsheret al., 1984;
Gonzalez-Heydrichet al., 1994;Ilias et al., 2002;Lenbury & Pacheenburwana, 1991;Rohatagiet al.,
1996;Savic & Gajic,1998). Deficiencies of these models have been pointed out byJelicet al. (2005)
andLenbury & Pornsawad(2005).Pincus & Keefe(1992) performed a time-series analysis and defined
a quantity called the approximate entropy (ApEn) as a means to measure hormone pulsatility. ApEn
was used as a model-free and scale-independent regularity measure to quantify the orderliness of the
hormone time series (Pincus & Goldberger, 1994;Pincus & Keefe, 1992).Jelicet al. (2005) proposed
a 4D model for CRH, ACTH, cortisol and aldosterone to represent the HPA system. They reduced this
4D system to a 2D model on the assumption that CRH and aldosterone have much slower dynamics
compared to ACTH and cortisol and thus studied a limiting case of the original system. By introducing
a periodic pulse-generating function, they numerically showed the circadian oscillations of cortisol.
Most of these models either are very complicated and mathematically intractable due to their higher
dimensions or describe cortisol secretion only or represent the system dynamics partially. It is, therefore,
necessary to develop a simple and biologically realistic model to understand the underlying dynamics
of the HPA axis.

Time delays are also successfully used to model several mechanisms in the dynamics of physiolog-
ical events. The overall objective in studying delay differential equations is to assess the qualitative or
quantitative differences that arise from delay and also to compare these results with the corresponding
non-delayed system. The pituitary secretes ACTH and it reaches the adrenal cortex through general
blood circulation and stimulates the adrenal cortex to secrete cortisol. Thus, some time is definitely
elapsed between two episodes of hormone secretion at the two sites. Clinical evidence of such delay in
the HPA system is given inNorman & Litwack(1997),Posneret al. (1997) andWon et al. (1986). In a
normal individual, ACTH causes significant increase of cortisol with a time delay of approximately 30
min, whereas CRH provokes an ACTH response in a much shorter time (Greenspan & Strewler, 1993).
Posneret al. (1997) observed that cortisol exerts a negative-feedback effect on the pituitary within
60 min. Most of the models for the HPA system studied so far (except Keenanet al.,2001; Lenbury &
Pornsawad,2005) did not consider the time delay factor.Keenanet al. (2001) proposed a biostatis-
tical model with delay of the HPA axis and observed realistic pulsatile secretary patterns.Lenbury &
Pornsawad(2005) studied a model with an exponential delay-induced negative-feedback mechanism.
They assumed two different delays for the shorter loops: hypothalamus to pituitary and pituitary to hy-
pothalamus and the same set of delays for pituitary to adrenal cortex and adrenal cortex to pituitary. But
they ignored the long negative-feedback effect of cortisol on CRH production at the hypothalamus. In
contrast, several clinical evidences confirm the existence of the long negative-feedback effect of cortisol
on CRH and the delay therein (Greenspan & Strewler, 1993;Gwinup & Johnson,1975;Larsenet al.,
2003;Veldhuiset al., 2001). They also did not verify whether the model can predict any physiological
changes following adrenalectomy or hypophysectomy. It is also necessary to observe whether the model
is flexible enough to show the pharmacological changes following infusion of hormones at different lev-
els in normal subjects. Here, we propose and analyse a simple delay-induced mathematical model to
represent the HPA axis and perform mathematical and numerical analysis to observe ultradian and cir-
cadian features and also to observe different dynamics of the normal HPA axis following physiological
and pathological changes that resemble the clinically observed results.

The organization of the paper is as follows: Section2 deals with the basic mathematical model. In
Section3, we present some basic results and a stability analysis of the system. Simulation and pertur-
bation results are presented in Sections4 and5, respectively. And finally, a summary is presented in
Section6. The major portion of the mathematical part is given in different appendices at the end of the
article.
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40 N. BAIRAGI ET AL.

2. The mathematical model

CRH is released from specific cells in the hypothalamus into a closed portal circulation intimately con-
nected with the anterior pituitary. Releasing hormones act at cognate plasma membrane receptor levels
to either cause an increase in cyclic AMP (adenosine monophosphate) or stimulate the phosphatidyli-
nositol cycle, leading to the stimulation of protein kinase C and an increase in cytoplasmic calcium ion
concentration. The increased level of cyclic AMP stimulates protein kinase A, leading to ACTH release
from the corticotroph of the anterior pituitary. Vasopressin also increases the secretion of ACTH, al-
though the main role of vasopressin appears to be one of helping the CRH in this activity. Following
the secretion of ACTH into the blood circulation, ACTH molecules bind to a specific receptor on the
outer cell membranes of all three layers of cells of the adrenal cortex (the zona glomerulosa, the zona
fasciculate and the zona reticularis) (Ganong,1999). Cortisol is the main product of ACTH stimulation
of the zona fasciculate and reticularis cells of the human adrenal cortex. Negative feedback of cortisol
on ACTH secretion occurs at both hypothalamic and pituitary levels via two mechanisms—fast- and
slow-feedback inhibition. Fast feedback is sensitive to the rate of change in cortisol levels, while slow
feedback is sensitive to the absolute cortisol levels. The first mechanism is probably non-nuclear, i.e.
this phenomenon occurs too rapidly to be explained by the influence of corticosteroids on nuclear tran-
scription of the specific mRNA responsible for ACTH. Time-dependent slow feedback occurring later
may be explained by a nuclear-mediated mechanism, which is probably due to inhibition of synthesis
of the precursor protein and a subsequent decrease in synthesis of ACTH. This later form of negative
feedback is the type probed by the clinical dexamethasone suppression test (Greenspan & Strewler,
1993;Larsenet al.,2003). So we consider only the slow-feedback mechanism in our model and exclude
the fast-feedback mechanism. A short negative-feedback loop of ACTH on the secretion of CRH also
exists (Greenspan & Strewler,1993;Gwinup & Johnson, 1975;Larsenet al., 2003). Here, the long
feedback loop has only been considered and short feedback loop from pituitary to hypothalamus has
been excluded for simplicity of the mathematical model (see Fig.1).

However, the secretion processes of hormones that are taking place in physiology are not instanta-
neous. There is certainly a delay in between the production of the hormone at one level and its effect
on the stimulation, synthesis and secretion of another hormone at another place, simply because of their
spatial separation and the fact that the hormones are transported to another place by the general circu-
lation of blood. Several studies have presented clinical evidence of such delayed responses in the HPA
systems (Hermuset al.,1984;Norman & Litwack, 1997;Wonet al.,1986).

The present model merely considers what we feel to be the most important aspects of the HPA
system activity.

From the previous discussion, we make the following sequence of assumptions to formulate our
basic model for the HPA system:

(i) Let R(t), A(t) andC(t) denote the concentrations of CRH, ACTH and cortisol, respectively.

(ii) CRH is secreted by hypothalamus. Letτ
′
bethe time taken by CRH to reach the nearby pituitary

gland through portal blood vessel and stimulate the release of ACTH.

(iii) The rate of ACTH secretion from the anterior pituitary depends linearly on the concentration of
CRH. Similarly, the rate of cortisol secretion depends linearly on the concentration of ACTH.

(iv) ACTH reaches the adrenal cortex through blood circulation and stimulates it to release cortisol
after a timeτ1.

(v) Cortisol inhibits the production of ACTH and CRH at the pituitary and hypothalamus lev-
els at the representative rate functionf (C). The function f (∙) is assumed to be real-valued
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VARIABILITY IN THE SECRETION OF CRH, ACTH AND CORTISOL 41

FIG. 1. A schematic diagram of the HPA axis.

non-negative continuously differentiable on [0, ∞). Also, x > y ⇒ f (x) 6 f (y), i.e. f (∙) is
a feedback function which is monotonically decreasing. Furthermore,f (x) 6 F , i.e. f (∙) is
bounded, e.g. by means of some biochemical saturation process.

(vi) Let us assume that cortisol reaches the pituitary and hypothalamus through the general circula-
tion and inhibits the production of ACTH and CRH after timesτ2

′
andτ2

′′
, respectively.

(vii) Each of ACTH, cortisol and CRH is degraded at a rate proportional to their concentration, i.e.
according to first-order kinetics.

Then, from the above assumptions, we can write down the following differential equations as our
model:

dR(t)

dt
= α1 f (C(t − τ2

′′
)) − b1R(t),

dA(t)

dt
= α2 f (C(t − τ2

′
)) + g1R(t − τ

′
) − b2A(t),

dC(t)

dt
= g2A(t − τ1) − b3C(t), (2.1)

whereτ
′
> 0, τ1 > 0, τ

′

2 > 0 and τ
′′

2 > 0 andα1, α2, b1, b2, b3, g1 andg2 are positive parameters.
A prototype form of f (∙) is f (C) = V

K+Cm (m > 1) (Murray, 2002), whereV, K and m (Hill

coefficient) are positive parameters. Note that when there is noC, f (0) = V
K , i.e. there will be some

production of CRH and ACTH in the absence of cortisol.Griffith (1968) showed that for suchf (∙),
oscillations are not possible unless the Hill coefficient is very high (m > 8), which seems to be
unrealistic. However, we observe limit cycle oscillations for a significantly lower value ofm(= 3) (see
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42 N. BAIRAGI ET AL.

Section4). Thus, we assumef (C) = V
K+Cm in the remaining portion of this article. We also assume

for mathematical simplicity that cortisol reaches and stimulates the hypothalamus and pituitary almost
at the same time, i.e. we assumeτ2

′′
= τ2

′
= τ2. Also, the time required by CRH to travel the short

path from the hypothalamus to the pituitary through the hypophyseal portal blood vessels is very short
and can be neglected to avoid mathematical complexity, i.e. we assumeτ

′
= 0 (though we perform

numerical experiments in Sections4 and5 considering this delay). Based on the above assumptions,
model (2.1) can be simplified to the following form:

dR(t)

dt
=

α1V

K + Cm(t − τ2)
− b1R(t) = α1 f (C(t − τ2)) − b1R(t),

dA(t)

dt
=

α2V

K + Cm(t − τ2)
+ g1R(t) − b2A(t) = α2 f (C(t − τ2)) + g1R(t) − b2A(t),

dC(t)

dt
= g2A(t − τ1) − b3C(t). (2.2)

We associate the initial functions of the form:

R(t) = φ1(t), for max [−τ1, −τ2] 6 t 6 0,

A(t) = φ2(t), for − τ1 6 t 6 0,

C(t) = φ3(t), for − τ2 6 t 6 0, (2.3)

whereφi (t) ∈ C([−τi , 0], R+) andφi (0) > 0. We shall now study the stability and oscillatory be-
haviour (if any) of the system (2.2) with (2.3).

3. Mathematical analysis

The steady stateE∗(R∗, A∗, C∗) of the system (2.2) is given by

R∗ =
α1b2b3C∗

(g1α1 + b1α2)g2
,

A∗ =
b3C∗

g2
, (3.1)

whereC∗ is given by the positive root of the equation

C∗m+1 + KC∗ −
Vg2(g1α1 + b1α2)

b1b2b3
= 0. (3.2)

Sincethe function on the left-hand side is increasing forC > 0, it is clear that (3.2) has a unique positive
root and consequently the steady stateE∗ is unique.
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VARIABILITY IN THE SECRETION OF CRH, ACTH AND CORTISOL 43

Let R(t) = R∗ + x(t), A(t) = A∗ + y(t) and C(t) = C∗ + z(t), wherex(t), y(t) andz(t) are small
perturbations. The linearized form of the system (2.2) atE∗ is given by

dx

dt
= −b1x(t) − V1α1z(t − τ2),

dy

dt
= g1x(t) − b2y(t) − V1α2z(t − τ2),

dz

dt
= g2y(t − τ1) − b3z(t), (3.3)

whereV1 = VmC∗m−1

(K+C∗m)2 .

Thecorresponding characteristic equation is given by

F(ξ) = ξ3 + B1ξ
2 + ξ [B2 + B3 e−ξ(τ1+τ2)] + [B4 + B5 e−ξ(τ1+τ2)] = 0, (3.4)

where

B1 = b1 + b2 + b3(> 0),

B2 = b1b2 + b2b3 + b3b1,

B3 =
α2mg2VC∗m−1

(K + C∗m)2
(> 0),

B4 = b1b2b3(> 0),

B5 = (g1α1 + b1α2)
mg2VC∗m−1

(K + C∗m)2
(> 0).

Equation(3.4) can be written as

F(ξ, τ ) = ξ3 + B1ξ
2 + ξ [B2 + B3 e−ξτ ] + [B4 + B5 e−ξτ ] = 0, (3.5)

whereτ = τ1 + τ2.
Now, we state the following two theorems.

THEOREM3.1 A sufficient condition for the positive steady stateE∗ to be locally asymptotically stable

for all τ > 0 is Q3 >
Q2

2
4Q1

, where

Q1 = B1
2 − 2B2,

Q2 = B2
2 − 2B1B4 − B3

2,

Q3 = B4
2 − B5

2.

Proof. See Appendix A. �

THEOREM 3.2 If Q3 > 0 and the relation

2Q1
3 − 9Q1Q2 + 27Q3 > 2(Q1

2 − 3Q2)
3/2

holds,then the stable positive equilibriumE∗ remainsstable for allτ > 0.
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Let α2mg2VC∗m−1 = (K + C∗m)2 andb1 + b2 > g1α1
α2

. If the following conditions

b1b2b3 <
(g1α1 + b1α2)

α2
(3.6)

and
1

b1
+

1

b2
+

1

b3
>

α2

(g1α1 + b1α2)
(3.7)

hold, then there existsτ0 > 0 given by

τ0 =
π − arg X(iρ0)

ρ0
,

with

arg X(iρ0) =
n∑

j =1

arctan

(
ρ0

bj

)
,

whereρ0 is the positive root of the equation

ρ6
0 + (B2

1 − 2B2)ρ
4
0 + (B2

2 − 2B1B4 − 1)ρ2
0 + B2

4 −
(g1α1 + b1α2)

2

α2
2

= 0,

suchthat, whenτ = τ0, Hopf bifurcation occurs, i.e. a family of periodic solutions bifurcates fromE∗

asτ passesthroughτ0

Proof. See Appendix B. �

4. Results of model simulations

In this section, we have numerically simulated the model (2.2) using the software MATLAB (version
6.5). We can determine the degradation rate constantsb1, b2 and b3 from the half-lives of CRH, ACTH
and cortisol, respectively. The rate of elimination of any hormone (X) in a biochemical reaction that
follows the first-order kinetic is given bydX

dt = −bX, whereb being the elimination rate constant. The
solution of this differential equation is

X = X0 e−bt , (4.1)

whereX0 is the concentration of the hormone at the initiation of the kinetic process. SupposeX will
be X0

2 whent = t1/2 (thehalf-life). So from (4.1), we haveX0
2 = X0e−bt1/2 ⇒ b = log2

t1/2
. Thus, the

elimination rate constant of any hormone can be determined if the half-life of the hormone is known.
In normal humans, half-lives of CRH, ACTH and cortisol are, respectively, 30, 10–20 and 80–120 min
(Felig, 1995;Otero & Sieburg). Thus, we findb1 = 0.0231,b2 rangesfrom 0.0346 to 0.0693 andb3
rangesfrom 0.0058 to 0.0087. Other values of the parameter were taken from the available literature
(Jelicet al.,2005) for whichQ3 < 0.

For the above parameter values, (3.2) becomesC4 + 0.048C − 0.55058 = 0. This equation has
only one positive root, namely,C∗ = 0.84507.Thus, we have a unique interior steady stateE∗ with
equilibriumvalue (3.0030, 5.3955, 0.8451).
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Posneret al. (1997) reported that cortisol exerted its feedback effect by significantly decreasing
plasma ACTH levels with a time delay of approximately 60 min. An earlier study byHermuset al.
(1984) reported a 30-min delay in the positive-feedforward effects of ACTH on plasma cortisol level.
Considering the values ofτ1 and τ2 as 30 and 60 min, respectively, and other parameter values as
in Table1, we observe that all the conditions of Theorem3.2 are satisfied. Consequently, the system
exhibits small-amplitude periodic oscillations, describing the ultradian feature of hormone secretion, and
the variations in the hormone concentration are also in normal range (see Fig.2). Moreover, we observe

TABLE 1 Variables and parameters used in the model(2.2)

Variable/ parameter Definition Default value
R Concentration of CRH Variable
A Concentration of ACTH Variable
C Concentration of cortisol Variable
b1 Degradation rate constant of CRH 0.023
b2 Degradation rate constant of ACTH 0.04
b3 Degradation rate constant of cortisol 0.0083
g1 Creation rate constant of ACTH 0.032
g2 Creation rate constant of cortisol 0.0013
V Positive constant 3
K Positive constant 0.048
m Hill coefficient 3
α1 Positive constant 0.015
α2 Positive constant 0.026

FIG. 2. Numerical simulation of (2.2) with τ1 = 30 min andτ2 = 60 min; other parameters are as in Table1. The figure shows
ultradian variability of the hormone concentrations with three oscillations per hour.
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46 N. BAIRAGI ET AL.

FIG. 3. Bifurcation diagram of cortisol concentration with respect to composite delayτ (=τ1 + τ2).

that the system exhibits three oscillations per hour, which is well in accordance with the clinically
observed data (Greenspan & Strewler,1993;Porterfield,2001).

We also construct a bifurcation diagram to observe the effect of the composite time-lag on the
HPA axis. For the bifurcation diagram, we have run the system (2.2) for different values of compositeτ
(=τ1+τ2). Here, our investigation consists of letting the system run for 20,000 time steps and examining
the last 8000 time steps to eliminate transient behaviour. Then, we have plotted the successive maxima
and minima of the cortisol concentration withτ as a control parameter, fixing other parameter values
as in Table1 (see Fig.3). It is worth commenting that the protocol used to construct Fig.3 will not
eliminate transient behaviour in the neighbourhood of the bifurcation point near 80 min, where growth–
decay rates are very small (likewise for Fig.7).

From the bifurcation diagram, it is clear that when the composite delayτ exceeds the critical value
τ0 (which is approximately 72 min here), the system (2.2) bifurcates from a stable focus to stable limit
cycle oscillations. Moreover, we observe that the amplitude of oscillation increases with increasingτ .
Thus, we conclude that if too much time is taken for stimulating signals needed for releasing hormones,
this may reflect the HPA axis disorder, like hypoadrenalism.

It is also observed that if we changeτ1 andτ2 keeping the composite delay unaltered (see Table2),
the qualitative behaviour of the system (2.2) remains unchanged except for the phase lag which differs
slightly (see Fig.4a–c) between the peaks of CRH and ACTH.

This indicates that the delays in the positive- and negative-feedback loops act in a complementary
fashion. Thus, if the time delay in one loop is increased, the composite delay may remain unchanged by
lowering the delay in the other loop. When this complementary mechanism is not functioning properly,
a disease state may be expected (Lenbury & Pornsawad, 2005). However, we speculate that this cooper-
ativeness could be a hurdle to an early detection of the HPA axis disorder. Again, if we considerτ1 = 20
min andτ2 = 30 min, the composite delayτ (=50) remains below the critical valueτ0 and the system
(2.2) approaches the stable equilibrium valueE∗ (see Fig.5) following Theorem3.2.
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TABLE 2 Different combinations of delay and itsoutcomes

τ1 (min) τ2 (min) τ = τ1 + τ2 (min) Theorem satisfied Stability Figurenumber
70 20 90 3.2 Limit cycles 4a
50 40 90 3.2 Limit cycles 4b
20 70 90 3.2 Limit cycles 4c
10 40 50 3.2 Asymptotically stable 5
20 30 50 3.2 Asymptotically stable Not shown
40 10 50 3.2 Asymptotically stable Not shown

FIG. 4. Numerical simulation of (2.2) with different combinations ofτ1 and τ2 but with the sameτ (=τ1 + τ2), depicting
complementary fashion between positive- and negative-feedback loops. Other parameters are as in Fig.2.

As mentioned earlier, we neglected the time required by CRH to travel the short path from hy-
pothalamus to the nearby pituitary gland so as to be able to investigate the system analytically. We can
consider this delay for numerical investigation to observe the behavioural changes, if any, of the system
(2.2). Let us consider the time delay (τ

′
) between the secretion of CRH into hypophyseal portal blood
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FIG. 5. Time-series solution of the system (2.2) with different combinations ofτ1 andτ2 but with the sameτ (=τ1 + τ2), which is
less than the critical valueτ0, depicting asymptotic stability of the hormone concentrations. Other parameters are as in Fig.2.

FIG. 6. Numerical solution of (4.2) along with (2.2a) and (2.2b) with τ1 = 30 min, τ2 = 60 min andτ
′

= 10 min. Other
parameters are as in Table1.
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FIG. 7. Bifurcation diagram of the cortisol concentration with respect to composite delayτ (=τ1 + τ2 + τ
′
) = 100 min, with

parameter values as in Fig. 6.

vessels and the production of ACTH at the pituitary (see Section3). Introduction of this delay modifies
(2.2b) as follows:

dA(t)

dt
=

α2V

K + Cm(t − τ2)
+ g1R(t − τ

′
) − b2A. (4.2)

Numerical simulation results of this equation along with (2.2a) and (2.2c) (see Fig.6) show no
apparent qualitative change in the behaviour of the solutions compared with that of (2.2) (see Fig.2
also) except the amplitude of oscillations, but numerical data show that ACTH and CRH are slightly out
of phase (with CRH ahead).

We also construct a bifurcation diagram (see Fig.7) of the cortisol concentration with respect to
composite delayτ (=τ1 + τ2 + τ

′
) = 100 min and observe that the effect ofτ

′
(=10 min) can be derived

from Fig.3 whenτ (=τ1 + τ2) is extended to 100 min (see Fig.3).

5. Model perturbations and simulations

We can predict the dynamics of the HPA axis from our model (2.2) following physiological changes
(viz. adrenalectomy and hypophysectomy) or pathological changes (viz. infusion of different hormones
in normal subjects).

5.1 Profile of plasma CRH, ACTH and cortisol concentrations before and after adrenalectomy

Suppose an animal undergoes surgical removal of both adrenal glands at a certain time. As a result,
cortisol release will be zero and there will be no inhibition in CRH and ACTH production in the subse-
quent time. Consequently, concentrations of CRH and ACTH in the blood stream will increase. This is
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FIG. 8. Predicted hormone concentrations in plasma of a subject before adrenalectomy, after adrenalectomy and after corticosteroid
infusion at different times. Here,g2 = 0,c0 = 0.008 and other parameters are as in Fig.2.

the case if we putg2 = 0 in our model (2.2). One can also observe from (3.1) thatR∗ and A∗ become
very large wheng2 → 0. Now the obvious question is that can we get back the normal concentrations
of CRH and ACTH by providing cortisol externally? Our simulation experiment results in affirmative.
Suppose that, under favourable conditions, the adrenalectomized animal is given a certain constant dose,
c0, of corticosteroid (viz. dexamethasone), then the model (2.2c) becomes (wheng2 = 0)

dC(t)

dt
= c0 − b3C(t). (5.1)

Simulation results of (5.1) coupled with (2.2a) and (2.2b) yield Fig.8.
Figure 8 shows that cortisol concentration becomes zero and concentrations of CRH and ACTH

become very high immediately after adrenalectomy at timet = 100 min. Hormone concentrations are
almost normalized after synthetic cortisol infusion at timet = 175 min, although the pulsatile nature of
the hormone secretion has been abolished. But the pulsatility of the HPA axis is absolutely essential for
its normal function (Porterfield,2001). This suggests that the adrenalectomized animal may survive but
only under the most rigidly prescribed conditions (Goodman & Gilman,1985).

5.2 Profile of plasma CRH, ACTH and cortisol concentrations during dexamethasone and
metyrapone infusion

If we administer synthetic cortisol (dexamethasone) in normal subjects, it will lead to a decrease in
concentrations of both CRH and ACTH. In this case, our model (2.2c) would be

dC(t)

dt
= g2A(t − τ1) − b3C(t) + c1, (5.2)

wherec1 is the constant infusion rate of cortisol.

 by guest on January 29, 2011
im

am
m

b.oxfordjournals.org
D

ow
nloaded from

 

http://imammb.oxfordjournals.org/


VARIABILITY IN THE SECRETION OF CRH, ACTH AND CORTISOL 51

FIG. 9. Effects of synthetic cortisol infusion in a normal subject at timet = 100 min. This figure clearly shows a delayed phase of
cortisol’s negative feedback on CRH and ACTH secretion. Here,c1 = 0.02 and other parameters are as in Fig.2.

Our simulation result suggests that a significant decrease will occur in both CRH and ACTH concen-
trations within 15–20 min (see Fig.9). Won et al. (1986) observed that there was no obvious inhibition
in plasma ACTH levels during the first 15 min after infusing large dose of cortisol in short time inter-
vals. However, a significant suppression in plasma ACTH levels begins to manifest approximately 30
min after cortisol administration.Boscaroet al. (1998) observed that in young subjects, in concomi-
tance with the plasma cortisol increase, a marked decrease in ACTH levels was observed within the first
15 min. Thus, our results are well in accordance with the clinical results observed by Boscaroet al.
(1998) andWonet al.(1986). But if we reduce cortisol synthesis by infusing the metabolic blocker (viz.
metyrapone), the cortisol release is reduced, resulting in compensatory increase in ACTH and CRH
concentrations (Grinspoon & Biller,1994). Of course, (2.2) has to be changed by

dC(t)

dt
= γ g2A(t − τ1) − b3C(t), (5.3)

whereγ (0 < γ < 1) measures the gains of the metabolic blocker.
Our simulation results (see Fig.10) largely resemble the experimental results ofVeldhuis et al.

(2001). They observed that administration of high dose of metyrapone in healthy humans at mid-
night reduces the mean serum cortisol concentration and raises the serum ACTH concentration. Thus,
metyrapone administration can be used as an alternative method for assessing ACTH secretory reserve
(Greenspan & Strewler,1993;Grinspoon & Biller, 1994). It is observed that the metabolic blocker, used
to reduce cortisol secretion, reduces the diurnal variability of hormone concentrations.

5.3 Profile of plasma CRH, ACTH and cortisol concentrations before and after hypophysectomy

Surgical removal of the pituitary (hypophysectomy) is tantamount to the caseg1 = 0 = α2 in (2.2b).
Obviously, concentrations of ACTH and cortisol will decrease significantly with enhanced CRH
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FIG. 10. Metabolic blocker is used to reduce cortisol synthesis by 50%, settingγ = 0.5 and other parameters are as in Fig.
2. Simulation results show a significant suppression in plasma cortisol level and a compensatory increase in ACTH and CRH
concentrations (compare with Fig.2).

concentration (3.1). If we supply exogenous ACTH (viz. cosyntropin) at a constant rate, supposea0,
the model (2.2b) takes the following form:

dA(t)

dt
= −b2A(t) + a0. (5.4)

Similar simulation results reveal that both the concentrations of ACTH and cortisol increase significantly
with reduced CRH concentration (see Fig.11).

5.4 Profile of plasma CRH, ACTH and cortisol concentrations during ACTH infusion

ACTH infusion (viz. cosyntropin) can be represented from the model (2.2b) as follows:

dA(t)

dt
=

α2V

K + Cm(t − τ2)
+ g1R(t) − b2A(t) + a1, (5.5)

wherea1 is the infusion rate of ACTH. Simulation results of (5.5) along with (2.2a) and (2.2c) reveal
that the cortisol level rises within a short period, whereas CRH and ACTH levels fall (see Fig.12).
Thus, the cortisol stimulation test is the ideal method for evaluating adrenal function in all cases except
those involving recent hypothalamic or pituitary dysfunction (Grinspoon & Biller, 1994). If subnormal
cortisol response to ACTH is observed, it would be a case of adrenocortical insufficiency.

5.5 Profile of plasma CRH, ACTH and cortisol concentrations during CRH infusion

When CRH is infused to a healthy subject, then both ACTH and cortisol concentrations are elevated
(see Fig.13). In this case, (2.2a) has to be replaced by
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FIG. 11. The subject is being hypophysectomized at timet = 100 min; the ACTH and cortisol concentrations decrease, resulting
in compensatory increase in CRH concentration. This hypophysectomized subject is again given synthetic ACTH at timet = 175
min and the concentrations return almost to the previous normal level. The parameters are as in Fig.2, exceptg1 = 0 = α2 and
a0 = 0.1.

FIG. 12. Predicted hormone concentrations when a normal subject is being given synthetic ACTH at timet = 100 min. Observe
that plasma ACTH concentration increases immediately after ACTH infusion followed by cortisol, whereas CRH concentration
declines due to negative-feedback effect of cortisol. This negative-feedback effect also pulls back ACTH and CRH concentrations
from their peak before it stabilizes. Here,a1 = 0.5 and other parameters are as in Fig.2.
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FIG. 13. When CRH is infused at timet = 100 min in a normal subject, its plasma concentration increases within a few minutes,
resulting in elevated ACTH and cortisol concentrations. When cortisol concentration increases, negative-feedback effect begins
to play its role on the secretion of CRH and ACTH. Parameter values remain unchanged as in Fig.2 with r1 = 0.4.

dR(t)

dt
=

α1V

K + Cm(t − τ2)
− b1R(t) + r1, (5.6)

wherer1 is the infusion rate of CRH. This test is used clinically to assess ACTH secretary dynamics.
In healthy subjects, CRH provokes a peak ACTH response within 15 min and a peak cortisol response
within 30–60 min. Patients with primary adrenal insufficiency have elevated basal ACTH levels and
exaggerated responses to CRH. Secondary adrenal insufficiency results in an absent ACTH response
to CRH in patients with pituitary corticotroph destruction. However, in patients with hypothalamic de-
struction, there is a prolonged and augmented ACTH response to CRH with a delayed peak.

5.6 Profile of plasma CRH, ACTH and cortisol concentrations when a CNS-driven pulse
generator term is coupled with the primary feedback mechanism of the HPA axis

From the foregoing discussion, it is clear that the pulsatile hormone release is an auto-generation process
driven by the feedback mechanism of the HPA axis. However, we are still unable to show the circadian
variability of the hormone secretion of the HPA axis. To observe this, we consider a CNS-driven pulse
generator term coupled with the primary feedback mechanism of the HPA axis. The internal biolog-
ical clock, the hypothalamic suprachiasmatic nucleus (SCN), generates the rhythmic activity of the
HPA axis (Caufreizet al., 2002;Cermakian & Boivin, 2003;Dijk & Lockley, 2002). The hypothala-
mic paraventricular nucleus (PVN), a part of the hypothalamus, controls the secretion of CRH from the
hypothalamus to the hypophyseal portal vessels. Thus, taking into consideration the CNS-driven pulse
generator in our model (2.2), we show that the modified model is capable of producing the 24-h diurnal
variability (circadian) as well as the pulsatility (ultradian) of the hormone concentrations, as prescribed
in the literature of endocrine physiology. This pulse-generating function is best represented by a continu-
ous function having discontinuous derivatives at a finite number of points. A smoothly varying function
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FIG. 14. Simulation results of (5.8) along with (2.2b) and (2.2c). This figure shows that when CNS-driven pulse generator term
is coupled with the primary feedback mechanism, HPA axis exhibits both the circadian and the ultradian variabilities. Hormone
concentrations attain its maximum value at about 8 AM and its minimum value in midnight.

will not mimic the pulse generation properly.Jelic et al. (2005) considered a complicated sine func-
tion (which is a continuous function with discontinuous derivatives) to represent this periodic input and
multiplied this input function with the rate constant of ACTH to observe circadian rhythm of cortisol
only. We consider, rather, a linear combination of sine functions for the pulse generator functionP
defined by

P = 1 + 0.2 sin

(
2πt

24

)
+ 0.6

∣
∣
∣
∣ sin

(
π t

24

)∣∣
∣
∣. (5.7)

Since the CNS-driven pulse generator stimulates hypothalamic CRH via SCN and PVN (Larsenet al.,
2003), we consider this pulse-generating term in the CRH rate equation. In this case, (2.2a) would be

dR(t)

dt
=

α1PV

K + Cm(t − τ2)
− b1R(t), (5.8)

whereP is defined by (5.7). From the simulation results of (5.8) along with (2.2b) and (2.2c), we observe
both the ultradian and the circadian patterns of the hormone secretion (see Fig.14) with a minimum
around midnight, peaking in the early morning hours and then falling during day, as described in the
medical literature (Felig,1995;Greenspan & Strewler, 1993).

5.7 Profile of plasma CRH, ACTH and cortisol concentrations following onset of stress

Plasma ACTH and cortisol secretion are also characteristically responsive to physical stress.
Stress responses originate in the CNS and increase hypothalamic CRH. It is observed that ACTH and
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FIG. 15. A normal subject is supposed to be in stressed condition at timet = 24 h with stress factors = 0.2. Observe the stress-
driven multifold increment in cortisol concentration compared to Fig.14. Concentration returns to its normal level when stress is
put off. Other parameters are same as in Fig.14.

cortisol are secreted within minutes following the onset of stresses such as surgery (Ganong,1999;
Greenspan & Strewler,1993). This is just like a case of CRH infusion in the system. Accordingly, (5.8)
changes to

dR(t)

dt
=

α1PV

K + Cm(t − τ2)
− b1R(t) + s, (5.9)

wheres is the stress factor. Thus,s = 0 is the state when there is no stress ands > 0 is the state
following the onset of stress. Performing computer simulation as usual, we get Fig.15 for the stress
factor s = 0.2. It is observed that cortisol concentration increases rapidly due to the stress factor and
destroys both the ultradian and the circadian variabilities. A similar increment in concentrations for
other hormones is also observed. This result is well in accordance with the clinical results ofPlumpton
et al. (1969).

6. Summary

In this work, we have developed a simple and biologically realistic model that is general enough to
capture the vital mechanisms of the HPA system activities. We have proposed three-component non-
linear delay differential equations (see (2.2)) consisting of CRH(R(t)) released from the hypothalamus,
ACTH (A(t)), which is released from the corticotroph of the anterior pituitary due to the stimulation of
CRH and cortisol(C(t)), which is the main product of ACTH stimulation of the zona fasciculate and
reticularis cells of the adrenal cortex.

From the foregoing study, we infer that (i) the feedback mechanism, an auto-generation process, of
the HPA axis is sufficient to show the ultradian variability of the hormone secretion but fails to show
the circadian variability, (ii) a CNS-driven pulse generator term coupled with the primary feedback
mechanism of the HPA axis can exhibit both the ultradian and the circadian variabilities in the hormone
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secretion,(iii) the model can predict different dynamics of the normal HPA axis following physiological
and pathological changes, (iv) the HPA axis may lose pulsatility, which is absolutely essential for its
normal function, following different physiological and pathological changes or due to constant infusion
of exogenous hormones and finally (v) the delays in the positive- and negative-feedback loops act in a
complementary fashion, but this cooperativeness could be a hurdle to an early detection of the HPA axis
disorder.

Our simple model provides a useful first step in understanding the complex dynamics of the HPA
axis. But there are some obvious deficiencies of our model which should be taken into account for
further modifications of the model. First, our present model does not consider the mechanisms for the
synthesis as well as release of the hormones involved. Second, we have neglected the other sources
of CRH which is produced and presumably secreted by many extrahypothalamic tissues (Orth, 1995).
We have also neglected the short feedback loops which are present in the HPA systems (Felig, 1995;
Greenspan & Strewler, 1993;Lenbury & Pacheenburwana, 1991). One can also choose a different time
delay required by cortisol for stimulating pituitary and hypothalamus (i.e.τ

′

2 6= τ
′

3). Incorporating these
phenomena, one can mathematically represent the HPA axis mechanism in a more precise way at the
expense of producing more complex mathematical equations which would probably have to be analysed
numerically. In spite of these caveats, our model can exhibit the basic characteristics of the HPA axis
and can be used to understand real life systems.
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Appendix A. Proof of Theorem3.1

To find conditions for the local asymptotic stability of system (2.2), we use the following theorem of
Gopalsamy(1992).

THEOREM A1 A set of necessary and sufficient conditions for the equilibrium(s) to be asymptotically
stable for allτ > 0 is the following:

(i) the real parts of all the roots ofF(ξ, 0) = 0 are negative,

(ii) for all real ω and anyτ > 0, F(iω, τ) 6= 0 where i=
√

−1.

Onecan easily verify, using Routh–Hurwitz criteria, that the sufficient condition for the local stabil-
ity of the corresponding non-delayed system (i.e. when the biochemical reactions are instantaneous) of
(2.2) isb2 + b3 > g1α1

α2
. Under these conditions,F(ξ, 0) = 0 has roots with negative real parts.

Forω 6= 0,

F(iω, τ) = − iω3 − B1ω
2 + iB2ω + iB3ω(cosτω − i sinτω) + B4

+ B5(cosτω − i sinτω),

and forω = 0,
F(0, τ ) = B4 + B5 6= 0.
Let F(iω, τ) = 0 and separating the real and imaginary parts, we get

B1ω
2 − B4 = B3ω sinτω + B5 cosτω,

ω3 − B2ω = B3ω cosτω − B5 sinτω.

Squaring and adding the above two equations, we get

ω6 + Q1ω
4 + Q2ω

2 + Q3 = 0,

where

Q1 = B1
2 − 2B2 = b1

2 + b2
2 + b3

2(>0),

Q2 = B2
2 − 2B1B4 − B3

2,

Q3 = B4
2 − B5

2.

Sufficient conditions for the non-existence of a real numberω satisfying F(iω, τ) = 0 can be
written as

ω6 + Q1ω
4 + Q2ω

2 + Q3 > 0,

whichcan be transformed to

ω6 + Q1

[
ω2 +

Q2

2Q1

]2

+ Q3 −
Q2

2

4Q1
> 0.

Therefore,a sufficient condition forE∗ to be stable for allτ > 0 is Q3 >
Q2

2
4Q1

. Hence Theorem3.1.
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Appendix B. Proof of Theorem3.2

Let us considerτ 6= 0 and assumeξ = μ̄ + iν̄ in (3.5). Then, separating the real and imaginary parts,
we get the system of transcendental equations:

μ̄3 − 3μ̄ν̄2 + B1(μ̄
2 − ν̄2) + B2μ̄ + B3μ̄ e−μ̄τ cosν̄τ

+ B3ν̄ e−μ̄τ sinν̄τ + B5 e−μ̄τ cosν̄τ + B4 = 0, (B1)

− ν̄3 + 3μ̄2ν̄ + 2B1μ̄ν̄ + B2ν̄ − B3μ̄ e−μ̄τ sinν̄τ

+ B3ν̄ e−μ̄τ cosν̄τ − B5 e−μ̄τ sinν̄τ = 0. (B2)

Let us considerξ and hencēμ andν̄ as functions ofτ . We are interested to know the change of stability
of E∗, which will occur at the values ofτ = τ̂ for which μ̄ = 0 andν̄ 6= 0.
Then, (B1) and (B2) become

B1ν̂
2 − B4 = B3ν̂ sinτ̂ ν̂ + B5 cosτ̂ ν̂,

ν̂3 − B2ν̂ = B3ν̂ cosτ̂ ν̂ − B5 sinτ̂ ν̂.

}

(B3)

Eliminating τ̂ , we have

ν̂6 + Q1ν̂
4 + Q2ν̂

2 + Q3 = 0. (B4)

In order to establish Hopf bifurcation atτ = τ̂ , we need to show thatdμ̄
dτ 6= 0 at τ = τ̂ . We differentiate

(B1) and (B2) with respect toτ and settingτ = τ̂ , μ̄ = 0 andν̄ = ν̂, we get

L̄
dμ̄

dτ
(τ̂ ) + M̄

dν̄

dτ
(τ̂ ) = X,

−M̄
dμ̄

dτ
(τ̂ ) + L̄

dν̄

dτ
(τ̂ ) = Y,





(B5)

where

L̄ = −3ν̂2 + B2 + B3 cosν̂τ̂ − B3ν̂τ̂ sinν̂τ̂ − B5τ̂ cosν̂τ̂ ,

M̄ = −2B1ν̂ + B3 sinν̂τ̂ + B3ν̂τ̂ cosν̂τ̂ − B5τ̂ sinν̂τ̂ ,

X = −B3ν̂
2 cosν̂τ̂ + B5ν̂ sinν̂τ̂ ,

Y = B3ν̂
2 sinν̂τ̂ + B5ν̂ cosν̂τ̂ .

Solving (B5), we get

dμ̄

dτ
(τ̂ ) =

L̄ X − M̄Y

L̄2 + M̄2
,

wheredμ̄
dτ (τ̂ ) has the same sign as that ofL̄ X − M̄Y.

Substituting the values of̄L, M̄ , X andY and using (B3), we get

L̄ X − M̄Y = ν̂2[3ν̂4 + 2Q1ν̂
2 + Q2].
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Let

Ψ (z) = z3 + Q1z2 + Q2z + Q3,

which is the left-hand side of (B4) witĥν2 = z.
Then,Ψ (ν̂2) = 0 and we note that

dμ̄

dτ
(τ̂ ) =

ν̂2

L̄2 + M̄2

dΨ

dz
(ν̂2). (B6)

Hence,we can describe criteria for the preservation of stability (instability) geometrically as follows:

(1) If the polynomialΨ (z) has no positive roots, there is no change of stability.

(2) If Ψ (z) is decreasing (increasing) at all its positive roots, stability (instability) is preserved.

We note the following facts:

(i) For the existence of̂ν > 0, Ψ (z) must have at least one positive real root.

(ii) SinceΨ (z) is cubic inz,

lim
z→∞

Ψ (z) = ∞.

(iii) If Ψ (z) has a unique positive root, then it must increase at that point to satisfy (ii).

(iv) If Ψ (z) has two or three distinct positive real roots, then it must decrease at one root and increase
at the other; hence, (2) is not satisfied.

(v) SinceQ1 > 0, if Q3 < 0, thenΨ (z) has only one positive root.

(vi) SinceQ1 > 0, if Q3 > 0 andQ2 < 0, then (1) will be satisfied.

Now, if Q1 > 0, Q3 > 0 andQ2 < 0, then the minimum ofΨ (z) will exist at

zmin =
−Q1 +

√
Q1

2 − 3Q2

3

and(i) will be satisfied ifΨ (zmin) > 0,

i.e. 2Q1
3 − 9Q1Q2 + 27Q3 > 2(Q1

2 − 3Q2)
3/2. (B7)

Thus,if Q3 > 0 and the relation (B7) holds, then the stable positive equilibriumE∗ remainsstable for
all τ > 0. Hence, the first part of the theorem.

With B3 = 1, i.e.α2mg2VC∗m−1 = (K + C∗m)2, the characteristic equation (3.5) can be written as

3∏

i =1

(ξ + bi ) +
(

ξ +
(g1α1 + b1α2)

α2

)
e−ξτ = 0. (B8)

If we assume that forτ = 0, all the solutions of (B8) have Reξ < 0 (which is true ifb1 + b2 > g1α1
α2

),
thenit was shown inMahaffy (1982) that whenever (3.6) and (3.7) hold, there exists aτ0 > 0 such that
for τ = τ0, (B8) has two purely imaginary solutions±ξ0 = ±iρ0 andall other solutionsξ have Re
ξ < 0. If we considerτ as the bifurcation parameter, then asτ increases we have a transverse crossing
of the imaginary axis by a pair of eigenvaluesξ , thus a Hopf bifurcation occurs (Mahaffy, 1985).
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When(3.6) and (3.7) are satisfied and (2.2) is locally stable forτ = 0, Mahaffy (1982) gives a
technique for computing the critical valueτ0 atwhich the Hopf bifurcation occurs. If we define

X(iρ) =
3∏

j =1

(iρ + bj )

and

Y(iρ) = iρ +
(g1α1 + b1α2)

α2
,

thencomputeρ0 suchthat |X(iρ0)| = |Y(iρ0)|, which has a unique solution as|X(0)| < |Y(0)| (from
(3.6)) and|X(iρ)| increases monotonically withρ. After some algebraic calculation, we found thatρ0
is the positive root of the equation

ρ6
0 + (B2

1 − 2B2)ρ
4
0 + (B2

2 − 2B1B4 − 1)ρ2
0 + B2

4 −
(g1α1 + b1α2)

2

α2
2

= 0.

Thecritical value of the delayτ0 is found by the formula

τ0 =
π − arg P(iρ0)

ρ0

and

arg P(iρ0) =
3∑

j =1

arctan

(
ρ0

bj

)
.

Hencethe theorem.
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