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Role of horizontal incidence in the occurrence and control of chaos in an
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A predator—prey model with disease in the prey population is proposed and analysed. The mode of dis-
ease transmission plays an important role in such dynamics. Keeping this factor in mind, we observe the
dynamics of such a system for simple mass action incidence and standard incidence. Our observations
indicate that the phenomenon of rarity or non-occurrence of chaos in our proposed model is well defined
if the mode of disease transmission follows standard incidence. Moreover, using the method of Latin
hypercube sampling, we show that the region of stability increases if the disease transmission follows the
standard incidence law.

Keywords eco-epidemiology; horizontal incidence; chaos; Lyapunov exponent; Latin hypercube
sampling.

1. Introduction

S[euInolpIoyXo”quILLIEBWI WOoJ) Papeojumod

Mathematical models have become important tools to analyse the spread and control of infectious dise
eases. Most models for the transmission of infectious diseases descend from the classical Susceptib@-
Infective-Recovered model of Kermack and McKendrick. Susceptible individuals become infectious by <
contact with infectious individuals. There are some biological differences between typical predator—prey&
interactions and infectious diseases, but these differences have identified some potentially fruitful avs
enues of researclc@rnet al, 1998). In the natural world, the species not only spreads the disease but & g
also competes with other species for space or food or is predated by other species. Probably, Hadeler &
Freedman1989) were the first to describe a predator—prey model where the prey is infected by a par-3
asite and the prey in turn infects the predator with the parasite. After that, a number of papers have®
already appeared in this direction (e.g. Seaturino,1995,2001; Hethcote,2000; Chattopadhyay &
Bairagi,2001; Hethcotest al., 2004, etc.) and these type of models are known as eco-epidemiological
models (see Chattopadhyay & Arint999).

Most of the earlier works on eco-epidemiology modelling are based on finding the stability and
persistence of a system (eginghet al, 2004). These models are analysed by considering a linear
approximation to the non-linear equations that ecologists conventionally assume to be more complex
situations (Hastings & Powel,991). But now the terms chaos, strange attractor and fractal are familiar
to many, if not all, ecologistsSchaffer & Kot 1986). In factAllen et al. (1993) showed that chaos can
even prevent global population extinction if there are several distinct subpopulations that are weakly
coupled by migration and subject to locally varying external noise. The key feature of chaotic dynamics
is the sensitive dependence on initial conditions. Even a small change in initial conditions can lead
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to different results Chatterjeeet al. (2006) proposed and analysed an eco-epidemiological model to
observe the occurrence and control of chaos. They concluded that along with the rate of infection, the
rate of predation also plays a pivotal role for monitoring the dynamics of the system.

Chatterjeeet al.(2006) assumed that the disease transmission follows a simple mass action incidence
law. It is seen that in the case of constant total populakigrif the disease is not fatal and the model
does not address vital dynamics (the normal birth and death dynamics), then the infectibsiteray
be justified(since% is now a constant wheres is the susceptible population ands the infective
population. Here, the meaning bbecomes the encounter infection rate. But, for a large population, an
individual’s finite and often slow movements prevent it from making contact with a large number of in-
dividuals in a unit time. Such a mechanism is better describélis-ﬁythanbsi. For exampleD’Amico
et al. (1996) fitted a simple mass action model and found that the estimated transmission coefficient
declined with both infected and susceptible host densities, showing that the simple mass action model
was inadequate to describe the transmission process. Béghri1998,1999) concluded that standard
incidence is a better descriptor of transmission dynamics than density-dependent transmission for cow-
pox. Many more small-scale experiments showed that simple mass action did not describe transmission
adequately (e.g. sékeesoret al.,2000;Barlow, 1991,2000). The difference between the behaviour of
different forms of the disease transmission are given in many paper&éseé& Hethcote1992;Gao
et al., 1995,1996; Hethcote & Van Ark,1987; Mena-Lorca & Hethcote1992, to mention a few). In
spite of the above observations, it is still an open question which functional form better describes the
mode of disease transmission.

The main aim of this article is to compare the outcomes of two infection mechanisms, standard
incidence or simple mass action incidence, with special emphasis on chaotic behaviour. To address this
guestion, we have considered the model propose@Hmtterjeect al. (2006) and modified the model
by assuming that the disease transmission follows standard incidence law. We compared the dynamical
nature of the two systems numerically for a wider range of force of infection. Finally, we use Latin
hypercube sampling (LHS), a stratified sampling technique that produces a more uniform distribution
of sample points throughout the sample space (Setithl., 2005), to observe the dynamics of our
considered model systems in the full range of parameter space. It helps us to indicate which form of
the disease transmission will increase the stability region when the parameters are randomly generated.
Our observations indicate that it is more easy to make the system stable around the positive interior
equilibrium when disease transmission follows standard incidence instead of mass action incidence. It
is also observed that the risk of getting chaos in the system becomes much less if the force of infection
follows standard incidence.

The organization of the paper is as follows: We first discuss the basic formulation of the model in
Section2. In Section3, we discuss some preliminary results that include the boundedness of the solu-
tions and the conditions for the existence of different steady state. In Sd¢tianfind the conditions for
the local stability of different equilibrium points and persistence of the coexistence equilibrium point. In
Section5, we perform the numerical simulations with special emphasis on the chaotic dynamic of the
system. In SectioB.1, we have used LHS technique to see whether our result holds true when all the
system parameters are varied simultaneously. The article ends with a discussion.

2. The basic mathematical model

Chatterjeeet al. (2006) proposed a predator—prey model in which a transmissible disease is introduced
into the prey population. They made the following assumptions.
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They assumed that the disease spreads among the prey population and the disease is not genetically
inherited. As a result, the total prey population is divided into two classes: one is the susceptible prey
population ‘s and the other is the infected prey populatioh Therefore, at any time, the total prey
population isn(t) = s(t) +i(t). They assumed that the susceptible prey population grows in a logistic
fashion with carrying capacitk > 0 and intrinsic growth rate constant> 0. They further assumed
that the infected prey population cannot grow, recover or reproduce. But the infected prey population is
capable of contributing towards the carrying capacity of the susceptible prey population. The incidence
is assumed to follow simple mass action incidensg wherec > 0 is called the transmission coeffi-
cient. Finally, they assumed that the predator populgtipredates both the susceptible and the infected
prey population and the predation of both the prey population has a positive effect on the growth rate of
the predator populatiop

With these biological assumptions, they proposed the following mathematical model:

ds S+i . .
a7 _rs(l K ) pF(s,i) — csi,

di . . .
a7 csi— pG(s,i) — ei,

d ) .
d_$ = p(diF (s, i) + daG(s, i) — T),

whered; andd; arethe conversion rates of the susceptible and the infected prey population, respectively,
by the predator population. Moreovei, andd; lie in the interval (0, 1)e denotes the natural death rate

of the infected prey populations arfdis the natural death rate of the predator populatfe¢s, i) and

G(s, i) denote the predator functional responses for the pregat@spectively.

They took the predator functional responses (which play an important role in determining the long-
term behaviour of a systerhtastings & Powell1991) for the predatop with respect to the susceptible
prey populatiors (i.e. F(s,i)) and the infected prey populatian(i.e. G(s, i)) as modified Holling
type-Il functional responses (s&akkhar & Naji,2003), i.e.

ais
1+ bys + boi
which satisfy the following two conditions:
H1. F(0,i) =0 and%t > 0,vs >0,
H2. G(s,0) =0 and4¢ > 0,vi >0,
wherea; anday arethe searching efficiency constants or equivalently the predation rates on the suscep-
tible and the infected prey populations, respectively, lanendb, arethe positive parameters charac-

terizing the modified Holling type-Il functional response.
With these assumptions, they proposed the following set of differential equations:

ai

F(si) = S —
1) 11 bst o’

and G(s,i) =

T1T0Z ‘62 Arenuer uo 1sanb Aq B1o sjeuinolpiofxo’quiwewi woiy papeojumoq

ds SH+i aisp .

a7 _rs(l K ) 1+bistba "

di ) azip .

a _ il _ 2.1
it o oS £ 5o e, (2.1)

dp _ (dhus+doh)p
dT =~ 1+ b1s + boi
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All the rate parameters are positive and constant. They assumed the positive initial conditions as
s(0) > 0,i(0) > 0 andp(0) > 0 for some initial time.

Here, we modify the model dfhatterjeeet al. (2006) by taking standard incidence as the mode of
disease transmission. Under this assumption, Systehh akes the following form:

ds—rs 1 S+i aisp csi
daT k 1+bis+boi  s+i’

di _ csi B aip
dT ~ s+i 1+bis+hoi

—d, (2.2)

dp _ (diass+ doaoi)p
dT 1+ bis+ byi
For simplicity, we non-dimensionalize the model system (2.2) with the following scaEBng:E,

| = P = "‘%—p andt = r T; with these quantities, System (2.2) is transformed into a dimensionless
form as follows:

ds SP A8l
—=51-S-1)— -
dt ( ) 1+aS+ 8l S+1°
| | P
d_ 45 ’ o, (2.3)

dt  S+1 1+aS+pl
dP _ (e1S+el)P

dt ~ 1+aS+pl M

Wherel=r9,5=$,y=g—i,azblk,ﬂzbzk,uz{,q:@and@:@.

3. Preliminaries
3.1 Positive invariance

Let us put (2.3) in a vector form by setting

X =col(S 1,P) e R®, (3.1.1)
- SP 2SI ]
S(1_S_I)_1+ S+pAl  S+1
F1(X) asS+/
S yIP
F(X)= | Fa(X) | = - -3l 3.1.2
) 2(%) S+1 1+aS+pl ’ (3.12)
Fa(X) (@e1S+e)P
1+aS+ Bl i
whereF: C; — R%andF e C®(R3). Then, (2.3) becomes
X = F(X), (3.1.3)

with X(0) = Xo € R3. Itis easy to check in3.1.2) that whenever choosing(0) € R? suchthat
Xi = 0,thenF; (X)|x;=0 = 0 (i = 1, 2, 3). Due to the lemma dlagumo(1942), any solution 0f3.1.3)
with Xo € R3, sayX(t) = X(t; Xo), is such thaiX (t) € RS forall t > 0.
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3.2 Theequilibria and their existence conditions

System 2.3) possesses the following biological feasible equilibria (other then the positive equilibrium
point): Eo = (0,0,0), E1 = (1,0,0), E2 = (S,0,P’), whereS = £ andP’ = %,
Ez= (5 T,0), whereS = 21=449) gngj — U=Al=i4d)

REMARK 3.2.1 The equilibriaEg andE; exist for any parametric value, whilg; exists ife; > u(a+1)
andEs exists if6 < 1 < 1+4.

We now seek the regions of parameter space for which the model system (2.3) admits a feasible

interior equilibrium. Any feasible equilibria must correspond to a positive ®obf the quadratic
equation

w1S? + w2S+ wa, (3.2.1)

wherews1, wz, w3 aregiven by

() w1=2yuaes —y u’a® + 2y p’ap — 2yerup — y u?p% — y €
+2ye16 — 2y pae — y € + 2y e2up,
(i) wo=7y€ +2yper — 2y p’a — yerer + y u? > — 165 + o6
—e1&r + ouPp® — Ay erup + Ay prap — Ay paer
—y plap + duaes — Sulap + derup + 2ieup (3.2.2)
— 20821 — 2y pex + 2y uPp + Ay erer — 2y eopfp
+y uaes + yewup — AuPp?,

(i) ws= 2y u?f —yu?—yu®p —ou’p+yuer— iy uer + due,

for which additionally

0.

—e)S S +el)((-9)s —dl*
o i er—e)S e @S+l -9) )
€ — up uy (s*+1%)

REMARK 3.2.2 The sufficient conditions for the existence of unique interior equilibrium point are as
follows:

(i) 2(u(era + &p) + €16 + au?p) > p?(a? + p2) + 2u(@rf + ea) + € + €5,
(i) 1y >0,
(i) ex+iup <u@d+p).

3.3 Boundedness of the solutions

Let us first recall (without proof) the following lemma due to Barbalat (1959).
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LEMMA 3.3.1 Let g be a real-valued differential function defined on some half limeHoo), a €
(=00, +00). If (i) lim - 100 9(t) = a, |a| < 400, and (ii) g’ (t) is uniformly continuous fot > a, then
limi- 400 g'(t) =0.

We shall prove the following key lemma.

LEMMA 3.3.2 Assume that the initial condition of (2.3) satisfi&s+ 1o > 1. Then, either (i)S(t) +
[ (t) > 1forallt > 0 and therefore as— +oo, (S(t), | (1), P(t)) > E1 = (1,0,0) or (ii) there exists
at; > Osuch thatS(t) + I (t) < 1forallt > t;. Finally, if S+ lp < 1,thenS(t) + 1 (t) < 1 for all
t>0.

Proof. See Appendix A. O

LEMMA 3.3.3 Assuminge; < 1andey < y, there is anM > 0 such that for any positive solution
(S(t), 1 (1), P(t)) of System (2.3)P(t) < M for all larget, where

1
6 9
Proof. See Appendix A. a

M = & =min{l, 8, u}.

THEOREM3.3.1 The setQ is a global attractor ing . and,of course, it is positively invariant, where

Q={(S1,P)eR3, :S+1 <1, P< M}

Proof. See Appendix A. O

4. Local stability analysis and persistence

THEOREM 4.1 If the axial equilibrium is stable, then the disease-free equilibriegrandthe planar
equilibrium E3 do not exist, while the existence &> or E3 ensureshe instability ofE;. The disease-
free equilibriumE is stable providedl — y + yx —Jd < 0 ande; + ua < a(er — pa). The planar
equilibrium Ez is stable ifd > 0, i.e.(—a + f)0* + (ha + f —a — 2BA)d — 1 + pA% — pA > 0.

Proof. The variational matrixJ of System (2.3) around any arbitrary po{ig |, P) is given by

1+pHP A2 BSP 2 -s
1-25—1 = fospiz ~ g ~St Wuspi? ~ Gi? TraSAl
212 ay | P 182 yPA4aS _ __ 7l
JS I, P) = &2 T @rasipn? G2~ Wrastpn? 0 T+aSHAI
PEeit+efl —aggl) P(—e—eaStpe1S) (&1S+epl)
(1+aSt+A1)? (1+aStp1)2 T+aStpl — H
(4.1
At the axial equilibriumEy, we have
-1
-1 -(1+d
JA1,0,0)=| 0 A1-9¢ 0 . (4.2)
e
0 S e
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SinceJ(1,0,0) is a upper triangular matrix, its eigenvalues a#g, 1 —o and% — u. Accordingly,
E;1 isstable if% < wandl < 4, andis saddle i% > pori > 4. Thus, the existence of the disease-
free equilibriumE; or the planar equilibriuniEs ensureghe instability ofE; andvice versa.

Consider now the disease-free equilibrilan We have

(—eratertua+ua)y  BotP) P +(—pertei—ieia)u+ie  —pu

ei(e1—ua) ei(e1—pua) e
J(S,0,P) = 0 oty fetbiiiazasia g . (4.3)
—(e—up)(er—pa—p)
€ —uoa—pu #el—,ua S 0

Thecharacteristic equation of (4.3) is given by
[—(e1 — ua)x + (€1 — ua)(h — y + y i — S)|[—ew(er — ua)x®
+ u(ua® + po + € — eya)x — p(ey — pa)(@ — u — pa)] = 0. (4.4)
We know thatE; exists ife; > u(a + 1). Hence, 4.4) will have roots with negative real parts if

A—y+yu—9J<0ande + ua < a(er— ua).
Finally, at the planar equilibriuriks, we have

T1T0Z ‘62 Arenuer uo 1sanb Aq B1o sjeuinolpiofxo’quiwewi woiy papeojumoq

—142/-28)0  (=14+A—20)¢ 3

(=1+ 7 N0 ( +A ) 55
JGS,1,0)= @ﬁ — =2 v (L= 6)5 , (4.5)

0 0 —(0e1 + €4 — 0€2)0 — i
where
5 @A-2+49)
C(—a+ PP+ (Ga+p—a—2B0)5— i+ pI2— B
The characteristic equation of (4.5) is given by

[X + 60€) + de(A — ) + ul[AX% + 61+ — )X+ 6(A — )1+ — )] = 0. (4.6)

Assumingd > 0, we see from4.6) that wheneveE3 exists, it is locally, asymptotically stable.
Hence the theorem.

For the positive steady stale* = (S*, | *, P*), it is not an easy task to find the explicit criteria for
the local stability of the interior equilibrium points in terms of the system parameters. The application
of the Routh—Hurwitz criteria gives rise to a complicated mathematical expression, and as such we do
not find its biological meaning. Before proceeding to numerical experiments of the system &tund
we would like to study the persistence of System (2.3). Biologically, persistence means the survival of
all populations for all future time. To examine the persistence of the model systems under consideration,
we shall use the method of ‘average Lyapunov function’ (Seed & Hallam 1979;Hofbauer,1981).
This method was first applied Byutson & Vickers(1983) on ecological problems. O
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THEOREM4.2 System (2.3) is persistent if

(i)

(e1—uo)(A—yer—d)+eyu>0,
(i)
(146 —2)(0er+ (2 — ) > u(—p22+ (2 — a)d+ 1+ f)A+ (¢ — B)6* + (o — B)d) > O.
Proof. We consider the average Lyapunov function of the form
V(S I, P) = S| “2p93,

whereeacha; (i = 1,2, 3) isassumed to be positive. In the interiorla3+, we have

\Y;
SI1,P) =~
w(S 1, P) v
P Al
—a|(L—S—1)— -
“l[( S Trasy g S+I:|
7S )P &S+ el
- i asctel 4.7
+“2[s+| 1+ aS+ pl ]+“3[1+as+ﬁ| ”] “.7)

We have already proved that the solutions are bounded in the r&jigee Sectior8.3) and the
trivial equilibrium is a repeller under certain conditions (see Appendix B). To establish the persistence
of the solution, we have to show tha(S, I, P) > 0 at the equilibriggs, Ep, E3 € R8’+,for anyai > 0
i=12,3).

For E1, we have

<<

vi(S1,P) =

=0a1(1 — ) + a3 ( - u) . (4.8)

e
E 1+a
Thus,w1(S, |, P) > 0 whenevelE,; andE3 exist.

For E», we have

V
SI,P)=—
w2(S, 1, P) v

u el—ﬂa—ﬂ—efﬁ-el,ua%-el,u
=a1
E, €1 — ua

Je1— dua —y e + a+1)— el +dua
+a2(el pa —y € +yeua+1) — dey ﬂ)' 4.9)

e — ua

Thus,y2(S, 1, P) > 0if &1 — pa — it — € + erpa +e1u > 0 andiey — Aua — y €2 + yeyu(a +
1) — de1 + dua > 0. Sincee; < 1 (condition for the boundedness of the solution of Syst2r8)( see
Lemma 3.3.3)e; — uo — u — ef +ejua +eu > 0. Thus, if Condition (i) of Theorem 4.2 holds, then
w2(S, 1, P) > 0.
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For E3, we have

- P)_y B ( (1+ 6 — 2)(de1 + &(4 — ) _ )
PSRV TR\ (@it 11 P @ PR+ - p
(4.10)
Thus,w3(S, |, P) > 0if Condition (ii) of Theoren¥.2 holds.
This completes the proof. O

5. Numerical results

Due to the complexity of the model system, the only choice for investigating the long-term behaviour of
System (2.3) is numerical integration. In our numerical study, we shall confine our analysis to System
(2.2). We have performed our numerical simulations with the help of MATLAB (version 6.5) software.
First, we shall study System (2.2) and compare the results with that of System (2.1). Then, for the bette
understanding of disease transmission dynamics, we have used LHS techniques.

The main objective of the present analysis to follow is to investigate the role of the disease trans-
mission to maintain the stability of an eco-epidemiological system. This is a very important problem 3
from the current research point of view as the question ‘how should disease transmission be modelled %
remains unsolvedycCallumet al, 2001). Several laboratory studies have been performed to find an
appropriate solution of this question, some of which have been addressed in the introduction. Our secon
concern is on the occurrence of chaotic behaviour in such a system and the role of disease transmissi
in such occurrences.

It should be noted here that the two models, Systedrik) @nd 2.2), differ only in the functional
response associated with the paramete8o, it is very reasonable to compare the stability of the two
systems around their interior steady states by varying the key paramatet keeping all the other
parameters fixed at some desired feasible levels. The model syatEhwas proposed and analysed
by Chatterjeeet al. (2006). Accordingly, we begin our numerical analysis with the set of hypothet-
ical parameter values (see Tallg previously used byhatterjeeet al. (2006) to represent an eco-
epidemiological system where the disease factors influence the predator—prey system dynamics.

Chatterjeeet al. (2006) observed in their paper that fo= 0.845, Systemd.1) enters into a chaotic
region. But here we observe that for the same parameter values, System (2.2) is stable around the positi
steady state (see Fig. 1).

Now, if we decrease the value ofrom 0.845 to 0.48, retaining the other parameter values same, we
observe that the dynamical behaviour of Syst@md) changes from a stable focus to a strange attractor
(see Fig2). Figure2 is obtained by letting the system run for 20,000 time steps and examining for the
last 16,000 time steps to eliminate transient behaviourlisetings & Powell1991).

Our next task is to observe whether the strange attractor is a chaotic attractor or not. We begin the
study by examining plots of each species of SysterR)(against time foc = 0.48. Dynamics that have
irregular behaviour, suggestive of chaos (blestings & Powell, 1991), are illustrated in Fig3. It is
clear that the solutions are bounded but not periodic (seeFand there is no observable regularity in
the time evolution for individual species, e.g. a varying number of secondary maxima between primary
maxima for species andi. The solution plots reveal wandering solutions of an irregularly oscillating
type without any uniform pattern. These type of solutions are said to display chaotic behauviolon &
Smith,1999).

Moreover, we know that there are quite a good number of available sophisticated mathematical tools
to analyse the dynamical behaviour of autonomous systems, in order to conclude the actual nature of

01} papeEd|UMoq
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TABLE 1 Default parameter values taken from the paper of Chatterjee €2@06) which is treated
as the fixed set of parameter values in our numersestion

Parameters/variable Definition Default values Unit
r Intrinsic growth rate 1 day?!
k Carrying capacity 1 individuals ha®
a1 Predation rate on 1 ha per individual day*
as Predation rate on 0.344 ha per individual day*
by Positive constant 4.055 ha per individual
by Positive constant 8.0 ha per individual
f Death rate ofp 0.02 day!
e Death rate of 0.051 day?!
dq Conversion rate 0.21 —
do Conversion rate 0.67742 —
s(0) Initial value ofs 0.094 individuals hal
i (0) Initial value ofi 0.091 individuals hat
p(0) Initial value of p 0.05 individuals ha!
(@ (b) x0°
2 4
g g 3
215 2
g 22
o o
0

0.25

0.025
0.02

0.015

0.4
0 0.2

i 02 i 0.15
Infective prey populatons 0 Susceptible prey populatons Infective prey populatons 0.01

Susceptible prey populatons:

FiG. 1. The figure depicts the dynamics of (a) the system (2.1) with mass action incidence; and (b) the system (2.2) with standard
incidence forc = 0.845.

it. Here, we find Lyapunov exponents (sgprott,2003) to show that the dynamics shown by System
(2.2) forc = 0.48 is actually chaotic. A fundamental property of chaotic dynamics is sensitivity to small
changes in initial conditions. Lyapunov exponents quantify this divergence by measuring the mean rate
of exponential divergence of neighbouring trajectories. If the largest Lyapunov exponent of a trajectory
is negative, then it is stable, while a trajectory with the largest Lyapunov exponent as zero is periodic,
but if the largest Lyapunov exponent is positive then it is chaotic.

All the Lyapunov exponents corresponding to the strange attractor seen i@ &ig.depicted in
Fig. 4, and itis clear that the largest Lyapunov exponent is positive<0.1221, takingls > 12 > 13)
and other two Lyapunov exponents are zetp ¢ 0.0) and negativeAs = —0.195), respectively.
Consequently, the strange attractor is chaotic.

Now, we shall check for the sensitive dependence of the future dynamics on the current state, the final
signature of chaos, where a small change in initial conditions may lead to different dynamical behaviour.
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1.6 |
1.4

1.2

Predator

FIG. 2. The figure depicts the dynamics of Systeh?] (standard incidence ) far= 0.48.

We have illustrated this behaviour by comparing the trajectories generated by slightly different initial
conditions. We have changed the initial value of the predator population by 0.01 (from 0.05 to 0.06),
keeping the initial values of the susceptible and infected prey population fixed, and observed that theS
two initial conditions lead to dynamics that are essentially uncorrelated (although, of course, restrictedgj
to the attractor). It was seen that as time progresses, the system would be indeterminate &ee Fig. &
Thus, even a slight perturbation in species numbers, as would occur naturally, may lead to unpredictabl
results through time.

So, we observe that when= 0.48, System (2.2) enters into a chaotic region. It is known that de-
terministic predator—prey models with strong periodic forcing have a complicated bifurcation diagram &
which includes limit cycles, the period-doubling route to chaos and the quasi-periodic route to chaoss
(Rinaldiet al.,1993;Gragnani & Rinaldi1995). To understand the route to chaos, a systematic investi-
gation of the dynamics was done by constructing a bifurcation diagram. Here, also we have run Syste
(2.2) for 20,000 time steps and examined the last 16,000 time steps to eliminate transient behaviou
Then, we have plotted the successive maxima and minima of all the speciesaagith function of the
control parameter and other parameters are kept fixed at the level given inl{abkFig6).

One objective of studying chaos is to find the reasons behind the occurrence of such dynamics an%
hence to find a probable solution to control such dynamics. We observe from the bifurcation diagram&
(Fig. 6) that if the force of infectiort is increased from 0.48 to 0.75, the dynamics of Syst2r)(
gradually changes from chaos to a stable focus. Thus, to keep SyatEnstable around the positive
steady state or to prevent the system from chaos, we shall have to keep the force of infection above
certain threshold valug, = 0.75.

We shall now try to find the role of simple mass incidence in the occurrence of chaos in an eco-
epidemiological system and compare it with the standard incidence.

We observe from the bifurcation diagram (Fig that to keep Systen2(1) stable around the positive
steady state and to prevent the occurrence of chaos, we shall have to keep the force of infection above a
certain threshold value, = 2.8 which is roughly four times that af,. So, we may say that it is more
easy to keep System (2.2) stable around the positive steady state, than System (2.1).

The main result obtained by comparing the bifurcation diagrams @igsd 7) are presented in
Table2.
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Dynamics of Lyapunov exponents
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FIG. 4. The spectrum of Lyapunov exponent for Syst@n2) around the strange attractor obtainedcfer 0.48, see Fig2.
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FiG. 5. Divergence of trajectories for the predator population for two different initial conditions ‘—’ andliffering only by
0.01 withs(0) andi (0) unchanged.

From Table2, it is clear that the range af for which chaos occurs is much smaller for System
(2.2) in comparison to Systerd.(l). Thus, we may conclude that the occurrence of chaos in the case of
the population following standard incidence rate as the mode of disease transmission is much less than
the population following simple mass action. Hence, we see that the phenomenon of non-occurrence
or rarity of chaos in nature is well defined by the model where the mode of disease transmission
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FiG. 6. Bifurcation diagram depicting the dynamical nature of different populations of System (2.2) (where the mode of disease
transmission follows standard incidence) by varying the paranceteslding the other parameter values fixed at the level given
in Tablel.
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FiG. 7. Bifurcation diagram depicting the dynamical nature of different populations of Sy&téjr(\here the mode the of disease
transmission follows simple mass action incidence) by varying the paramételding the other parameter values fixed at the
level given in Tablel.
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TABLE 2 Simulationexperiments of model syste(2sl) and (2.2) with other parameter
values fixed at the level given in Taldle

Dynamicalbehaviour Dynamical behaviour

of System (2.1) of System 2.2)
Range in which (where the mode of disease (where the mode of disease
the parameter transmission follows transmission follows
cis varied simple mass action) standardncidence)
042<c<047 Limit cycle Limit cycle
048<c< 056 Limit cycle Chaos
057<¢c<0.75 Limit cycle Limit cycle
0.75<c<125 Chaos Stable focus
125<cg27 Limit cycle Stable focus
c>27 Stable focus Stablefocus

follows standard incidence rate. Moreover, the system with mass action incidence as the mode of
disease transmission is more stable around the interior steady state than the system with standard in-
cidence.

We have reached such a conclusion by varying the pararoetsly, holding the other parameter
values fixed at the level given in Table Naturally, a question arises whether the same result holds
when the parameters are not fixed but are chosen randomly from a joint probability distribution. So
a possible extension, as a more sophisticated and powerful support of the above results, is obtained
by assuming that a set of parameter values is a random sample from the joint probability distribu-
tion of the whole parameter space. We assume a Gaussian distribution of the parameters. The logic
behind this assumption is very simple and realistic. First, we have fixed some arbitrary parameters un-
der which both the processess are stable and these values are taken to be the mean of the Gaussial
distribution. Now, we can set the range of the variance in such a way that most of the random sam-
ples will fall in the positive plane. In other words, most of the Bmits of the Gaussian distribu-
tion of the parameters will lie in the positive plane and as a result, most of the random sample will
fall in the positive plane with high probability. It is illustrated through Fggwhere almost all the
histograms are defined in the positiveplane. So, although the Gaussian distribution is defined in
whole real line, it is not unrealistic to assume the underlying distribution of the model parameters to be
Gaussian.

To draw the random sample, we adopt the most commonly and frequently used method of uncer-
tainty and sensitivity analysis of parameters popularly known as LHS.

5.1 Latin hypercube sampling

LHS, a stratified random procedure, provides an efficient way of sampling variables from their distribu-
tions (man & Conovey 1980). The LHS involves samplings values from the prescribed distribution

of each ofk variablesXy, Xo, ..., Xk. The cumulative distribution for each variable is divided ifto
equiprobable intervals. A value is selected randomly from each intervalNNedues obtained for each
variable are paired randomly with the other variables. Unlike simple random sampling, this method en-
sures a full coverage of the range of each variable by maximally stratifying each marginal distribution. In
our case, we haveXy, Xo, ..., Xk) = (c,r, k, a1, ap, by, by, e, f, di, do), i.e. the number of variables

k = 11 and the number of random samples drawe= 10, 000.
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oy
(9]
The algorithm used here to find which incidence function tends to yield greater stability using LHS
can be summarized as follows: o
QO
=}

(1) Give the mean value of each parameter and its standard deviation. In our case, we observg
from Tablel that both the systems are stable around the positive steady state=fd3 with <
other parameters the same as in the text. So, we have considered these parameter values as tfe

L. \S]
mean values of the parameters. We have taken the standard deviation to be 0.01 because th§s
is the maximum standard deviation for which all the parameters fall in the positive region (see "~
Fig. 8).

(2) Then, LHS is used to draw a random sample. The LHS involves the following steps:

Z A

(a) Divide the cumulative distribution of each variable iZNcequiprobable intervals.

(b) From each interval, selecting a value randomly, forithenterval, the sampled cumula-
tive probability can be written as (Wyss & JorgensE®08) Prob = (1/N)ry+(i —1)/N,
wherer, is a normally distributed random numbegy.is an uniformly distributed random
number ranging from 0 to 1.

(c) Transform the probability values sampled into the valusing the inverse of the distribu-
tion functionF ~1, whereF is the cumulative density function of the normal distribution:

x = F~1(Prob).
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(d) TheN values obtained for each variabteare paired randomly (equally likely combina-
tions) with theN values of the other variables.

(3) Using Steps (1) and (2), we have drawn 10,000 random samples (each of which is actually a set
of all the parameter values) from the 11-dimensional parameter space. Then, we have collected
those random samples in s& for which all the parameter values are positive.

(4) Then, we have used the rejection technique. Within the random samples collected in $e set
those sample values for which Systenl() is stable are collected in sé&*and others are re-
jected. Finally, the probability of a sample parameter value falling in a region of parameter space
where SystemZ.1) is stable around the positive steady stRig}), was obtained by

n(A)
P(A) = —=
® =15
wheren(A) is the number of elements in se&*and n(S) is the number of elements in s&!
Similarly, a probabilityP (B) is also obtained for System (2.2) from

B
ZOREES

wheren(B) is the number of elements in s&"
We subtract these two probabilities to obtain a probability difference.

(5) Repeat Steps (3) and (4) for 1000 times. Find the average of all these probability differences. We
observe that the mean 6P (B) — P(A)) > 0 (see Fig9).

We observe that when the parameters are random, then also the system following standard incidence
is more stable than mass action incidence in probabilistic sense. We obtain the above result by setting the
standard deviation at 0.01. In the second stage, we slowly increase the standard deviation up to 0.1 and

05 ; : .
045 .
04 .
0.35
03}
025 -
Qe ‘."'n |
015 :
01} .

0.05 | T -

average of the probability differences (P(B)-P(A))

0 0.02 0.04 0.06 0.08 0.1
Standard deviation

FiG. 9. Figure depicting the relation between the probability difference between the two systems and the standard deviation.
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obsene that the probability of Systen2 (1) to be stable is still more than SystePn?). But obviously,
the probability differences decrease when the standard deviation increases.

6. Conclusion

In this paper, we have modified the model propose€hwtterjeeet al. (2006). The main objective of

this paper is to compare the different modes of disease transmission giving special emphasis to chaotic
dynamics. The mode of transmission is crucially important for two reasons. First, it determines the
probable response of the disease to control. Second, the objective in many models of eco-epidemiology
is to predict what will happen when the infection is introduced into a system in which it does not
currently exist. So, if we know the threshold for disease (i.e. the minimum population size or population o
density of susceptible hosts necessary for the disease to increase), there is a possibility to control thg
diseaselIcCallumet al, 2001). Another important aspect of a dynamical system is the occurrence of
the chaos. It is already known to us that though chaos is rare, it may occur in nature for some realisti
parameter values (Hastings & PowdlR91). In the present study, we have also tried to find a relation
between the occurrence of the chaos and the mode of disease transmission.

We have first shown the boundedness of the solution and worked out analytically the conditions
for the local stability criteria of different equilibrium points and the conditions for the persistence of
both the prey and the predator species. Since the structure of the model presented here is a compléx
one, our main results are based on the numerical simulations. Moreover, numerical simulations help ug
to find the long-term behaviour of the system. With the help of numerical integration, we have shown%.
different dynamical behaviour exhibited by the considered model, e.g. stable population distribution, 5
limit cycle, quasi-periodic oscillation and chaotic behaviour. To confirm the presence of the chaos, we %
have calculated the Lyapunov exponent of the system and the largest Lyapunov exponent is found to bg
positive. It is seen during the chaotic behaviour that though for a short period of time the behaviour mayz
be fairly regular, over a long period of time the irregularities occur in the behaviour of the system, andﬁQ
the sensitivity to the initial condition and unpredictability becomes more visible. &

We observe that if the system follows standard incidence as the mode of disease transmission, theﬁ
the chance for the occurrence of chaos decreases and it becomes easier to make that system stable arognd
the positive steady state. These observations were obtained by varying the pacsamet&olding the §
other parameter values fixed. Finally, using the method of LHS, we have shown that the system Wlth,\;
standard incidence yields more stability even when all the parameters are varied randomly. Eprorlng'N
the entire parameter space, we have observed that the stability region increases in the case of standq@d
incidence.

Finally, our observations may be summarized as follows:

Speoju

ofjuiwrew wolj p

(a) The phenomenon of non-occurrence or rarity of chaos in nature is well defined by the model
where the mode of disease transmission follows standard incidence rate.

(b) The stability region is larger in the case of standard incidence than the simple mass action.
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Appendix A

Proof of LemmeB.3.2. We consider firsd(t) + I (t) > 1 for allt > 0. From the first two equations of
(2.3), we get

(S+yhHP

1+aS+ Bl ol (A5

d
FSO+1)=SL-S-1)-
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Hencefor allt > 0, we have thaf% + d'—d(ttl < 0. Let
tll[rgo St)+1(t) =n. (A.2)

If # > 1, then by the Barbalat lemma, we have

0= Jim (S +1(0) = Jm | SO1- 50 - 10) - TOCH DD a0
< Jim [SO@ = S(t) — 1(1) = a1 O]
= lim [SO@ —n7) — a1 (1)]
< —minf(y = 1), 9} lim (S(t) + 1 (1))
= —min{(y — 1), 5} <O.
This contradiction shows that= 1, i.e.
lim (@) + 1) = 1. (A.3)

Letus denotgy(t) = S(t) + | (t) fort € [0, 00). Of courseg(t) is differentiable andy (t) is uniformly
continuous fott € (0, +o0). Thus, with @A.3) all the assumptions of the Barbalat lemma hold true and,
therefore,

.d
tIer;o a(S(t) + 1) =0. (A.4)
Sincefrom the first two equations oR(3)

d _ (S +7 1 )P()
gt SO+ 1) =SOA= SO — 1) - Tt =0l 0, (A5)

then(A.3) implies that

4 . (SM) + 71 )P ()
Jim &(S(t) +1(1) = lim [S(t)(l— S(t) — 1) — T+aSO+ A0 ol (t)]
(St +y H®)P(1)
__t—>00[1—|—a8(t)+,b’l © + 4l (t)] (A.6)

Hence,(A.4) and @A.6) are in agreement if and only if lim,» | (t) = 0 and lim_, s P(t) = 0, which
jointly from (A.3) implies that lim_, o, S(t) = 1. This completes the case ().

Suppose that assumption (i) is violated. Then, there elgistsO at which for the first timeS(tp) +
| (to) = 1. According to A.5), we have

__ [(S(tO) + 71 (t0)) P(to)
t=tp

d
(SO +1(1)

1+ aS(to) 1 A1 (to) ”'(t")} <0

Thisimplies that once a solution witB+ | has entered into the intervd, 1), then it remains bounded
there for allt > tp, i.e. S(t) + | (t) < 1forallt > to.
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Finally, if S(to) + | (to) < 1, then applying the previous argument it follows tisgt) + 1 (t) < 1
forallt > 0, i.e. (iii) holds true. This completes the proof.
Proof of Lemma.3.3. Lemma 3.3.2 implies that for af$(tp), | (tp), P(tg)) suchthat S(tp) + | (tp) >
1, either a timetg > 0 exists for whichS(t) + 1 (t) < 1forallt > tg orlim{_ o S(t) = % and
limi_ oo | (t) = 0. Furthermore, ifS(tg) + | (to) < 1, thenS(t) + | (t) < 1forallt > 0. Hence, in any
case a non-negative time, sty exists such thatt(t) < 1, S(t) < 1, for allt > t*.

SetW = S(t) + | (t) + P(1).

Calculatingthe derivative oW along the solution of Systen2 (3), we find fort > t*,

(S(t) —e1S(t) + y 1 (t) — exl (1) P(t)
1+aS(t) + Bl (1)

< S(t)L =51 (t) — uP(t) (rea<le<y)

<1-—min{l, 9, u}(S(t) + 1 (t) + P(t))

W = St)(1— St) — 1 (1) —

— ol (1) — uP(®)

—1-¢w,

wheres = min{l, 6, u}.

Thus, there exists a positive constaisuch thaWW (t) < M for all larget. The assertion of Lemma
3.3.2 now follows and the proof is completed.

Let © be the following subset o

Q={(S1,P)R3,:S+1 <1,P <M} (A7)

Proof of TheorenB8.3.1. Due to Lemmas 3.3.2 and 3.3.3, for all initial cond|t|on5R&10 suchthat
(S(tg), I (tp), P(tg)) doesnot belong toQ, either there exists a positive time, sayT = max{y, t*},
suchthat the corresponding soluti@B(t), | (t), P(t) eint 2 forallt > T orthe corresponding solution
is such tha(S(t) I (), P(t)) > E1(1,0,0)ast —» +o0. But, E; € 0Q2. Hence, the global attractivity
of Qin Ro hasbeen proved.

Assume now thatS(tp), | (to), P(tp)) € int Q. Then, Lemma 3.3.2 implies th&(t) + 1 (t) < 1
forallt > 0 and also by Lemma 3.3.3, we know tHaft) < M for all larget. Let us remark that if
(S(to), I (to), P(tp)) € 0Q, becaus&(tp)+1 (tg) = 1 or P(tg) = M orboth, then still the corresponding
solutions(S(t), | (t), P(t)) must immediately enter i or coincide withEj.

Appendix B. Behaviours of the system aroundp(0, 0, 0)

At the trivial equilibrium pointEg, the Jacobian matrix4(1) is not defined. We have analysed the

stability of the system around the trivial steady state following the technique used byedgh¢2004).
Let us now for a moment consider in a general context, i.e. to say we consider a sy®&m in

dXx
T = HOX®) + QX)) (B.1)

in which H is C1-outsidethe origin and is continuous and homogenous of degree 1.

H(sX) = sH(X)
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foralls > 0, X € RN, andQ is aCl-functionsuch that

Q(X) = 0(X)

in the vicinity of the origin. Throughout the sectidh|| denotes the Euclidian norm &N and(-, -) the

associatedhner product. In the case of our modhsl,= 3,
X =(xg,%2,x3) = (S 1, P),
H(X) = (H1(X), H2(X), H3(X)),
Q(X) = (Q1(X), Q2(X), Qz(X)).
ThefunctionH; andQ; (i = 1,2, 3) aregiven by

Hi(X) = S— g—ill
Ha(X) = ;—i —5l,
Ha(X) = —u P,
QﬂM=—T:§%?P
Q““Z‘Tﬁ%EEP
con- 2525

Let X(t) be a solution of System (B.1). Assume that limiinf, o || X (t)|| = 0 and X is bounded.

One can extract from the familyX (t +-))t>0 sequenceX(tn +-), thn — oo, such thaiX(tn+--) — 0

locally uniformly ons € R. Define

. X(th+9)
W) = Xt
Recallthat
Q(X) = o(X)

in the vicinity of the origin. We can then writ® as

Q(X) = (IX[)?0().

We have
dX(th +9)
ds

= H(X(th +9)) + Q(X(th +9)).

(B.2)

(B.3)

(B.4)
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From(B.2), we have

X(tn +9) = Yn(® I X(tn + 9| = Yn(S) - (X(tn +$5). X(tn +9))2. (B.5)
Now, using the derivative ofX(tn + S), X (tn + S)) with respect tes

dX (t + s)>

d
d—s(<X(tn +59), X(th +9))) = 2<X(tn +9), s

in (B.5), we obtain

dX(th +5)  dyn(s) Yn(S)
s = ds UX TR TS

Thereforewe have

<xan Lo, m>

ds

dyn(s)

H(X(th +9)) + Q(X(th +9)) = ds

[X(ta +9)

Yn(S)
T X g X9 HX(t +5) + QX + ).

Now, dividing by || X (tn + S) I andreplacing”ﬂ%ﬁ by yn(s), we obtain

dyn(s)
ds

1
= H(Yn(8)) — (Yn(S), H(Yn(8)))¥n(S) + [ X(tn + 9)|| [m Q(X(th +9))

- <Yn(5), Q(X(tn + S))> Yn(s)i| ;

1
X (th + 9|
whichis equivalent to

dyn
d_ys = [H(Yn(s)) = (n(s), HYn($))Yn(S)] + I X(th + S)I[Q(Yn(S)) = (Yn(S), QYn(S)))¥Yn(S)]-

Clearly, yn is bounded,|lya(s)| = 1 for anys and ddls” = 1 is bounded too. So, applying the
Ascoli-Arzela theorem (see, e.g. BreZi883), one can extract frogp, asubsequence—also denoted by
yn—whichconverges locally, uniformly oR towards some functiopsuch that| X (t,+5) |[[ Q(yn(S)) —
(Yn(8), Q(Yn(8)))¥n(9)]t,—»oc — 0andy satisfies the following system:

d
& = HOO) - 6O, HEODYO,  IyOl =1, vt ©6

Equation (B.6) is defined for alle R.
Let us, for a moment, focus on the study Bf§). The steady states of are vectord/ satisfying

H(V) = (V, H(V))V.
This is the so-called non-linear eigenvalue. Note that the equation can be alternatively written as
H(V) = ¢V,
with ||V | = 1; it then holds thap = (V, H(V)).
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Thesestationary solutions correspond to fixed direction that the trajectorieB.6) fnay reach
asymptotically:

[(¢ —Dov1+ (¢ — 1+ Do2lo1 =0, (B.7)
[(¢ — A+ o1+ (¢ + d)v2]o2 =0, (B.8)
[(¢ + u)vsloz = 0. (B.9)

Now, we are in a position to discuss in detail the possibility of reaching the origin following fixed
direction.
Case 11 =0.

(a) v2 = 0andos # 0. In this case, there is a possibility of reaching the origin following Bhaxis

with ¢ = —pu.
(b) v2 # 0andoz = 0. In this case also, there is a possibility of reaching zero followingl tagis
with ¢ = —6.

(c) v2 # 0andoz # 0. In this case, there is a possibility to reach the origin either it —o or
with ¢ = —u following the P | -plane.

Case 201 # 0.

(a) v2 = 0,03 = 0. In this case, we cannot reach the origin following axis, i.e. to say that the
S-axis is not a fixed direction that the trajectories can follow to reach the zero.

(b) v2 = 0andoz # 0. In this case, we have two possibilities:

(i) with ¢ = —u, there is a possibility to reach the origin;

(i) with ¢ = 1, there is no possibility of reaching the origin following t8é&-plane.
(c) v2 # 0,03 = 0.In this case, there is no possibility of reaching the origin following$tieplane.
(d) v2# 0,03 #0.

(i) With ¢ = —pu, there is a possibility for going to the origin following a fixed direction that
is contained in the positive octant.
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