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THE EQUILIBRIUM AND THE STABILITY OF THE ROCHE ELLIPSOIDS

S. CHANDRASEKHAR
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ABSTRACT

Roche’s problem is concerned with the equilibrium and the stability of rotating homogeneous masses
which are, further, distorted by the constant tidal action of an attendant rigid spherical mass. This
ancient problem is reconsidered in this paper with the principal object of determining the stability of the
equilibrium configurations (the ellipsoids of Roche) by a direct evaluation of their characteristic fre-
quencies of oscillation belonging to the second harmonics The result of the evaluation is the demonstra-
tion that the Roche ellipsoid becomes unstable at a point subsequent to the Roche limit where the angular
velocity of rotation, consistent with equilibrium, attains its maximum value. This result requires a
revision of the current common view regarding the meaning that is to be attached to the Roche limit

Among related matters which are considered are the following: the relationships that exist between
the sequences of Roche and those of Maclaurin, Jacobi, and Jeans; the exhibition and the isolation of
the second neutral point (belonging to the third harmonics) along the Roche sequences; and the effect
of compressibility on the stability of the Roche ellipsoids. A result which emerges from these considera-
tions is the universal instability of the Jacobi ellipsoids under the least tidal action.

The methods used in this paper are those derived from the virial theorem and its various extensions.
The principal results are summarized in Section X and are exhibited in Figures 1, 2, and 3.

I. INTRODUCTION

Roche discovered in 1850 that no equilibrium configuration exists for an infinitesimal
homogeneous satellite (of density p) rotating about a planet (of mass M’) in a circular
Keplerian orbit (of radius R'), if the angular velocity () of rotation exceeds the limit
set by

Q2 M
_— < 1
=Gp 7rpR’3_0'090068’ ¢}

where G denotes the constant of gravitation. The lower limit to R’ set by this inequality
is called the Rocke limit. 1t is generally believed that the non-existence of equilibrium
configurations below the Roche limit implies some sort of instability for the satellite.
Thus, Darwin (to whom we owe the term ‘“Roche limit”’) describes Roche’s result as
follows. “Now Roche showed that instability will set in when the elongation of figure of
the satellite has reached a certain degree. In other words, at a certain stage of proximity,
the satellite cannot hold together by the force of its own gravitation, and it will be torn
apart by the tide generating force” (Darwin 1911, p. 340). And Darwin’s description
expresses the still prevalent common view (e.g., Struve 1961, p. 18). Nevertheless, if
Darwin’s statement is taken to mean (what it apparently says) that the satellite is
capable of a certain normal mode of oscillation with respect to which it becomes unstable
as the Roche limit is approached (in the direction of increasing ©?), then, the statement
(as we shall show in Sec. VIII below) is incorrect. However, other statements with other
meanings have also been made concerning the nature of the ‘“‘instability” which is sup-
posed to set in at the Roche limit. Thus, Jeans (1919, pp. 52 and 53) has written: “We are
dealing, it must be noted, with secular stability? only; the question means nothing except
when dissipative forces are present . . . the instability is one of orbital motion only and

1 Roche (1850) originally gave the value 0.092 for the constant on the right-hand side of this inequality.
Darwin (1906) later gave the more precise value 0 09006 The value quoted, 0.090068, is that obtained
in the present paper (see Table 2 in Sec. V below).

2 For the meaning generally attached to this term see Chandrasekhar (1963a, p 1187; this paper will
be referred to hereinafter as “Paper I”).
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not one of the configurations of the masses.” And, again, as we shall see, much of the
implications of this statement are also incorrect.

The conflicting statements and views (which we have, in part, quoted) concerning
the role of the Roche limit for the stability of the satellite arise, mostly, from the incom-
pleteness of the available analytical information on the Roche ellipsoids, and the lack of
any specific investigation on their normal modes of oscillation.? On these accounts, it has
appeared worthwhile to reconsider this ancient problem and provide as complete and as
explicit a solution as seemed necessary to clarify the basic issues.

II. ROCHE’S PROBLEM

Roche’s problem is concerned with a particularly simple case in the equilibrium and
the stability of a homogeneous body (“‘the primary”’) rotating about another (“the
secondary”) in a manner that their relative disposition remains the same.

Let the masses of the primary and the secondary be M and M’, respectively.* Let the
distance between their centers of mass be R’; and let the constant angular velocity of
rotation about their common center of mass be Q.

Choose a coordinate system in which the origin is at the center of mass of M, the
¥1-axis is pointing to the center of mass of M’, and the x;-axis is parallel to the direction
of Q. In this coordinate system, the equation of the axis of rotation is

M‘I
X = TN R’ and xe=10. ()
In this frame of reference, rotating uniformly with the angular velocity @, the equation
of motion governing the fluid elements of M is
dui__op

dt  9x;

o A8+ 8ot 0] (g ) e | 200, @

d
Jox i
where £ is the self-gravitational potential and B is the tidal potential due to M’. Equa-
tion (3) can also be written as

du; 9p F)

= e g BB et e —

MIRI
MM
In Roche’s particular problem, the secondary is treated as a rigid sphere; then, over
the primary, the tide-generating potential of L7 can be expanded in the form

szl] -+ 20Q€;3%; . 4)

1

GM' 2 1,2
%T=7<1+%+x1 219;32 +> ®)

As is customary in the treatment of this problem, we shall retain in the expansion for
LBy only those terms which we have explicitly written out in equation (5). On this as-
sumption concerning LBy, the equation of motion becomes

du; d
Sim =2l LB (art )+ ulat = da — Rt
(6)
GM’ M'R’
+ R’2 —M_l_M/ Qz) xl]+2PQ€il3ulr

3 Thus, in Figs 7 and 15 in Jeans (1919, pp. 50 and 86) none of the lines representing the Roche se-
quences are based on any calculation; the same applies to Fig. 33 in Jeans (1929, p. 229). Milne’s (1952,
chap. ix; see particularly pp. 110-112) generous, but perceptive, account in his biography of Jeans brings
out, by its accuracy, the inadequacy of the presently available information.

* By using the terms “primary” and “secondary” to describe the two bodies, we do not wish to imply
that M > M’; indeed, in the important special case considered in Sec. I, M < M.
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where we have introduced the abbreviation

GM’

n= W . (7)

Now letting 02 have its “Keplerian value”

GM+M')
0= R =k (1457). ©

we obtain the basic equation of this theory:
du; op 2( 4 2 2 2 2

P == ax¢+ P W[%-‘- 7P (2 + 2?) tu(al—F 02— 3252) 1 +2pQe3u,; )

and the problem of Roche is that of the equilibrium and the stability of homogeneous con-
figurations governed by equation (9).

a) The Second-Order Virial Theorem Appropriate to Rocke’s Problem

In treating Roche’s problem, we shall use the methods, based on the virial theorem
and its extensions, which have been developed recently (see the various papers by
Chandrasekhar and by Chandrasekhar and Lebovitz in the Astrophysical Journal for the
past three years).

By multiplying equation (9) by «; and integrating over the volume V occupied by the
fluid, we obtain in the usual manner the second-order tensor equation (cf. Chandrasekhar
and Lebovitz 1963b, eq. [4]; this paper will be referred to hereafter as “Paper II1”)

T ﬂpuixjdx =2+ Wi+ (Q2— p) I — Q28335+ 3udaly;

(10)
+ 84Tl + 20 f peasmidzx
14
where

II=prdx, (11)

and

=%fpumjdx, W, = —%fp%udx, an Iﬁ=fpxixjdx az2)
14 14 14

are the kinetic-energy, the potential-energy, and the moment of inertia tensors.

III. PROPERTIES OF THE EQUILIBRIUM ELLIPSOIDS

When no motions are present in the frame of reference considered and hydrostatic
equilibrium prevails, equation (10) becomes

Wi + (92 — p)lyj — Q265055 + 3udaly; = —16;. (13)
The diagonal elements of this relation give
Wi+ (B2 + 2w = Wae + (2 — w)loo = Waz — ulss = —1I, (14)
while the non-diagonal elements give:
B+ (4 2wl = Wa+ (> — wln =0,
Bos + (2 — p)los = Weo — ulse = 0, (15)
W — wla = Wis+ (@2 + 2u)f13 = 0.
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In view of the symmetry of the tensors I;; and L, it follows from the foregoing equa-
tions that, so long as Q2 and u are finite,

Bi;j=0 and I;=20 (7). (16)

"Therefore, in the chosen coordinate sysiem, the tensors I;; and L3;; are, necessarily, diagonal.

Equations (13)-(16) are entirely general: they do not depend on any constitutive
relations that may exist.

Now it can be shown quite readily that if the configuration is homogeneous (by as-
sumption or by virtue of incompressibility), then an ellipsoidal figure is consistent with
the equations of hydrostatic equilibrium as well as the condition which requires the
pressure to be constant over the bounding surface. Once this has been established, the
virial equations suffice (as we shall presently see) to determine the geometry and the
properties of the equilibrium ellipsoids.

Letting o
P=—M—, so that R=(14+P)u, an
we can rewrite equations (14) in the form
S13311 + (3 + P)Mln = g«’Bzz + P}Jm = 5&33 - MI33 y (18)
or, alternatively,
plB + )+ Ins] = BWas — Wu (19)
and
F‘(?I% 4+ I33) = Wiz — Wae . (20)

The geometry of the ellipsoids (for an assigned p) is, therefore, determined by the

.equation
(3 +P)I11+133=Q3333‘—%11
PI22+I33 %33_%22.
Expressions for the various tensors describing the properties of homogeneous ellipsoids

have been given in an earlier paper (Chandrasekhar and Lebovitz 1962a); in particular,
we have

(21)

Wi = —27Gp(araza3) Al and Ii={Ma?, (22)
(no summation over repeated indices)
where @1, s, and @3 are the semi-axes of the ellipsoid and the A4/’s are the one-index

symbols defined in the same paper.
Inserting the expressions for ;; and I;; in equation (21), we obtain

(3 +P)l112+032= 4102 — 4 3a4?
past+ as? 42092 — A3a35? '

(23)

Using the known expressions for the constants 4 (Joc. ¢it., egs. [15]-[17]), we can reduce
equation (23) to the following form which is convenient for numerical calculations:

[(p+3)ar*(a2+as?) + past(a2+ a:?) — ast( a2+ as?)
—4(pt+1)a2a.2a5* 1 E(0, ¢)—(a?—as?) [2(p+3) a1%a’+as? (a1 +a?) |F(0, ¢)

__ Qa3
a;

(24)8

(a2 —a?) (a2 —ag2)2[2(p+3)a®— pat+ as?].

8 Notice that when p — o, this equation tends to the one determining the geometry of the Jacobi
ellipsoids (see Chandrasekhar 1962, Appendix I, eq. [AT, 5]).
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In equation (24) E(6, ¢) and F(0, ¢) are the standard elliptic integrals of the two kinds
with the arguments

a,’— ag? a

2 - 2
0= sin“\/u and ¢= cos™! s (25)
For every pair of values (as/a1, as/a1) determined consistently with equation (23) or
(24), the associated values of Q2 and u follow from the equations

1812 — A za4®

A
(3+p)ai’+as

= 2(a1a5a3) and W=(14p)u. (26)

_H
wGp

For a few given values of p and different assigned values of ¢ (i.e., of as/a1) equation
(24) was solved for 9 (i.e., for as/a1) by a method of successive approximation; and the
accuracy of the final solution was always tested against equation (23).

The solution of equations (23) and (24) has been carried out to determine adequately
the Roche sequences for p = 0, 1, 4, 20, and 100. The results of the calculations are sum-
marized in Table 1; in this table, in addition to the principal constants (6, as/a1, as/a1,
Ay, As, A3, 92, and u), the semi-axes of the ellipsoid, in the unit (a1a205)'/3, are also listed.

IV. THE ARRANGEMENT OF THE SOLUTIONS

The solutions for the Roche sequences belonging to different values of p and the
relationships which exist between these sequences and those of Maclaurin, Jacobi, and
Jeans are most clearly exhibited in a plane in which each equilibrium ellipsoid is repre-
sented by a point whose coordinates are

ay

- ay
= and =
(aiaq9a3)1/3 ?

=, (27
(a1a0a;5)'/3

a
The utility of this plane for the exhibition of these relationships seems to have been
recognized, first, by Jeans.

Before we describe the arrangement of the solutions in the (di, dz)-plane, it is im-
portant to observe that when p = —1, and ©? according to equation (17) is zero, we
recover the pure tidally distorted spheroids of Jeans® (1917, 1919; see also Paper III);
and, further, that when p — «, and the term in u in equation (9) becomes negligible,
we similarly recover the pure rotationally distorted configurations of Maclaurin and
Jacobi.

Now consider Figure 1 in which the solutions for all the sequences are exhibited. In
this diagram, each equilibrium ellipsoid is represented by a point whose coordinates are
@1 and d@,. By the chosen normalization, the volume (and in view of the homogeneity, also
the mass) of all the ellipsoids represented is unity. The undistorted sphere is, therefore,
represented by the point @, = @; = 1; this is the point S in Figure 1.

The Jeans spheroids, being prolate, are represented by the pseudo-hyperbolic locus

Gid? = 1; (28)
this is the curve ST.
The Maclaurin spheroids, being oblate, are represented by the straight line
a1 = &(>1); (29)

¢ The fact, that the spheroids of Jeans are obtained when p is assigned the “unphysical” value —1,
is the origin of the statement, that is sometimes made, that these spheroids are of “no physical interest.”
However, it will appear that for an understanding of “what happens” in the (41, 4)-plane, it is essential
that consideration is given to the Jeans spheroids.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1963ApJ...138.1182C

TABLE 1

THE PROPERTIES OF THE ROCHE ELLIPSOIDST
¢ = cos ! @z/ay; @ = sin7Iv/ (a2 — a?) /(@ — ad); Ai* = ma:a34:; @i = a:/(a16:a:)Y3

0 @m/a as/a: Ar* Ao* Ag* [9] M & a2 a3

=0

0551 | 0 9832 | 0 9639
1369 9563 9198
2835 9072 8588
4701 8495 8007
5567 8253 7784
5894 8165 7706
6242 8074 7625
6613 7981 7542
7896 76717 7279
0816 7088 6777
1568 6957 6665
4330 6527 6297
9919 | 0 5855 | 0 5709

632113 | 0 93188 | 0 91355 | 0 624238 679759 | 0 696004 | 0 022624 | 0 022624
66 948 84112 80902 567104 700085 732811 047871 047871
72 143 70687 66913 479968 736033 783999 074799 074799
76 685 57787 54464 391944 777221 830835 088267 088267
78 263 53013 50000 358101 794144 847756 089946 089946
78 797 51373 484381 346293 800216 853492 090068 090068
79 327 49714 46947 334272 806436 859292 089977 089977
79 846 48040 45399 322096 812728 865177 089689 089689
81 416 42898 40674 284086 832949 882963 087201 087201
83 941 34052 32557 217086 869951 912963 077474 077474
84 424 32254 30902 203288 877769 918942 074648 074648
85 810 26827 25882 161540 901812 936647 064426 064426
87 465 | 0 19569 | 0 19081 | 0 106446 | 0 934365 | 0 959192 | 0 047111 | 0 047111

(=}

[ N N N e e e e e el Y

p=1

0119 | 0 9984 | 0 9898
0507 9916 9598
1270 9731 9118
2671 9308 8479
3784 8954 8102
5056 8566 7754
5360 8477 7680
5685 8384 7604
7688 7859 7194
6917
0622 7222 6714
1379 7080 6606
2211 6933 6494
4158 6620 6252
8079 6100 5838

51271 0 98660 | 0 97815 | 0 657194 | 0 667954 | 0 674850 | 0 009293 | 0 004647
54 380 94376 91355 627500 672967 699532 036152 018076
59 116 86345 80902 573517 685952 740530 076342 038171
65 938 73454 66913 488555 715127 796317 118726 059363
70 017 64956 58779 432108 739433 828458 134284 067142
73 623 56892 51504 377406 766047 856546 140854 070427
74 355 55186 50000 365639 772117 862243 141250 070625
75 088 53451 48481 353605 778442 867954 141298 070649
78 715 44429 40674 289716 813764 896520 135785 067892
80 813 38813 35837 248826 837737 913437 127424 063712
82 154 35022 32557 220788 854695 924516 119625 059812
82 8038 33119 30902 206604 863429 929965 115054 057527
83 437 31213 29237 192351 872298 935348 110044 055022
84 648 27405 25882 163768 890351 945879 098753 049376
86 304 21726 20791 121325 917769 960904 078934 039467

[RY XYY OF OF T USSR WA NN N
©
&%
<
(=
~
>
©°
_-

87 728 | 0 16126 | 0 15643 | 0 080697 | 0 944630 | 0 974664 | 0 056499 | 0 028249 4097 | 0 5498 | 0 5334
=4
38267 | 0 99153 | 0 97815 | 0 658519 | 0 665285 | 0 676197 | 0 01452 0 002904 | 1 0103 | 1 0017 | O 9882
41 492 96301 91355 632677 662197 705127 05642 011284 { 1 0436 | 1 0050 9534
46 922 90315 80902 584433 661930 753636 11911 023822 | 1 1103 | 1 0027 8982
55 906 78821 66913 504195 677213 818593 18486 036973 [ 1 2377 | 0 9756 8282
66 148 63120 52992 403460 719650 876890 21593 043187 | 1 4406 | 0 9093 7634
68 353 59334 50000 379227 732740 888034 21685 043371 | 1 4994 | 0 8896 7497
69 456 57380 48481 366628 739884 8903488 21648 043296 | 1 5319 | 0 8790 7427
78 845 38733 34202 241528 820128 938344 18514 037028 { 1 9616 | 0 7598 6709
80 682 34526 30902 211856 840934 947210 17110 034220 | 2 1084 | 0 7280 6515
82 390 30361 27564 182039 862282 955681 15465 030030 | 2 2862 | 0 6941 6302
83 194 28300 25882 167150 873109 959736 14555 029110 | 2 3900 | 0 6764 6186
86 639 | 0 18299 | 0 17365 | 0 095083 | 0 926613 | 0 978290 | 0 09329 0 018658 | 3 1572 | 0 5777 | 0 5482
=20
272969 | 0 96125 | 0 80902 | 0 599366 | 0 629135 | 0 771500 | 0 16763 0 007983 | 1 0874 | 1 0453 | O 8797
38 306 88758 66913 530024 615046 854929 26374 012559 | 1 1897 | 1 0559 7960
55 238 71737 52992 428110 651851 920039 30624 014583 | 1 3804 | 0 9903 7315
59 136 66886 50000 401536 668988 929475 30559 014552 | 1 4407 | 0 9636 7203
69 927 51356 40674 313115 735445 951441 28232 013444 | 1 6854 | 0 8655 6855
75 865 41187 34202 250124 787015 962860 24980 011895 | 1 9219 | 0 7916 6573
78 422 36322 30902 218310 813640 968050 22890 010900 | 2 0731 | 0 7530 6406
80 711 31631 27564 186679 840313 973008 20522 009772 | 2 2552 | 0 7133 6216
81 759 } 0 29352 | 0 25882 | 0 171026 | 0 853573 | 0 975400 | 0 19243 0 009163 | 2 3611 | 0 6930 | 0 6111
p=100
212399 | 0 96254 | 0 66913 | 0 547202 { 0 574019 | O 878779 | 0 30021 0 0029724 1 1580 | 1 1146 | 0 7748
28 218 92799 61566 516745 567853 915402 33173 0032845( 1 2051 | 1 1184 7420
39 753 84790 55919 473434 583718 942848 34922 0034576| 1 2824 | 1 0874 7171
46 363 78950 52992 446235 602727 951038 35043 0034696( 1 3370 | 1 0556 7085
52 610 72564 50000 416519 626800 956681 34697 0034353| 1 4021 | 1 0174 7010
74 605 42333 34202 253984 772315 973702 27441 0027170 1 9044 | 0 8062 6513
81 228 29780 25882 172573 845842 981585 20935 0020728( 2 3498 | 0 6998 6082
87 838 | 0 12749 { 0 12187 | 0 056598 | 0 949318 | 0 994088 | 0 08203 0 0008122{ 4 0075 | 0 5109 | 0 4884

t Q2 and u arelisted in the unit »Gp
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this is the line SMs-. The first point of bifurcation along the Maclaurin sequence occurs
at M, where

ady = @Gy = 1.19723 ; (30)

at this point Q? = 0.37423 »Gp.

The Jacobian sequence branches off from the Maclaurin sequence at Mpy; it is repre-
sented by the locus M,J. Since the Jacobi ellipsoids eventually become prolate, the
locus M,J becomes asymptotic to ST as a; — . Also, the Jacobi ellipsoids are known to
become unstable at the point where the sequence of the pear-shaped configurations
branches off; this occurs at J3(a; = 1.8858, g = 0.81498).

The Roche sequences for the different p’s are represented by a one-parameter family
of loci in the domain bounded by SM,, M,J, and ST (strictly, we should rather say
SM,, M.J, and SR, the Roche sequence for p = 0). All these loci start at the point S
and all eventually become asymptotic to S7'. It follows from our earlier remarks, and it
is now apparent from Figure 1, that as p — o, the Roche sequence tends to the combined
Maclaurin-Jacobi sequence represenied by the broken curve SMsJ.

V. THE ROCHE LIMIT

Since 2? attains its maximum value along the Maclaurin sequence (at the point M.x
in Fig. 1) subsequent to the point of bifurcation, and it decreases monotonically down
the Jacobian sequence from the value (=0.37423 =Gp) it has at the point of bifurcation
(M3), it is clear that along the combined Maclaurin-Jacobi sequence, SM2J, Q2 has its
maximum value at M. It is also known that along the Jeans sequence, u attains its maxi-
mum value at (cf. Paper II1, eq. [26]) ,

e = 0.883026 where g = Pmax = 0.125536 #Gp; @31)

this point (denoted by T% in Fig. 1) occurs along ST where
a, = 1.65584 and dy = 0.777125 . (32)

We should accordingly expect that, along each of the Roche sequences, Q2 and p =
Q2/(1 + p) attain maxima, simultaneously, at some determinate point; that this is
indeed the case is apparent from the results of Table 1 exhibited in Figure 2.

The place where 22 and u attain their maxima along a Roche sequence can be de-
termined as follows.

Since the structure of the Roche ellipsoids is uniquely determined by equations (14),
it is clear that, when Q2 and u attain their maxima, not only these equations but also
their first variations (with respect to a suitable infinitesimal solenoidal displacement
which preserves the ellipsoidal shape) must be satisfied. Therefore, at the maximum, in
addition to equations (14), the equations,

B + (92 + 2u)oln = Wae + (2 — w)dlye = 6Wss — ndlss, (33)

obtained by considering their first variations, must also be satisfied.” As two independent
equations, equivalent to equations (33), we shall use

Wi — W + (9 4 2u)8I11 — (D — p)dln = (34)
and
W11 + W2 — 26Wss 4 (2 + 2u)0I11 + (92 — u)dle + 2udls3 = 0. (35)

7 Similar considerations can be applied equally to the location of the maximum of Q? along the Mac-
Taurin sequence. The relevant analysis is included between equations (17) and (23) in Paper I; and this
analysis must be supplemented by the corrigendum (Chandrasekhar 1963b) relative to the remark which
follows equation (23).
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Now, the first variations of the moment of inertia and the potential-energy tensors
can all be expressed in terms of the symmetrized second-order virials

V'¢f=fp(£ixj+£jxi)dx, (36)
v
where £ denotes the displacement in question. Thus
6l;j = Vi (37)
0.4~
0.3 -

0o ] i 1 | 1 ] 1
o 10° 20° 30° 40° 50° 60° 70° 80° 90°
COS-' a 3 / qQ
Fi6. 2.—The variation of Q2 along the Roche sequences. The curves are labeled by the values of p

to which they belong; and the curve labeled by « belongs to the combined Maclaurin-Jacobi sequence.
The maxima of the curves define the Roche limit.

and (cf. Paper III, eqs. [47] and [48])

;= — 2BV (i #5) @8
and
0 = — (ZBii_ai2Aii)Vii+ai2z AaVu, (39)
=1
where
quj =4, — a,-2A¢,- = Aj —_ ai2Aij, B (40)

(no summation over repeated indices in eqgs. [38]-[40])

and A4; and A; are the one- and the two-index symbols defined in an earlier paper
(Chandrasekhar and Lebovitz1962a). (Note that in writing eqs. [38)] and [39], a common
factor mGparasas has been suppressed.)
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From equations (38) and (39) we obtain, after some reductions in which use is made
of equations (40),

W11 — W = —(3B11 — Bio) Vi + (3Bae — Buo)Vas + (Bas — Big) Vs, (41)
and
011 + W2 — 20Wss = — (3Bu + Bie — 2By3)Vii — (3Bae + Bia — 2By3) Ve 2
+ (6Bgs — Biz — Bas)Vss.

Now combining equations (34), (35), (37), (41), and (42), we obtain

[(Q*+ 2u4) — BBu — Bu)lVu — [(@* — 1) — 3Bz — Bu)|Ve
+ (Bas — Bis)Vss = 0

(43)

and
[(Q*+ 2u) — 3By + Bys — 2By3)|[Vi + [(Q2 — p) — (3Baz + Biz — 2Bg3)|Va w
=+ [2u 4+ (6Bss — Biz — Bs3)]Vss = 0.

Since in writing the expressions for é88;; a common factor 7Gp(a1a20;) was suppressed,
it must be assumed that Q2 and u in equations (43) and (44) (and in similar equations
in the sequel) are divided out by the same factor.

To equations (43) and (44) we must adjoin the condition (cf. Lebovitz 1961, eq. [83])

Vii, Va V33=

0 (45)
(112 + (122 (132

+

which expresses the solenoidal requirement on &.
The condition for the occurrence of a maximum for Q% and u is, then, the vanishing
of the determinant of equations (43)-(45). We thus obtain

@+ 2u— (3B —Biz) — (92— u) + (3B — By3) By; —Bys
0242 u— (3Bu+B1;—2B13)  +(Q—p)—(3Boe+Bia—2Bss) 2 u+6Bs;—Biz—Bys
1 1 1
a,? a,? aj?
=0. (46)

By some elementary transformations, equation (46) can be brought to the somewhat
simpler form

QP4+ 2p— (3311—313) B23_B12 r+ 3B33 — B3
Bis — By, Q% — p— (3By, — By;) p+ 3By —Bys || _ 0. w«n
1 1 1
012 022 032

By evaluating the determinant (47) along the different Roche sequences, the points
listed in Table 2, where the maxima of Q2 are attained, were determined by interpolation.
The maxima located in this manner agree exactly (as they should) with those deter-
mined by a direct interpolation among the values of Q2 given in Table 1.
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In Figure 1 the locus of the points where the maxima of Q? (and, or u) are attained is
shown by the dashed curve joining the points T, and M. This locus defines the Roche
limit.

VI. THE SECOND-ORDER VIRIAL EQUATIONS GOVERNING
SMALL OSCILLATIONS ABOUT EQUILIBRIUM

As stated in the introduction, it is generally believed that the Roche ellipsoids develop
some sort of instability at the Roche limit where ©? and p attain their maxima. However,
when we consider the following circumstances, it becomes clear that the matter requires
a careful examination of the normal modes of oscillation of the Roche ellipsoids.

It is known (cf. Paper III, Sec. V) that the Jeans spheroid becomes unstable, by a
mode of oscillation belonging to the second harmonics, when p attains it maximum at 7.
And it is also known that the Maclaurin spheroid becomes neutral, with respect to the
same mode of oscillation, at the point of bifurcation M,; and that the Jacobi ellipsoid
retains this neutrality along its entire sequence. The question which requires clarification

TABLE 2

THE ROCHE LIMIT AND THE CONSTANTS OF THE CRITICAL ELLIPSOID
(2 and p Are Listed in the Unit #Gp)

6 Qmax? Hmax a1 a2 as

- 1 622009 0 0 125536 1 6558 0 7711 07711

0 61 156 0 090068 090068 1 5947 0 8151 .7693

1 60 638 141322 070661 1 5565 0 8418 .7632

4 59 840 .216861 .043372 1 4944 0 8913 7508

20 58 646 .306396 .014590 1 3989 0 9821 7279

100 57 499 350562 0 003471 1 3224 1 0642 7106

o . 54 358 0 374230 0 11972 1 1972 0 6977
is: how does the mode, which for p = —1 is unstable beyond pmax at T3, become neutral,

beyond M., along the entire Jacobian part of the combined Maclaurin-Jacobi sequence,
when p— o? Clearly, this question cannot be fully answered without a detailed
analysis of the normal modes of oscillation of the Roche ellipsoids belonging to the
second harmonics. We shall now show how the required analysis can be carried out with
the aid of the linearized form of the virial equation (10).

Suppose, then, that the equilibrium ellipsoid considered in Sections ITI-V is slightly
perturbed; and, further, that the ensuing motions are described by a Lagrangian dis-
placement of the form

E(x)eM, (48)

where \ is a parameter whose characteristic values are to be determined. To the first
order in §, the virial equation (10) gives

)\ZVz';j - 2)\9&5131/'1;]' e 6%;‘;’ + (92 b u)&I,-j hnd 9251‘35.[3,' + 3[.&5,’1[1,' + BijBII 5 (49)
where

Viiji= fp&,-x;dx (50)
| 4

denotes the second-order (unsymmetrized) virial and 6I1, é;;, and 41,; are the first
variations of II, W;;, and I;; due to the deformation of the ellipsoid caused by the
displacement &.
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We have already seen (cf. egs. [37]-[39]) how the é%;;’s and 81 ,;’s can be expressed in
terms of the symmetrized virials

Vii=Vui+ V. 1)

In particular, replacing 67;; by V; (in accordance with eq. [37]), we can rewrite equation
(49) in the form

szi;j — 2>\Q€il3Vl;j = 5513,']' -+ (92 — u) V,'j —_ 925¢3V3j - 3M5i1V1j -+ 5,'1'51_[ . (52)

Equation (52) represents a total of nine equations for the nine virials V;: These

nine equations fall into two non-combining groups of four and five equations, respective-

ly, distinguished by their parity (i.e., oddness or evenness) with respect to the index 3.
It is convenient to have these equations written out explicitly. The odd equations are

MV = 88y — uVis = — 2B + u)V1s, 3
NV = 83 — uVas = — (2Bas + u)Vas, (54)
N Vs — 2NV = 085 + (% + 2u)Vis = — (2Biz — @ — 2u) Vs, (55)
AVas + 202V = 68z + (Q2 — p)Vas = — (2Bas — B2+ w) Vo3, (36)

where we have substituted for the 628;;’s in accordance with equation (38). And, simi-
larly, the even equations are

NViam 88 — Vi + L, 7
NV — 202Vay = 8By + (22 + 2) Vi Lo, (s8)
NVas -+ QW12 = 8B + (@2 — )V + 011, (59)
NV — N2Vis = 8Wig + (@ + 20) Vi = — (2B — @ — 2w)Via, (60
AV 200V 11 = 8B + (2 — w)Vie = — 2Bz — @+ w)Vy,. (61)

VII. THE CHARACTERISTIC EQUATIONS

We shall now show how equations (53)-(61) can be used to determine the different
characteristic frequencies of oscillation of the Roche ellipsoid belonging to the second
harmonics.

a) The Characteristic Equation for the Odd Modes
Adding equations (53) and (55) and similarly equations (54) and (56), we obtain
()\2 + 4By3 — Q2 — ,u)V13 — 2ANQVs3 + 2>\QV3;2 =0 (62)

and
(N2 + 4Bgs — Q24 2u)Ves + 2NQV13 — 2NQV 3, = 0. (63)

Eliminating Vs, and V3. from the foregomg equatlons with the aid of equations (53)
and (54), we have

k()\2 + 4.313 — Q2 — M) Vis — 29()\2 + 2Bs; + [.I,) V23 =0 (64)
and i
N + 4Bags — @° 4 2,;)V23 - 200V + 2B + ,z)V13 =0; (65)
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and these two equations lead to the characteristic equation
N(A2+ 4Bi3 — 92 — u)(N* 4 4Bes — Q2 4 2u)

(66)
+ 402002 + 2Bys + W) (N + 2Bos + 1) = 0.

This is a cubic equation for A?; and it can be verified that, in the limits * = Qand u = 0,
the equation provides characterlstlc roots which are appropnate respectively, for the
Jeans spheroids and the Jacobi ellipsoids (or the Maclaurin spheroids if the indices
1 and 2 are not distinguished).

b) The Characteristic Equation for the Even Modes

Turning next to the even equations (57)-(61), we can combine them to give the
following four equations in which 8IT no longer appears:

()\2 + 4312 — 202 — /.L)Vlz + )\Q(Vu — Vzg) =0 , (67)
NV — Vo) = N2V + Vi) 4+ 3uVie, (68)
%)\2(V11 — V22) — NV 12 = W11 — oW + (92 + 2;1,) Vi — (92 — H) Vo, (69)

IN(Vy+ Vo) + 202 (Vie — Vi) — NV = 081 + 6Wee — 26Wss

(70)
+(92 + 2M)V11 + (92 - M) Va4 2uVss .

Rearranging equation (69) and eliminating (Vl;é — Va,1) from equation (70) with the
aid of equation (68) (and rearranging), we obtain the pair of equations:

(%)\2 — 2 —2uw)Vn — (%)\2 — 24 w)Ve — 20QV 12 = 6B — W (71)

(BN Q2= 2) Vi + (BN Q) Vg — (N0 20) Voo b 20 7,
= 6%11 + 6%22 -2 5%33 .

Now substituting for 68811 — 68y and 6W11 + 6LWey — 26LW3; their expansions (41) and
(42) in terms of the virials, and regrouping the terms, we find

(72)

(%)‘2 — Q% — 2p 4 3Bu — B12)V11 - ANz — Q2+ u+ 3B — Big)Va

+ (Bis — Be) Vs — 2\2V1a = 0 73)
and .
( %)\2 + Q2 — 2# + 3B11 +Blz - 2313) V1;+ ( %>\2+Q2+M+3B22 +B12 — 2328) V22

(74)
- ()\2+ 2,U-+6Bs3"313"‘323) V33+—‘— Vie= 0.

Equations (67), (73), and (74) provide three relations among the four virials ¥,
Vs, Vas, and V3. A fourth relation is obtained by making use of the solenoidal character
of the Lagrangian displacement. In the present context, the relation which expresses
this requirement is (cf. Lebovitz 1961, eq. [83])

Vu

i tatuog. s
1
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7) and equation governing the even modes now follows from setting the determinant of equations (¢
in

._.3311 —Bm - %)‘24‘92"‘ u— 3By +B12 Bls—Bza
6&3‘311 +Bm - 2313 + %M + Q24 ll'l‘ 3322 +Bu — 2323 — N — 2# - 6333 + B3 +Bza
24 432 —\Q 0 2
i 1 1
2 422 .0—32

tary transformations, equation (76) can be brought to the following somewhat simpler form:

Bys—E N —Q—2u+ 3B —By — (B13—Bg) —3p+3(Bu—By)+
B2 — B, — 202 — 1) ?+ B —Bus 3M+ p+ 3By —Bys 0+ 3(By, — Bys) +1i
1 1 _1 1,1,
i o’ as? PR
-Bys —1i 2\ — (Biz—By) —3u+ 3(Bii—By,) +
By — ] +o2|” (N*+3pu) N+ p+ 3Bz —Bas 0+ 3(Byy —Bss) +
! 0 _1 A1z
2 as? a2 a? a

approp® verified that, in the limits ©* = 0 and u = 0, equation (77) provides characteristic roots which are
D). ’ids and the Jacobi ellipsoids® (or the Maclaurin spheroids if the indices 1 and 2 are not distinguishec

. 0) al on’z = 2B1.wGpaiazas (after restoring the suppressed factor) for these ellipsoids, the occurrence of a neutral mode 2=
om equation (77).
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VIII. THE CHARACTERISTIC FREQUENCIES OF OSCILLATION BELONGING TO THE SECOND
HARMONICS: THE POINT AT WHICH INSTABILITY SETS IN ALONG THE ROCHE SEQUENCE

The characteristic equations (66) and (77) have been solved for the different Roche
sequences for which the equilibrium properties have been tabulated in Section IIT; and
the results are given in Table 3.

An examination of the roots listed in Table 3 shows that the Roche ellipsoids do
become unstable by a mode of oscillation belonging to the second harmonics. Their
instability arises, in fact, by the same mode by which the Jeans spheroid becomes un-
stable at pmax and for which the Jacobi ellipsoids are neutral along their entire sequence.
Figure 3 exhibits the behavior of the corresponding characteristic root (¢3%) as we pass

1.2 —
1.0

0.8

0.6

S

0.4

0.2

70° 80° 90°
l__ oo |

o 10° 20° 30° 40° 50° 60" — 5 —
Cos™ay/ay N——"

=l

F16. 3.—The squares of the characteristic frequency ;2 (measured in the unit #Gp) belonging to the
mode by which the Roche ellipsoids and the Jeans spheroids become unstable., The curves for the differ-
ent Roche sequences are labeled by the values of  to which they belong; the curve labeled by « belongs
to the combined Maclaurin-Jacobi sequence and the curve labeled by —1 belongs to the Jeans sequence.

from the Jeans sequence to the limiting Maclaurin-Jacobi sequence via the Roche se-
quences of increasing p. The initial question which was raised in Section VI has thus
been answered. And an important result which has emerged from answering the ques-
tion is that the Jacobi ellipsoids are unstable under the tidal action of the least object. In
Section XII, we shall briefly consider the possible bearing of this result for cosmogony.

The points, beyond which the Roche ellipsoids are unstable, were determined by
interpolation among the roots o3 listed in Table 3. Their positions, together with some
additional information, are given in Table 4. In Figure 1 the locus of these points, at
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3

THE SQUARES OF THE CHARACTERISTIC FREQUENCIES

BELONGING TO THE SECOND HARMONICS

(o2 Is Listed in the Unit #Gp)

EvEN MoDES Opp MobEs
[
012 o2? o3? o4 o5 oe?
=0
0°. 1 067 1.0667 +1 0667 1.067 1 0667 0
24 1 323 1.1239 +0 7007 1.272 0.9370 0 0241
36 1 429 1.1393 +0 4866 1.412 0.8718 .0551
48 . 1 569 1 0445 +0 2574 1.577 0.7757 .0954
57 . 1 697 0 8788 +0 0836 1708 0.6640 1234
60 1 740 0 8070 +0 0285 1.752 0 6168 .1301
61 1754 0 7814 +0 0109 1 767 0 5997 .1318
62 1767 0 7552 —0 0063 1.781 0 5822 .1333
63 1783 0 7284 —0 0232 1.793 0 5642 .1344
66 1 824 0 6442 -0 0695 1 833 0.5063 .1356
3! 1 886 0 4948 -0 1278 1.893 0 3987 .1284
72 . 1 898 0 4640 —0 1357 1.903 0.3758 .1253
75.. 1928 0.3711 —0 1495 1.933 0.3049 L1125
79 1 962 0.2482 —0 1416 1.963 0.2076 0 0865
p=1
0° 1 067 1 0667 -+1.0667 1.067 1 0667 0
12 1.280 1 0333 +0 8740 1.181 0 9799 0 0094
24 1 392 1.1398 +0 6294 1.313 0.9078 .0380
36 . 1 494 1.1901 +0 4045 1464 0 8440 .0854
48, 1 602 1 1410 +0 1952 1.625 0.7610 . 1440
.. 1 673 1.0468 +0.1011 1.705 0.6994 .1713
59. 1 738 0 9309 +0 0303 1.770 0 6321 .1884
60 1752 0 9040 +0 0171 1.782 0.6166 . 1909
61 1 765 0 8760 +0 0044 1795 0.6004 .1930
66 1 830 0.7210 —0.0521 1.853 0 5088 .1965
72 . 1.901 0.5127 —0.0976 1914 0.3771 .1803
78. 1 955 0.3000 —0.1054 1 961 0 2298 1354
81.. 1975 0.1999 -0 0905 1978 0 1559 0 1017
p=1
0°.. ... 1.067 1.0667 -+1 0667 1 067 1 0667 0
12 . 1.299 1.0886 +0 8070 1.206 0.9565 0 0146
24.... . 1478 1.1560 +0.5453 1 368 0 8712 .0582
36. . 1 583 1.2442 +0 3083 1.543 0.8050 L1275
48. 1.643 1.2650 +0.1241 1.708 0.7373 .2081
58.. 1.736 1.0995 40 0213 1.822 0.6467 .2576
60 . 1.760 1.0430 +0 0059 1.841 0.6210 .2625
6l....... 1.772 1.0121 —0.0012 1.851 0.6069 .2641
2....... 1.903 0.5882 -0 0532 1.936 0.3969 .2318
75....... 1.932 0.4600 —~0 0576 1.954 0.3241 .2042
80....... 1.970 0.2560 —0.0520 1.977 0.1961 0.1388
1198
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TABLE 3—Continued

EvEN MobDEs Opp MobES
¢
012 o2? 032 o o5? o6
$=20
0°. 1.067 1 0667 +1 0667 1 067 1 0667 0
36 1 664 1 2959 +0 2204 1 637 0.7620 01714
48. . 1 656 1 4017 +0 0588 1 826 0 7038 .2738
58 1.712 1.2684 +0 0042 1 921 0 6452 3242
o0 . 1.739 1.2052 —0 0008 1.931 0 6275 .3253
66 . 1 827 0 9641 -0 0106 1.953 0.5528 .3063
72 . 1 903 0 6739 -0 0157 1 967 0 4403 2533
75. 1 933 0.5230 —0 0166 1.974 0.3699 0.2149
=100
0°. 1.067 1 0667 41 0667 1 067 1 0667 0
48 ...... 1 639 1 4624, +0 0332 1 886 0 6840 0 3027
52 . 1 605 1.4785 —+0 0106 1 937 0 6666 3349
56.. 1 631 1 4132 +0 0018 1 967 0 6500 .3532
58 ..... 1 665 1 3531 +0 0001 1974 0 6401 .3549
60 . 1 709 1 2795 —0 0010 1978 0.6274 .3519
70 . 1.876 0 8132 —0 0033 1.981 0 4996 .2804
75 . 1.933 0 5475 ~0 0036 1.982 0 3892 .2146
83 1 986 0 1668 —0 0025 1 991 0 1592 0 0844
TABLE 4
THE POINT AT WHICH INSTABILITY SETS IN
ALONG THE ROCHE SEQUENCES
(@* and g Are Listed in the Unit #Gp)
? [} Q2 "3 a1 dz as
-1 62°009 0 0 12554 1.656 0.7771 0 7771
0 61 63 0 090034 090034 1.611 0 8108 .7655
1 61 35 .141229 070614 1.581 0 8350 J18TT
4 60 83 .216581 043316 1.526 0.8808 .7439
20 59.66 .305937 .014568 1.430 0.9683 L7222
100 58 18 .350303 0 003468 1.343 | 1 0523 .7078
® 54 358 0 374230 0 > 1.197 11972 0.6977
1199
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which instability sets in along the Roche sequences, is the full-line curve joining T and
M,. It is at once apparent that the Roche ellipsoids do not become unstable at the Roche
limit but at a subsequent point.

That the two points, the point where Q2 and u attain their maxima and the point
where instability sets in, are distinct, follows from a comparison of equation (47), which
determines the former point, and the equation

——=2u+3By—Bi; — (Bis—Bys) — 3u+3(Byu—By)+BitBas ||
Q2 +B12 —By3 ut 3B33—Bys Q243 (322 "'Bsa) 4By — B3

1 1 1 1 1
o R PR
By3—By; —3p+3 (Bu —Bzz) + B3 — By
hiad RS 1,11 =0
f d32 012 a22 a32

which determines the latter point. That the two equations are necessarily distinct can
be seen more directly from a comparison of equations (34) and (35) and the limiting
forms of equations (70) and (71) for X = 0. Thus while equation (71), in the limit A = 0,
is the same as equation (34), this is not the case with respect to equations (70) and (35).
The difference in the latter case arises from the circumstance that, by virtue of equations
(67) and (68), the additional term in equation (70), namely,

H 69
2 Visa = Vaa) = 208 Vit Vaa) +-3 Vo
(79)
Vll - V22
— 202 — 602
29 (V11+V22) 6Q“X2+4Bl2_292_”’
does 7ot tend to zero as N — 0; it tends, instead, to the finite limit:
lim 2>\Q(V12'— Vz-l) = 292(V11+ Va—3u V= Vo )#0. (80)9
A0 ; ' 4B, — 2Q%— p

And this circumstance cannot have been foreseen by any simple consideration based on
equilibrium only. The basic reason for the occurrence of the neutral point beyond the
Roche limit is the presence of the Coriolis term in the equations of motion. The matter
is further clarified by Lebovitz (1963) in the paper following this one.

And finally it should be noted that the fact that the neutral point does not coincide
with the Roche limit is in agreement with a theorem due to Karl Schwarzschild (1898)
that along @ Roche sequence there is no point of bifurcation where a second ellipsoidal
sequence branches off.

In Section XII we shall consider the bearing of the foregoing results for a proper
interpretation of the Roche limit.

® However, the limit 4s zero for the Jeans sequence (for which Q* = 0); and this is in agreement with
the fact that along this sequence the point where u attains its maximum coincides with the point where
instability sets in. And along the Maclaurin sequence (for which u = 0) the limit is also zero #f Vi +
Vi = 0, a condition which is necessary to exclude the point where Q2 attains its maximum (at M ..) and
determine the point of bifurcation (at M?) (cf. Chandrasekhar 1963f and n. 7 on p. 1190).
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IX. THE NEUTRAL POINT ALONG THE ROCHE SEQUENCE BELONGING
TO THE THIRD HARMONICS

It is known that along the Jacobian sequence a point of bifurcation occurs where the
Jacobi ellipsoid becomes unstable by a mode of oscillation belonging to the third har-
monics; this is the point J3 in Figure 1. It is also known that along the Jeans sequence
a second neutral point belonging also to the third harmonics, occurs; this is the point
T; in Figure 1. The occurrence of these two neutral points, J3 and T's, suggests that a
similar neutral point occurs along each Roche sequence. Such a neutral point, if one
such exists, can be exhibited and isolated by the method which has been described in the
contexts of the Jacobian and the Jeans sequences (Paper I, Secs. IV and VI). The method
is based on the integral properties which follow, as identities, from the relevant third-
order virial equation. Accordingly, we shall first derive the analogous properties appro-
priate for configurations which are both rotationally and tidally distorted.

@) The Third-Order Virial Equations and the Integral Properties Governing Equilibrium

By multiplying equation (9) by x;x: and integrating over the volume V occupied by
the fluid, we obtain in the usual manner the required third-order virial equation (cf.
Chandrasekhar 1962, Sec. IV, and Paper I, eq. [88]):

d
7 fvpuixjxkdx =2(ZTijn+ Tir-i) +Wejsn + War-;
F (Q2 = ) Lije — 26531 s+ 3 b i1l 1ji + 8500 + 6 iall; 81

+29£7P5i13u1xjxkdx )

where

Tiipe = %fpui%jxkdx , Bijw = — %fp%ijxkdx ,
% v

(82)

Iijk=[7pxixjxkdx, and Hk=£,pxkdx.

When no relative motions are present in the frame of reference considered, and hydro-
static equilibrium prevails, equation (81) becomes

Wijie + Warys + (% — p)lijp — isl s + 3ubulije = — 8,510 — all;.  (83)
Equation (83) represents a total of eighteen equations. These eighteen equations fall
into four groups distinguished by their parity with respect to the indices 1, 2, and 3:
a group of three equations which are odd in all three indices, and three groups of five

equations each which are odd with respect to one of the three indices and even with
respect to the remaining two. The four groups of equations are

Biz;s + Wsre + (2 4+ 2u) 193 =0,
Bys;1 + %12;3 + (92 - .U«)1123 =0, (84)

\..,
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2%11;1 + (92 + 2[4)[111 = _2H1 y
Baz + Ware + (0 — w)lon = —1I,

(85)

Baz;n + Wayys — plsa = —11,

2W19.0 + (24 2u) 102 = 2Wh553 + (4 2p) 133 = 0 ;

2Waos2 + (22 — u)lpee = — 211,
Wiy + Bugn + (2 + 2u)Iue = — 11y, 56
BWase + Wag;s — wlzse = —1l,

2Wo1;1 + (% — p)loyn = 2%323;3 + (@2 — w3 =0

and

2Wsa;3 — wlsss = — 2105,

Boz;s + Wase + (2 — p)loes = — 15, -

Bz + Wiz + (@2 + 2u)]13 = — 13,
2Ws11 — plz1 = 2Wasse — plsse = 0.
After the elimination of the IIy’s from the foregoing equations we shall be left with a

total of fifteen equations; and by suitably combining them, we obtain the following
four groups of equations:

A: Was;n = — 2Ws1e = 2pl1s, Wizs = — (4 w)lies ; (88)
B: 2Wri20 + (22 + 2u)]100 = 2Whsy3 + (B + 2p)]153= 0,
Siee + (2 + 2u)1n — 312 = 0, (89)
S1ss + (2 + 2u)[111 — Q133 = 0
C: 2Wo11 + (22 — p)lon = 2Wes;s + (02 — p)lass = 0,
Sou1 + (2% — p)aee — 3(Q*+ p)lon =0, (90)
S23s + (22 — u)lose — (92 — 3p)lass = 0
D: 2Ws11 — plsn = 2Wage — plse =0,
Ssoe — plsss — (292 — 3u)Ise = 0, (o1)

Sa1 — plazs — 22+ 3u)Isn =0,
where
Sijj = - 4%1';;,' - Z%jj;i + Zs&ii;i . 92)

(no summation over repeated indices)

b) The Neutral Point along the Roche Sequence Belonging to the T hird Harmonics

Now a necessary condition for the occurrence of a neutral point (belonging to the
third harmonics) is that a non-trivial Lagrangian displacement exists such that the first
variations of all of the equations in the four groups A, B, C, and D vanish at that point.

It has been shown in an earlier paper (Chandrasekhar and Lebovitz 1963¢, Sec. V;
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this paper will be referred to hereafter as “Paper II”’) that the first variations of all the
quantities which occur in equations (88)-(91) are expressible, linearly, in terms of the
symmetrized third-order virials:

Vz'jk = Ap ( S,-x’,-x’k -+ éjx’kx’,-+ Ekx',-x’,-)dx =611 (93)

Moreover, the equations derived (by first variation) from the different groups (A, B, C,
and D) involve different virials and are mutually exclusive. Thus, if 84, 8B, 8C, and 6D
denote the equations which are obtained by taking the first variations of the equations
in the respective groups, then the association of the groups and the virials is the fol-
owing:

0A: Vigs; 0B: Vin, Vies, Viss

(94)
0C: Vags, Vass, Vaur; 0D: Vsss, Vi, Voo

The coefficients of the virials in the expansions of the 6;;,x’s and 45;;;’s which occur
in the varied form of equations (88)—(91) are tabulated in Table 2, Paper II.

We readily verify that the equations in the groups A, 6C, and 6D do not allow any
non-trivial solutions. Therefore, at a neutral point, we must necessarily have

Vies = Vos = Vags = Vou = Viazs = Vau= Vi = 0. (95)

In this respect the situation is the same as in the cases of the Jacobi ellipsoids and the
Jeans spheroids (cf. Paper I, egs. [39], [40], and [109)]).

The occurrence of a second neutral point now depends on whether the remaining
group 4B allows a non-trivial solution. The equatlons to be considered are

0J1 = —20%1g; — (92 + 2u) Vi =0, (96)

oJy = —26%13;3 —_ (92 + 2“)V133 = 0, 97)

0J 3 = 8519 + (92 + 2;1,)V111 — 392V122 =0 , (98)
and

0J s = 6S1s + (24 2u)Viu — Vi3 = 0. (99)

It will be observed that these equations represent simple generalizations of the ones con-
sidered in the contexts of the Jacobi ellipsoids and the Jeans spheroids (Paper I, egs.
[43]-[46] and [110]- [113])

Since the 8%i;’s and 8S4;"s which occur in equations (96)-(99) are expressible as
linear combinations of Vi, Vi, and Viss, we may write

87 = Gl Vi + G120 Vi + G[133)Viss =0 (i = 1,2, 3,4), (100)

where {4|111), etc., are certain matrix elements which are known.
If we should now require that the Lagrangian displacement be also solenoidal, then
we should supplement equation (100) by the condition (see Paper II, Sec. VII)

Vlll
012

V122

022

V133

032

-+

+ =0. (101)
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er of thon-trivial neutral mode belonging to the third harmonics requires, therefore, that for some memb.
utrix representing equations (100) and (101) is, at most, of rank 2.

- have >XPressions for the matrix elements (z|111), etc., we find that the 5 X 3 matrix whose rank wi

B, '#Bus 2B1s+ 30,Bus — (24 24) o

3130 — (¥B1s a5%Bias 2Bis+ 304l
)Biss 501Bii — 2Bu+ Q2+ 2u 3[By+Biy+ (2a52 4 a,2) Bygy — 012B11g — Q2] (a2 20,

+a,? )£5(112Blu —2Bu+@+2u (@524 2a,2)Bigs — 30,2Bis, 3[Bss+Byz+ (2a32-
1 1 1

o a,? ag?

v consPg a Roche sequence) the determinants of the six different sets of equations which we can form t
This veluations (100), we find :chat all six determinants vanish, simultaneously, at a determinate point.
fore, ex become two for a particular member of the sequence. A neutral point of the kind sought, there
v, to 11199), in the context of analogous considerations relative to the Jacobian sequence, apply, equall
he ranfPle matter to isolate the neutral point along a Roche sequence with the aid of the requirement on 1
point i Table 5 were obtained with that aid. And in Figure 1, the corresponding locus of the neutral
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X. SUMMARY OF THE PRINCIPAL RESULTS

Returning to Figure 1, we shall now recapitulate the principal results pertaining to
the equilibrium and the stability of the configurations along the Maclaurin, the Jacobi,
the Jeans, and the Roche sequences. All these configurations are ellipsoids and their
structures are uniquely determined by the virial equations

VWu + (B + 2u) 1 = Wo + (0 — w)lae = Was — plss; (103)

and their characteristic frequencies of oscillation, belonging to the second and the third
harmonics, can be ascertained with the aid of the linearized forms of the second- and the
third-order virial equations.

In the plane of Figure 1, an ellipsoid (or a spheroid) of equilibrium is represented by
the normalized values,

ax 3

I = ———————— d Ty = —————— (104)
“ (a105a3)'/3 an 2 (@105a5) V%’
of two of its principal axes.
TABLE S5
THE NEUTRAL POINT ALONG THE ROCHE SEQUENCES
BELONGING TO THE THIRD HARMONICS
(@% and u Are Listed in the Unit xGp)
? 0 o2 " a1 7} as
-1 712395 0 0 1091 2.142 0.6833 0 6833
0 70298 0.07754 .07754 2.080 .7091 6780
1 70 74 12073 .06036 2.044 .7258 6741
4 70 40 1825 .03649 1 989 .7535 .6671
20 70 02 2496 0 01188 1923 L7912 6572
100 698 | .. ..... B T R (R .
®,, 69 817 0 2840 0 1 886 0 8150 0.6507
The undistorted sphere is represented by the point
S(@=a=d=1); (105)
and the Maclaurin spheroids by the line
SMyr:dr = a(=>1). (106)

Along the Maclaurin sequence, the first point of bifurcation (where the Jacobian se-
quence branches off) occurs at

Ma(e = 0.81267, & = a» = 1.1972, @5 = 0.69766) . (107)

At this point, the Maclaurin spheroid becomes unstable if any dissipative mechanism is
operative (cf. Roberts and Stewartson 1963). In the absence of such mechanisms, M,
is a neutral point of the second kind (i.e., characterized by stability on either side of the
point). In all events, the Maclaurin spheroid becomes unstable at

Oq(e = 0.95289, @1 = G, = 1.4883, g3 = 0.45145) , (108)
by a mode!? of overstable oscillations belonging to the second harmonics. At
M ax(e = 0.929955, a1 = d@; = 1.3959, @5 = 0.51322), (109)

10 This is the same mode which is neutral at M.
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intermediate between M, and O, ©? attains its maximum value (0.449332 nGp) along
this sequence. At

My(e = 0.89926, G, = d, = 1.3174, @3 = 0.57623) (110)
and

My (e = 096937, @, = d, = 1.5968, d; = 0.39217) (11)

occur two further neutral points of the second kind (belongmg to the third harmonics).
At each of these points, a (different) sequence of pear-shaped configurations (presum-
ably) branches off. And finally at

Os(e = 0.96696, a; = d; = 1.5771, d; = 0.40205) (112)

the mode, which is neutral at My, becomes unstable by overstable oscillations.
The Jacobian sequence M2/, which branches off from the Maclaurin sequence at Mo,
becomes unstable at the point

J3(@ = 1.8858, ds = 0.81498, a5 = 0.65066) , (113)

where the sequence of the pear-shaped configurations branches off; the analogous point
on the Maclaurin sequence is My . (The point My has no analogue on the Jacobian
sequence.) While the Jacobi ellipsoid becomes strictly unstable only at J3, it is, neverthe-
less, characterized by a non-trivial neutral mode of oscillation along its entire sequence;
the mode in question is, in fact, the one which becomes neutral at M.

It should also be noted that along the combined Maclaurin-Jacobi sequence, SMyJ,
Q2 has its maximum (=0.374230 7Gp) at M.

The Jeans sequence of the pure tidally distorted prolate spheroids is represented by
the ‘“hyperbola”

ST: aa” = 1. (114)
Along this sequence we have the two neutral points,
To(e = 0.88303, d¢; = 1.6558, @2 = ds = 0.77712) (115)
and
Ty(e = 0.94774, a1 = 2.1417, G, = d3 = 0.68331) , (116)

where the Jeans spheroid becomes unstable by modes of oscillation belonging to the
second and the third harmonics, respectively. Moreover, u attains its maximum value
(0.125536 wGp) along this sequence at 7.

The Roche sequences (belonging to the different p’s) fill the domain bounded by
SM,, MsJ, and SR, the Roche sequence for p = 0. They are represented by continuous
curves which start at S and eventually become asymptotic to S7. Along each Roche
sequence, Q% and, simultaneously, p attain maxima. The locus of these maxima is the
dotted curve joining M, and 7. This locus defines the Roche limit. But the Roche limit
does not limit the stability of the Roche ellipsoids. The Roche ellipsoid actually becomes
unstable at a somewhat later point by a mode of oscillation belonging to the second
harmonics; and the locus which limits the stability of the Roche ellipsoids is the other
heavy curve joining M, and T.. And finally, along each Roche sequence a neutral point
occurs where instability, by a mode of oscillation belonging to the third harmonics, sets
in; the locus of this neutral point is the curve joining 7'; and J.

In the limit p — «, the Roche sequence tends to the combined Maclaurin-Jacobi
sequence represented by the broken curve SMyJ. In this limit, we must regard the entire
Jacobian part of the combined Maclaurin-Jacobi sequence as unstable. Stated less
abstractly, the conclusion to be drawn is that the Jacobi ellipsoids are unstable under
the least tidal action: they are unstable in the presence of a fly!

XI. THE EFFECT OF COMPRESSIBILITY ON THE STABILITY
OF THE ROCHE ELLIPSOIDS

The analysis in Section VII can be readily extended to determine the effect of com-
pressibility on the stability of the Roche ellipsoids. Specifically, the problem to be con-
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sidered is that of the adiabatic oscillations of rotationally and tidally distorted homo-
geneous configurations. The assumption of komogeneity insures that in the equilibrium
state the configurations will be indistinguishable from the incompressible Roche ellips-
oids considered in Section III. But the present assumption, that the configurations are
gaseous, has the consequence that the Lagrangian displacement describing the deforma-
tion can no longer be restricted to be solenoidal; instead, we must apply the laws ap-
propriate to a gas subject to adiabatic changes. If the gas is assumed to have a ratio
of specific heats v, then the condition div £ = 0 must be replaced by the condition

0p 0p .
— == —_— = - le . (117)
2=, vdiv g

These relations will enable us to express the first variation 8II (=6 fpdx) in terms of &;
we have

6H=(7—1)fv.§-grad pdx, (118)

where p denotes the pressure in the equilibrium state.
For the case under consideration

3
grad p = p grad [I — 2 Asx?+ 30 (224 x92) + p (2,2 — 5 252 — %xaz)] ; (119)
i—1

and equation (118) gives
S = — (41— p — 3P)WVu+ (Ao + Fu — 3@)Vae + (4s+ 3u)Ve], a20
where, for the sake of brevity, we have written
g=v—1. (121)
In equation (120) a factor #Gpaiasas (by which every quantity must be divided out) has
been suppressed. ‘

a) The Characteristic Equation for the Even Modes Which Are Afected by Compressibility

Turning to the problem of determining the characteristic frequencies of oscillation
under the present more general circumstances, we first observe that the modes which we
have designated as odd are unaffected: for, in deriving the corresponding characteristic
equation (66), we made no use of the solenoidal condition (75). However, the modes
which we have designated as even are affected; and the place where the analysis needs
to be changed is clear: instead of supplementing equations (67), (73), and (74) by the
solenoidal condition (as we did in Section VIId), we must now use one of the original
equations (57)-(59) and assign to 8II its present value (120). Thus, choosing equation’
(57) as the fourth equation, we have

GN+ p)Vss — Bss
+ql(41— p— 3 Vu+ Ao+ 3u — 39) Ve + (4s+ 3u)Vas] =0

or substituting for 8s; in accordance with equation (39) and regrouping the terms,
we have

(41— p — 392 — adda]Viu+ [ + Fu — 39%) — a3V
+BN 4 p+ 2Bss — as?dss + q(As + 3u)]Vss = 0.
Equations (67), (73), (74), and (123) now lead to the characteristic equation!! (cf. eq.
[76])

(122)

(123)

1'We may, once again, draw attention to the fact that every quantity in these and similar equations
must be considered as having been divided out by #Gpaia:as.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1963ApJ...138.1182C

T I -138II182C!

J

3By —Bys — 3N+ Q2 — p— 3By + By Bis— By
utBi—2Bi;  +3N+Q+ u+ 3By+ By — 2By ~ N2 — 2 — 6Bss +Bis+ By
—2\Q 0
w) ) —efdan q(Ae+3u—30%) — a4y 3N+ u+ 2By —as? A+ q(As+3
can be simplified in the same manner as equation (76); and we find (cf. eq. [77])
B —B, | 3N — @ — 2+ 3By — By — (Bis—By) —3u+30
,—Bay) Q2+ By, — Bis I\ p+ 3By — By Q2+ 3 (B,
As—2 0 g(A1—p—30) —a?dy —IN— u— 2Byt a2dss— q(As+3ip) AN pt-2
By, 22 — (B3 —By) — 3+ 3(By —By) +Bus -
Bis |[=— (A2+3p) 32+ pu+ 3Bgs — By Q*+ 3 (B — Bss) +Bia—.
-Q2) 0 — 3N —u—2By+as?A— q(As+3n) Nt u245—24q(2-

b) The Effect of Compressibility on the Onset of Instability

d to a:attached to the effect of compressibility on the onset of instability along a Roche sequence; a1
ns maration (125) for all its roots, since by putting \* = 0, we obtain, at once, the equation which gover

€r
- Bgy) - — @ —2p+ 3By — By, — (Bis—By) —3p+3(Bu-
Bys) +.— 1) Q@+Bi;— By k+ 3Bs3 — By Q2+ 3(Bop — .
:—|-q(2 q(Al—M—%W) —a3?4 13 —#—2333+032A33—Q(A3+%M) pt+24;—2
— (Bi3 — Bys) — 3u+ 3(Buu—By) +Bi3—By;
+ 3 u? =
—p— 2Byt al?da— q(As+5u) pt+245—249(2—-0?)

which sidered as an equation for v (=1 + g¢), will determine, for every equilibrium ellipsoid, a value for v

r that 'ver the results, which are valid for the incompressible case, by letting v tend to infinity, it is cle:

comprethe equilibrium ellipsoid considered is stable or unstable by the criterion which obtains in the in
to infinity when the limit to stability, set by incompressibility, is approached.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1963ApJ...138.1182C

J. C JI3BII182C!

A,

{1983

ROCHE ELLIPSOIDS 1209

It follows from the foregoing remarks that, in considering equation (126), we can re-
strict ourselves to ellipsoids which are stable according to the considerations of Sections
VII and VIII. The deduced values of v, will then be positive; and the meaning to be
attached to v., in these cases, is that the ellipsoid considered is stable if v > . and un-
stable if v < ve.

We shall first consider the two special cases, @* = 0 and u = 0.

By setting @2 = 0 in equation (126), and remembering that in this case the ellipsoid
degenerates to a prolate spheroid and the indices 2 and 3 are indistinguishable, we find
that the equation becomes

“ — 2u—+ 3By — By, — 3u+ 3By — 4By +B1p
q(Al"#)—a22A12 29+ p— A4y

In agreement with the results of Paper III (Sec. VI, Table 2 and Fig. 2) we find from
equation (127) that

’Yc_)% as u—>0 and ’yc—) © as ”—)“max . (128)

=0. (127)

The equations determining the neutral modes along the Maclaurin and the Jacobian
sequences must be considered separately. Setting 4 = 0in equation (125) and remember-
ing that Q% = 2By, along the Jacobian sequence, we observe that \* = 0 is a character-
istic root of the equation. Accordingly, the neutral mode which obtains along the entire
Jacobian sequence, in the incompressible case, is unaffected by compressibility.’* And along
the Maclaurin sequence, the equation determining the neutral mode can be obtained
from equation (126) by setting 4 = 0 and remembering that, in this case, the indices
1 and 2 are indistinguishable; we thus find

N 3B3; — By Q4+ 4By — 3B3; — By
— 2Byt a2 43— g4 245—24q(2—Q?)

=0. (129)

And this equation determines the same -.’s as have been tabulated in an earlier paper
(Chandrasekhar and Lebovitz 19625, Table 1). We may note here in particular, that

v. = 1.225135 at the point of bifurcation, M, . (130)

The values of v, determined in accordance with equation (126), for the different Roche

sequences, are given in Table 6; the table also includes the results for the Jeans sequence
derived from equation (127).

2 And the neutral mode depending on compressibility is determined by the equation

— Q%+ 3By — By, — (Bys—Bys) 3 (By1 —Byy) +By3— Bys
+ Q2+ By — Bis 3B33 — Bgs Q%+ 3(Byy —Bss) +Biy — Bis
Q(Al—%92)—a321413 —2333+032A33—QA3 2A3“2+q(2"‘92)
=0.
For this equation we find:
cos™ az/m1 Ye cos™1 az/ar ve
549358 1 22515 65° 1 2194
55 1 22513 70 1 2118
56 1 2250 75 1 2000
60- 12236 80 1 1820
63 1 2214 83 . 11664
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From Figure 4, which exhibits the results, it is apparent that the principal effect of
compressibility on the stability of the Roche ellipsoids is to bring closer toward the
Maclaurin branch (SM,in Fig. 1) the locus of the points of marginal stability and reduce,
still further, the domain of stability which prevails in the incompressible case. More pre-
cisely, the situation is the following: for any y < £, the locus of the points of marginal
stability, in the (@, d;)-plane of Figure 1, is a curve which joins M, to a point on ST%;

TABLE 6

THE VALUES OF v, WHICH LIMIT THE STABILITY OF THE HOMOGENEOUS
COMPRESSIBLE ROCHE ELLIPSOIDS

e cos™1 az/a; Ye cos™ as/a1 Ye cos™! as/a1 Ye
p=—1 $=0 p=4
0 0 1 3333 24° 1 3340 12° 1 3310
01 5°739 1 3334 36 1 3541 24 1 3246
2 11 537 1 3337 48 1 4735 36 1 3209
3 17 468 1 3353 57 2 1339 48 1 3707
4 23 578 1 3403 60 4 0719 58 2 1899
5 30 1 3530 o1 8 795 60 4 9399
6 36 870 1 3837 61 63 ® 60 83 ®
7 44 427 1 4646
75 48 590 1 5594
80 53 130 1 7768 p=1 $=20
82 55 085 1 9628
84 57 140 2 3230
.86 59 316 3 3098 12° 1 3319 36° 1 3017
88. . 61 642 17 329 24 1 3301 48 1 2952
0 88303 62 009 ® 36 1 3403 58 2 1503
48 1 4329 59 66 ®
54 1 6599
59 2 8570
60 4 1806 =100
61 13 023
61 35 @
48° 1 2634
52 1 2646
56 1 4692
58 5 9359
58 18 ©

for ¥ = £, the locus is an arc which joins M, and S; for 1.22515 < v < %, the locus
similarly joins M, to a point on SMs; and for ¥ < 1.22515 the entire domain is unstable.

And finally we may note explicitly that compressibility does not affect the instability
of the Jacobi ellipsoids under the least tidal action.

XII. CONCLUDING REMARKS

The principal results bearing on the stability of the equilibrium configurations along
the Maclaurin, the Jacobi, the Jeans, and the Roche sequences have been summarized
in Section X. In this concluding section we shall consider only briefly two questions
which occur.

First, since the Roche ellipsoids become unstable only after surpassing the Roche limit,
what will be their behavior if they should so surpass the limit? And second, has the in-
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stability of the Jacobi ellipsoid, under the least tidal action, any consequence for the
‘“‘wider aspects of cosmogony?”’

With respect to the first question, we may argue as Jeans (1919, pp. 118-128) has in
the context of what may happen to one of his tidally distorted prolate spheroids if R’
should decrease below the limit set by pmax. On the assumption that the spheroid (secu-
larly) retains its prolate form, Jeans derived an equation of motion for its eccentricity
if u varies in some prescribed manner. And he showed that if u (during the course of its
variation) should transgress umsx, then, the character of the problem will change into
“‘a truly dynamical one” and, in the (very) first instance, the spheroid will continue to
evolve down the sequence toward higher eccentricities.’® If similar considerations can
be applied to the Roche ellipsoids and should the Roche limit be surpassed, then the
character of the problem will change into “a truly dynamical one” and, in the (very) first
instance, the ellipsoid will continue to evolve down the sequence toward higher elonga-
tions. Since the point at which instability sets in is only a very little beyond the Roche
limit (cf. Fig. 1), the dynamical evolution has not far to proceed before it will be arrested
by the instability of one of its normal modes. These considerations are qualitative; but
they suggest that it might be useful to formulate them quantitatively in the manner of
Jeans.

Turning to the second question, we observe that as p— «,

1
N=0 (—) (131)
?

along the near Jacobian part of the Roche sequence. Consequently, the tidal action of a
body, one hundredth as massive as the primary, will induce an instability with an e-fold-
ing time of the order of ten times the natural periods of oscillation. If we should now
idealize the bar of a barred spiral galaxy as a uniform prolate spheroid (which is the
limiting form of the Jacobi ellipsoid), then its natural period of oscillation will be of the
order of 108 years (cf. Burbidge, Burbidge, and Prendergast 1960); and the tidal action
of an external mass, which is 1 per cent of the mass of the bar, will induce an instability
which will become manifest in 10° years. It would appear, then, that the present con-
siderations may have some relevance for cosmogony.

It should be apparent that the magnitude of the numerical work involved in the
preparation of this paper is a very large one; and further, that it is particularly true of the
present investigation that one cannot, in Kelvin’s well-known phrase, ‘‘obtain satisfac-
tion from formulas without their numerical magnitude.” For that “satisfaction,” I am
greatly indebted to Miss Donna Elbert: she carried out all the necessary numerical work.
I am also indebted to Dr. Norman R. Lebovitz for his careful scrutiny of the present
manuscript and for helpful discussions.

The research reported in this paper has in part been supported by the Office of Naval
Research under contract Nonr-2121(24) with the University of Chicago.
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