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ABSTRACT

The characteristic frequencies of oscillation of the Maclaurin spheroid belonging to the third harmonics
are found Two further points of neutral stability, beyond the first at eccentricity e = 0.81267, are iso-
lated They occur at e = 0.89926 and ¢ = 0.96937; it is the second of these that is the analogue of the
point of bifurcation along the Jacobian sequence.

I. INTRODUCTION

It is well known that the Maclaurin spheroids become unstable by particular modes
of oscillation belonging to the second harmonics. On this account, the modes of oscilla-
tion belonging to these harmonics have been investigated at various times (see Lamb 1932
for historical references). And recently the problem has been reconsidered on the basis
of the second-order virial equations and the different characteristic frequencies (five in
all) have been explicitly obtained and exhibited (Lebovitz 1961).

Since the Maclaurin spheroids become unstable with respect to modes belonging to
the second harmonics, there has not been much interest in the oscillations belonging to
the third harmonics. Nevertheless, since the Jacobi ellipsoids become unstable with re-
spect to a mode of oscillation belonging to the third harmonics, a comparison of the reac-
tions of the Maclaurin spheroids and the Jacobi ellipsoids, to perturbations involving
the third harmonics, is of some interest. Such a comparison can be made quite readily
now, since all that is needed is a specialization of the formulae (by putting a; = a5)
which have already been derived in connection with the investigation on the sta-
bility of the Jacobi ellipsoids in the paper preceding this one (Chandrasekhar and Lebo-
vitz 1963; this paper will be referred to hereafter as “Paper 1”).

II. THE EVEN MODES

We have seen in Paper I (Secs. IIT and IV) that the eighteen equations governing the
third-order virials fall into two non-combining groups of ten and eight equations, respec-
tively, distinguished by their “parity”” with respect to the index 3 (the direction of the
axis of rotation); that the even equations can be reduced to a set of four equations in-
volving the six symmetric even virials, while the odd equations can be reduced to a set
of three equations involving the four symmetric odd virials; and, finally, that these re-
duced equations, supplemented by the divergence conditions (two for the even set and
one for the odd set), provide a complete set of equations for determining all the char-
acteristic frequencies belonging to the third harmonics.

In this section we shall consider the even modes. The relevant equations are the same
as for the Jacobi ellipsoid and are given by Paper I, equations (76)—-(79), (132), and (133).
However, since a; is now equal to as, the coefficients of the virials in the expansions of
0B j;x and 85455 are much simplified. Indeed, from the definitions of the symbols 4 ;j
and B;j . . . it follows (from the present equality of @; and a) that the value of any of
these symbols is unaltered if the index 1 (wherever it may occur) is replaced by the in-
dex 2, and conversely. On this account, the two parts of Table 2 in Paper I referring to
the even equations are identical (except for the labeling of the rows and the columns).
And there are some further simplifications. Since the extent and the nature of these
simplifications are essential to our present purposes, we give in Table 1 the coefficients
of the virials in the expansions of the relevant quantities. Table 1 is a transcription of
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the first two parts of Table 2 of Paper I with the simplifications arising from the equality
of @, and as.

According to Table 1, the expansions of 85122 and 85112 contain, respectively, no
terms in Vi35 and Vas3; and, moreover,

65122 = 6(B11 + ¢12B111) (Vg2 — 3V 111)
and (n
6S112 = 6(B11 + ¢?Bu) (Ve — 3V a99) .

The first pair of even equations (Paper I, egs. [76] and [77]), therefore, takes the form

A2 —3Q24 6(B1u1+ a®B1)|(Viee — Vi) + 2NQ (Ve — 3V 222) = 0 @
and
A2 — 392 4 6(Bu + a?Bu)|(Vie — 3Vees) — 2A2(Viza — 3V11) = 0. 3

It is clear that these equations can be considered independently of the divergence condi-
tion and of the remaining pair of equations.
Equations (2) and (3) lead to the characteristic equation

[\ — 3Q%+ 6(Bu + al?Bun)? + 4NQ2 = 0. O]

It is now convenient to write
A= —g2 5

so that a real ¢ implies stability. With the substitution (5), equation (4) can be factorized
to give
g% — 290+3Q2—6(311+(1123111) = 0, (6)

and a similar equation with —Q in place of Q. The roots of equation (6) are

o= Q + [6(311 + 012.3111) — 292]1/2 . 7)
From equation (7) it is apparent that a neutral mode occurs when
2
—8‘“=2(B11+012Bln)01203 (6=0); ®
nGp

and, further, that overstability with a frequence @ occurs when
92
wGp

> 3 (Bu+ a:*Bui) ai’as (o complex). !

[The factor mGpa,%as, which was suppressed in writing the symbols in Table 1, has been
restored in (8) and (9).]
It is found that condition (8) is met when

e = 0.89926 (¢ =0) o
and that overstability in accordance with the condition (9) occurs when

e > 0.96696 (¢ complex) . @

1 Conditions equivalent to these appear to be included in an early paper by Cartan (1922). The
methods of Cartan (cf. Lyttleton 1953) are very different from ours and we have not attempted any
comparisons,
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It is to be particularly noted that the neutral mode at e = 0.89926 occurs before the
Maclaurin spheroid first becomes overstable at e = 0.95289 by a mode of oscillation
belonging to the second harmonic.

Since a neutral mode occurs at e = 0.89926, it would seem that the Maclaurin se-
quence has its second point of bifurcation here.?

The characteristic frequencies given by equation (7) are designated o3 and os; for
their behavior along the Maclaurin sequence see Table 4 and Figure 3 in Section IV
below.

There are altogether six even modes; and we have accounted for two of them. The re-
maining four modes are determined by Paper I, equations (78) and (79) supplemented
by the two divergence conditions.

In Paper I, equations (78) and (79), we can now put

V111 = 3V122 and V222 = 3V112, (12)

so that the roots given by equation (4) may be excluded and there may be no incon-
sistency with equations (2) and (3). With the substitution (12), the relevant coefficients
given in Table 1 can be further simplified and reduced. Table 2 is the required simplified
version.

With the coefficients given in Table 2 and with the substitutions (12), Paper I, equa-
tions (78) and (79) become

AN 4QD)[(N — Q) V153 — (N + Q%) Vi2s + 65133
+ 22(A2 4+ 42 (%W 112 + 26W12;1) — 2QN(Q2V 933 + 26Was;s) 13)
—I— 492)\(92[/133 + 25%13;3) =0 ’

AN+ 429)[(N2 — Q) V33 — (N2 4 @) V112 + 6S233)
—29()\2 —+ 492)(92V122 + 25%12;2) + 29}\2(9217133 4 25%13;3) (14)
+ 492)\(Q2V233 + 23%23;3) = 0 .

Equations (13) and (14) provide two linear relations among the four virials Vizs, Viss,
V119, and Vas3. Two further relations are provided by the divergence conditions (Paper I,
eqs. [132] and [133]); these conditions, in view of equations (12), become

012
—V and Vieg= —-— Vass. (15)
s 133 112 4“32 233

The characteristic equation which follows from equations (13)-(15) is of degree five in A%
But the five roots, determined by this characteristic equation, include one, namely,
N = —4Q02 which is spurious. The origin of the occurrence of this spurious root has
been explained in Paper I, Section IVa.

The even modes include the analogue of the one with respect to which the Jacobi
ellipsoids become unstable. This is the mode which belongs to the root which is desig-
nated ¢,* in Table 4 and Figure 3 in Section IV. It will be noticed that, in contrast to

2 The contrary statement in an earlier paper (Chandrasekhar 1962, Appendix II) that the second point
of bifurcation occurs at e = 0.96937, where a pear-shaped sequence (similar to the one along the Jacobian
sequence) branches off, is an error. This entire matter of the occurrence of points of bifurcation along the
various sequences and their relationship with the conditions for equilibrium which follow from the
virial equations of the different orders are clarified in a later paper (Chandrasekhar 1963).
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the Jacobi ellipsoids, the Maclaurin spheroids continue to be stable (i.e., in the absence
of any dissipative mechanisms) beyond the point (¢ = 0.96937) at which this mode
becomes neutrally stable and a pear-shaped sequence presumably® branches off. The
mode belonging to ;% subsequently becomes overstable.

III. THE ODD MODES

In Table 3 we list the coefficients of the virials in the expansions of the 628 .;;’s
and the 8S5:;z’s which occur in the equations for the odd modes; this table is a transcrip-
tion of the last part of Table 2 in Paper I with the simplifications arising from the pres-
ent equality of ¢; and @.. And the relevant equations are (cf. Paper I, egs. [101]-[103])

NV 125 + NQ (Vs — Vaag) + M(8S12s — 222V 1)
+ 2Q(6Was;2 — 6Wys;1) = 0,
M(Vis — Vagg) — ANQ V19 + N—22%(Vis — Vazg) + 6513 — 85203]
+ 4Q(6Wi3;2 + Was1) = 0,
M Vs + Vass — 3Vss3) + N[2Q%(V1as + Vass) + 85113 + 85223
— 8Q2(6W 15,1 + 0Was;2) = 0.

(16)

17)

(18)

It will be observed that in equation (18) the term in AV1s3 is absent; the reason is that
OB 15,2 = 5L 3,1 for spheroids (see Table 3).
Equations (16)-(18) must be further supplemented by the divergence condition (cf.
Paper 1, eq. [129])
2
V113 + V223 = _a_l' V333 . (19)

(132

Considering equations (16)-(19), we first observe that equations (16) and (17) are in-
dependent of the remaining two equations; for, according to Table 3,

05113 — 05933 = [3(311 + B13) -+ (5012 + 032)3113]0/113 - V223)
and (20)
—26W1s;1 + 26Was;e = 2(Biz + a12B1iz) (Vs — Vass) «

Equations (16) and (17), therefore, involve only V115~V 203 and Vig3; thus

{)\3 4+ N3(Bi1 + Bis) + (5a1 + a5®)Bis — 292]}(V113 — Vo)
— 4Q[N + 2(Bis + 01?B11s)]V12s = 0,

(21)

and

{N2 4 N2By1 + 4B1s + (4a:® + 2a52) Bz — 297} Vias
+ Q[N + 2(Biz + a:®B11s)](Viis — Vaes) = 0.

(22)

Before writing down the characteristic equation which follows from these two equations,
we may note that the coefficient of (V113 — Vass) in equation (21) and of Vi3 in equa-
tion (22) are the same; for their difference clearly vanishes:

By — Blz -+ ((1'12 - 032)3113 =0. (23)
3 For this expression of implied doubt see Chandrasekhar (1963, Sec. IT).
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Accordingly, we may write
NA2 4 3(Bu + Bis) + (5¢:2 + as®)Biis — 2972

(24)
+ 492[)\2 + 2(313 + (112B113)]2 =0 .

Writing —¢? in place of A? (so that a real ¢ implies stability), we can factorize equation
(24) to give

0’3 "_t 290’2 - [3(B11+ Bls) + (5(112 + a32)an - 292]0' ? 4Q(B13 + 0123113) =0. 25

It should be noted that the three characteristic frequencies determined by equation (25)
are independent of the divergence condition.

007
006
005
004~
003~
002 -

001 -

Fic. 1.—The square of the characteristic frequency belonging to a mode which becomes neutral at
e = 096937, where a pear-shaped sequence branches off This figure should be contrasted with Fig 1
in Paper I.

Equations (18) and (19) determine the two remaining characteristic frequencies be-
longing to the odd modes. Since the equality of Vi3 and Vs is now required for con-
sistency with equations (21) and (22), the divergence condition takes the form

a;?
Vig=Vap= T4 Va3, (20)
3

2
and equation (18) gives (cf. Table 3)

2
(3+25) o' +{21 (a2 +20) B~ 505Buss — 2B

2
_Z—;[mw 3(Bu+Bi)+(Ta2+ 5a52) By — 6a52Bas] ; .2 an
2
— 892[012B133 _%( B13 + 20123113)] = () ,

where we have again written —¢? in place of A%
g |Y
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IV. THE CHARACTERISTIC FREQUENCIES

The characteristic equations derived in Sections IT and IIT have been solved for all
their roots for some twenty-five members of the Maclaurin sequence. In Tables 4 and 5
the results of the calculation are given. And in Figures 1, 2, and 3 the variation of the
squares of the different characteristic frequencies along the sequence is illustrated.

The enumeration of the roots in the tables and in the figures has been chosen to agree,
at the point of bifurcation (¢ = 0.8127), with that adopted for the Jacobian sequence in
Paper I. Thus, with the adopted enumeration, the entries in the lines opposite e =
0.81267 in Tables 4 and 5 agree with those in the first lines in Tables 3 and 4 in Paper I.

Y
W
S
n
~
(-]
©o
s

Fic. 2 —The squares of the characteristic frequencies belonging to the odd modes ‘7"’ and “8.” (The
labeling of the curves corresponds to the enumeration in Tables 4 and 5.)

It may be recalled here that the six even modes include two (belonging to o2 and ¢5?)
which are independent of the divergence conditions. One of these two modes (the one
belonging to ¢2?) becomes neutral at ¢ = 0.8993; they coincide at e = 0.9669, at which
point they become overstable.

The “lowest” of the even modes (belonging to ¢1?) becomes neutral at e = 0.96937.
This mode is the analogue of the one with respect to which the Jacobi ellipsoids become
unstable. But, unlike the Jacobi ellipsoids, the Maclaurin spheroids continue to be stable
(in the absence of any dissipative mechanism) beyond the point at which it becomes neu-
tral. However, the mode belonging to o,? eventually becomes overstable by first coincid-
ing with the mode belonging to o3? (see the entries in Table 4 opposite to e = 0.995,
0.999, and 0.9999).

Turning to the five odd modes, we may again recall that among them there are three
which are independent of the divergence condition. And none of them exhibits any in-
stability or neutrality.
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TABLE 4
THE SQUARES OF THE CHARACTERISTIC FREQUENCIES BELONGING TO THE S1X EVEN MODES
(o? Is Listed in the Unit #Gp)

e o2? o52 12 a3? 42 as?
0. 2 2857 2 2857 0 0 2 2857 2 2857
02 1 8031 2 6756 0 0006580 0 04947 2 1596 2 4515
3 1 5358 2 8233 0014569 0 11376 2 1145 2 5472
4 1 2554 2 9284 0025216 0 20872 2 0815 2 6468
5 0 96562 2 97713 0037716 0 34029 2 06385 2 74774
6 0 67256 2 94996 0050513 0 51768 2 06271 2 84001
7 0 38727 2 80756 0060504 0 75473 2 07634 2 90106
8.. . 0 13539 2 47500 0061138 1 06894 2 08672 2 86996
81267 0 10863 2 41205 0059941 1 11478 2 08452 2 85227
82 0 09397 2 372718 0059063 1 14186 2 08244 2 83982
84 0 05765 2 25370 0055876 1 21756 2 07269 2 79598
86 0 02806 2 11425 0051348 1 29509 2 05444 2 73403
88 0 00759 1 94957 0045207 1 37249 2 02303 2 64765
90 0 00001 1 75257 0037156 1 44598 1 97096 2 52756
92 0 01195 1 51185 0026947 1 50764 1 88564 2 35969
94 0 05778 1 20576 0014712 1 53862 1 74463 2 12353
95 0 10508 1 01297 R L ...
9 . 0 19248 0 76686 0002634 1 47191 1 50443 1 80677
966956 0 41964 +0 006682; 0000225 1 37825 1 38590 1 69349
97 0.39187 +0 18482 0000017 1 32124 1 32124 1 64709
98 0 29252 +0 359552 0008046 1 06879 1 02956 1 48787
99 0 17511 +0 40964: 0066392 0 70002 0 58020 1 22690
995 0 10415 +0 36886z 0 022752 0 44050 0 26623 0 96870
999 0 03210 +0 21634 +0 005045+0 0695457 0 14918 0 50094
0 9999 0 007105+0 07829 —0 013570+0 02932: 0 03747 0 17141
TABLE 5
THE SQUARES OF THE CHARACTERISTIC FREQUENCIES BELONGING
TO THE FIVE ODD MODES
(o2 Is Listed in the Unit wGp)
e o72 as? o9? o102 on?
0 0 0 2 2857 2 2857 2 2857
02 0 00989 0 01746 1 9891 2 3138 2 5722
3 02350 04047 1 8413 2 3483 2 7048
4 04510 07510 1 6964 2.3985 2 8255
5 07792 12433 1 55478 2 46126 2 92655
6 12729 19307 1 41716 2 53361 2 99676
7 20202 28950 1 28285 2 60493 3 01517
8. . 31659 42767 1 14689 2 64104 2 93615
81267 33494 44920 1 12881 2 63888 2 91452
82 34602 46214 1 11817 2 63645 2 90033
84 37798 49933 1 08824 2 62446 2 85443
86 41253 53939 1 05653 2 60238 2 79595
88 44956 58233 1 02216 2 56629 2 72134
90 48855 62780 0 98365 2 51026 2 62529
92 52813 67468 0 93850 2 42467 2 49935
94 56476 71968 0 88182 2 29256 2 32863
.95 57944 73894 0 84622 2 19954 2 21808
9 .. 58875 75290 0 80267 2 07924 2 08240
966956 58968 75686 0 76535 1 97283 1 96719
97 58790 75622 0 74647 1 91840 1 90956
.98 56629 73643 0 66758 1 69049 1 67495
99. 49319 65502 0 53745 1 32462 1 31088
.995 40165 54388 0 41983 1 01119 1 00306
999. 21483 29971 0 21681 0 50595 0 50463
0 9999 0 07458 0 10578 0 07465 0 17159 0 17154
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F16. 3.—The squares of the characteristic frequencies belonging to the modes by which they are la-
beled. The mode labeled ¢‘2” becomes neutral at ¢ = 0.89926; and this mode subsequently becomes coinci-
dent with the mode ““5” at ¢ = 0 96696. The mode labeled ‘‘3” subsequently becomes coincident with
the mode ‘“1” (see Fig. 1).
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We are again grateful to Miss Donna Elbert for having carried out the solution of the
many equations whose roots are listed in Tables 4 and 5.
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