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I. Introduction

The development of two dimensional Fourier
transform NMR techniques by Professor Ernst dur-
ing the Seventies and Eighties created a revolution
in the study of biomolecules by NMR. The ubiqui-
tous COSY experiment and its many variants, es-
pecially the DQFC and TOCSY experiments made
it possible to obtain assignments of resonances of
molecules containing several hundreds of protons - a
task which was considered "impossible" before the
development of 2D NMR. Similarly the impact of
the 2D NOE experiment was "electrifying". It made
it possible to obtain the structures of biomolecules
in solution, a task which was considered "very diffi-
cult" before the application of this experiment (1-5).
The revolutionary developments of Fourier trans-
form NMR spectroscopy in one and multidimen-
sions by Professor Ernst, with literally hundreds of
new experiments developed by him during these two
decades, leading to an explosion of research in this
area by many workers, have culminated in his re-
ceiving the 1991 Nobel Prize in Chemistry.

The success of the 2D NOE experiment has made
it an "object-la-focus" on which much attention has
been paid. In order to extract as much information
as possible from this experiment, it is performed in
the realm of the initial-rate approximation, build-up

1 Presented in part at 5thChianti workshop on Magnetic
Resonance Nuclear and Electron Relaxation, held at San
Miniato, Italy, June 1993.

curves and long mixing times, subjecting the data
respectively to the two-spin approximation, build-
up rates and full relaxation-matrix analyses. Sev-
eral attempts are underway to obtain "accurate-
distances" (not just distance estimates) from the 2D
NOE data. Simultaneously there have been many
concerns regarding the systematic errors in the dis-
tance estimates from 2D NOE data. These are, ef-
fects of internal motions (6-9), anisotropy of mo-
tion (10-13), spin diffusion (14-19), sources of re-
laxation other than intra-molecular dipolar interac-
tions, and cross-correlations between different path-
ways of relaxation of a spin. While many attempts
are underway to include the effects of internal mo-
tions, anisotropy of reorientation, spin diffusion
and other relaxation processes, cross-correlations
present somewhat of an insurmountable problem.
The problem, as succinctly pointed out by Bull (20),
is that if one wants to include cross-correlations for
N number of relaxation coupled spins, the dimen-
sion of the relaxation matrix goes up exponentially
to 2^ x 2N as against a linear N x N increase if
one neglects cross-correlations. For example, for 10
relaxation coupled spins one needs a 1024 x 1024 re-
laxation matrix with cross-correlations and a 10 x 10
matrix without cross-correlations. Therefore the
question, whether one can discard cross-correlations
without making much error, becomes very perti-
nent. In this paper the effects of cross-correlations



116 Bulletin of Magnetic Resonance

and their influence in the 2D NOE experiments are
examined in some detail, especially with respect to
their influence on the net NOE.

II. Theory

The longitudinal relaxation of N relaxation cou-
pled spins is in general described by the rate equa-
tion (4)

dP(t)
dt = W(P(t) - (1)

where P(t) is a vector of populations of various lev-
els at a time 't' and P° is their equilibrium value.
W is the longitudinal relaxation rate matrix. The
dimension of P is 2iV and that of W is 2W x2™.
If one neglects the cross-correlations a simpler rate
equation describing the magnetization of each spin
is obtained as (14,21)

dlz(t)
dt = R(£(*) - (2)

This later equation is the generalized Solomon's
equation in which Iz(t) describes the longitudinal
magnetization of various spins at time 't', their equi-
librium values 1^ and the rate matrix R whose diag-
onal elements describe the self relaxation of a spin
and the off-diagonal elements the cross-relaxation

(NOE) of one spin with another. The dimension
of Iz is N and that of R is N x N. Equation 2
is the equation used for most biological studies. It
is a part of a bigger equation which is equivalent
to eqn. 1, but recast in the language of magneti-
zation modes. One defines, single spin magnetiza-
tion modes Izi (Az, Mz,...), two spin magnetization
modes 2Iz{Izj (2AZMZ, 2AZXZ,...) and multispin
modes up to N. It is then possible to express the
population of each level Pj as a linear combination
of these magnetization modes. Equation 1 can then
be recast in terms of these modes and yields for ex-
ample for 3 relaxation coupled spins, eqn. 3, where
Pi and <Tij respectively describe the self-relaxation
of spin 'i' and cross-relaxation of spin 'i' with spin
' j ' , A*J represents the cross-correlation of CSA of
spin 'i' with dipolar interactions of spins 'ij'. and Si
= $ijik represents the cross-correlation between the
dipole vectors of spins 'ij' and 'ik' (22-26).

From eqn. 3 it is seen that modes of differ-
ent order are connected purely by cross terms be-
tween different relaxation pathways of a spin, the so
called cross-correlation terms. If cross-correlations
were negligible, the relaxation matrix would become
block-diagonal and the upper left part of this ma-
trix, which connects the single spin modes (the mag-
netization of each spin) to each other and which
contains only auto-correlation terms, would yield
eqn. 2.
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Figure 1.

The presence of multispin modes creates unequal
intensities for the various transitions of a spin. For
example, the intensities of the four transitions of
spin A in an AMX spin system are given by

Ax = (1/4)[AZ + 2AZMZ + 2AZXZ + 4AZMZXZ]
A2 = (1/4){AZ-2AZMZ + 2AZXZ-4AZMZXZ\
A3 = (1/4)[AZ + 2AZMZ-2AZXZ~4AZMZXZ]
A4 = (l/4)[Az~2AzMz-2AzXz+4AzMzXz\

(4)
The net intensity of the spin is the sum of all

four transitions, and is given by the single spin mode
Az. If the four transitions are not resolved (J=0) or
if one uses a 90° measuring pulse (which does not
measure the multispin modes) one only sees the net
effect. However, the net effect will be different, when
cross-correlations are present, from that predicted
by eqn. 2. The net effect is independent of the value
of J, within the weak coupling limit.

In a 2D NOE experiment on uncoupled or weakly
coupled spins using the [90 — t\ — 90 — rm — a] se-
quence, each cross-section parallel to Fi is equiv-
alent to a ID transient NOE experiment in which
the spin (or all the transitions of the spin) on the
diagonal, is inverted at rm = 0 (27-29). This means
that in each cross-section, a single spin mode is cre-
ated and all the other modes are zero at rTO = 0.
From eqn. 3 it is seen that this single spin mode
then evolves, in the initial rate approximation, into
single spin modes of other spins (NOE) through
cross-relaxation (<Jij), into multispin modes through

cross-correlation (Si, A*"7) and also decays by self re-
laxation (pi) (Figure 1). At longer mixing times, the
multispin modes evolve back into single spin modes
of various spins through cross-correlations, giving
rise to net NOE and self-relaxation effects due to
the presence of cross-correlations.

The presence of multispin modes has been am-
ply demonstrated in several studies: As unequal
intensities of various lines of a multiplet in in-
version recovery experiments and 2D NOE exper-
iments using a small angle measuring pulse (30-34);
in experiments in which the multispin modes are
converted into multiple-quantum coherences which
are filtered using multiple-quantum-filtered experi-
ments (35-37); and in reverse experiments in which
multispin modes are first created and their evolu-
tion into single spin modes are monitored (38). One
example of the presence of multispin modes in a
proton-proton two spin system using inversion re-
covery experiment is shown in Figure 2. The dif-
ferential relaxation of the two lines of a spin, indi-
cated by the unequal intensity of the lines during
the recovery period, is due to the creation of the
two spin mode (2AZXZ). The two spin mode is cre-
ated here by cross-correlation between the chemical
shift anisotropy relaxation (CSA) of the ring pro-
tons and their mutual dipolar interaction. Since the
magnitude of the CSA of the proton is small, the
magnitude of the created two spin mode is small
(< 1.2%), in this case.
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Figure 2: The AX part of the inversion-recovery
spectra of coumarine dissolved in CDCI3, recorded
with a measuring pulse of 20°, for recovery times
indicated in the diagram. Some of the spectra are
multiplied 4 or 8 times as indicated. The spectra
were recorded on an AMX-400 spectrometer.

This paper, on the other hand, concentrates on
the net effect arising from the cross-correlations. For
this purpose a three spin system is considered, the
discussion being restricted to dipole-dipole cross-
correlations. It has been earlier shown that there
is a significant multiplet effect in such a spin system
especially in a linear geometry and that the NOE
and the multiplet effect are sensitive to the geomet-
ric disposition of the three spins (39).

1. Net effect due to dipolar cross-
correlations in a homonuclear three
spin system

Three geometries of the relaxation coupled
three spin system, without or with weak J couplings
(AMX ) considered are, (i) equilateral triangle (ii)
isosceles triangle with a right angle and (iii) a linear
arrangement of the three spins, keeping the distance
between 'AM' and' MX' equal. The magnitude of
the geometric factor of the AM-MX dipole-dipole
cross-correlation compared to AM-AM auto corre-
lation for the homonuclear system is given by

r(3cos2f9-l) (5)

where ri is the distance between A and M spins,
i2 the distance between M and X spins and 9 is the
angle between these two vectors (Figure 3). For ri =
r2, this ratio is —1/8, —1/2, and 1 respectively for
equilateral triangle, isosceles triangle and a linear
arrangement of the spins. Thus the cross-correlation
is extremely sensitive to the geometric disposition of
the three spins with the linear arrangement having
maximum cross-correlation.
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Figure 4: Calculated net NOE in percentage on spin A, after selective inversion of spin M at rm = 0 is shown
as a function of rm for three geometries; (a) equilateral (b) isosceles and (c) linear, for three values of LUTC

in each case. In the left hand diagrams the dashed curves represent the calculated net NOE without cross-
correlations and the solid curves with cross-correlations. In the right hand diagrams the difference between
these two calculated NOE's are shown by solid curves.

The calculated net NOE on spin A [Az(Tm)] for
the selective inversion of spin M (equal to the in-
tensity of AM cross peak in a cross-section parallel
to i<2 at the frequency of M spin in a 2D NOE ex-
periment having all the three pulses as 90°) in the
three geometries is shown in Figure 4. Also shown in
this figure is the calculated net NOE without cross-
correlations and the difference between the net NOE
calculated with and without cross-correlations. The

net NOE has been calculated for three values of
UJTC = 0.1, 1.118 and 10, in each case. The differ-
ence is rather small for the equilateral case (< 0.7%)
and isosceles case (< 6%), but significant in linear
geometry (up to 8%, 13% and 24% respectively for
iOTc = 0.1, 1.118 and 10). The difference builds up
at a later point in time since it is a second-order
effect.

The presence of this significant error in the net
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NOE calculated with and without cross-correlations
has a direct consequence in the distance estima-
tion from the 2D NOE data. The neglect of cross-
correlations causes a systematic error in the distance
measurement. However, the error builds-up at large
mixing times since it is due to the second-order ef-
fect of cross-correlations. One redeeming factor is
that these mixing times are much larger than the
mixing times usually employed in 2D NOE exper-
iments. Never-the-less these errors are significant,
and are due to opening up of additional relaxation
pathways of the spin by the cross-correlations. This
is discussed in more detail in the following.

The cross-correlation 6M transfers some of
M magnetization to the three spin order term
(AAZMZXZ) which then leaks to Az or Xz via 8A
or 8x respectively or comes back to Mz via 6M-
These additional pathways cause the changes in the
net NOE. In equilateral and isosceles triangle cases
all the 6's are small. As a result these additional
pathways are insignificant. However in the lin-
ear case the geometric factor of the AM-MX cross-
correlation is as significant as AM-AM or MX-MX
auto-correlation. Thus in the linear case the dom-
inant additional pathway is (8M, &M) (Figure 5).
The NOE from spin M to spin A is affected by two
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Figure 4: continued.

pathways one involving (6M, 8M, &AM) path and
the other involving (8M, 8A) path (Figure 6). In the
UTC = 1.118 limit (JAM ~ 0 and the net NOE to A
spin comes only through cross-correlations using the
path (8M, 8A)- Since 8A is small this NOE is small
(Figure 4c). However when U>TC >̂ 1 (urc = 10),
&AM is large along with 8M and the path (8M, 8M,
a AM) contributes significantly to the net NOE on
A and the difference in net NOE calculated with or
without cross-correlation is significant (Figure 4c).
Identical results are obtained for the X spin in this
case due to symmetry and are not shown.

The self-relaxation of spin M is also affected by

io SEC 20

the presence of cross-correlations (Figure 7). The
self-relaxation of a spin can be monitored as the de-
cay of the diagonal peak in the 2D NOE experiment
or by a selective-inversion-recovery experiment. The
self-relaxation of spin M shows a very large effect of
cross-correlations as has also been pointed out by
early workers in this field (40-42). The pathways
affecting the self relaxation of spin M are indicated
in Figure 8. Of these the dominant path due to
cross-correlations is again the path (8M, 8M)- For
UITC = 1.118 the other paths are cut off and this is
the only path left.

The NOE from spin A to M and X and its self-
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ure 9 shows the net NOE from spin A to M and
X for various correlation times. This figure shows
that the differences are smaller than Figure 4 but
are not negligible. In the short correlation limit
(UJTC < 1) the net NOE to X is small and the dif-
ference with and without cross-correlation is also
small. The calculated net NOE on M and X spins
without cross-correlations is zero for U>TC = 1.118.
The pathways contributing to the net NOE on M
and X spins are shown in Figure 10. For WTC =
1.118 when <JAM a nd GAX a r e zero, the pathways
(8 A, 8M) and (8A, 8X) exclusively contribute to net
NOE on M and X spins respectively. Since both 8A
and 8x are small compared to 6M, the error in the
net NOE on X is smaller than on M. In the long cor-
relation limit a AM becomes significant, opening up
additional pathways. The dominant pathway using
cross-correlations for the net NOE on spin M being
{?AM, 8M, ^M) and for the spin X being (<TAM, 8M,
8M, ffMx). The difference for both M and X spins
comes from (8M, 6M) path and therefore the errors
for M and X are almost equal. The self-relaxation
of spin A (figure not shown) also shows significant
differences for LOTC = 10, the dominant pathway be-
ing (aAM ,8M,8M, GAM)(Figure 10). For LOTC -
1.118 the above pathway is cut off and the errors are
due to (8A, 8A) which is weak and hence the error

is small.
These large errors in net NOE arise at rather long

mixing times, times which are often not sampled in
2D NOE experiments. In this contrived three spin
system, the spin system is isolated from the rest of
the spins and in the limit LOTC >̂ 1, also gets isolated
from the lattice. As a result the magnetization re-
mains within the spin system for a long time. Dur-
ing this long period, the error due to neglect of other
pathways builds-up and shows-up at later times. A
plausible approach would be to enlarge the spin sys-
tem and to build-in leakage terms so as to approach
the realistic experimental conditions. This is being
presently attempted. Isolation of spin systems can
however be achieved by selective spin lock (43,44).

III. Conclusions

The error in the calculated net NOE by neglect of
cross-correlations while small at small mixing times,
is not negligible at larger mixing times, particu-
larly for slow motion limit, the so called biomolec-
ular limit. In this limit, even if one of the cross-
correlations at one of the spins is significant, it can
affect all the spins to which that particular spin has
good cross-relaxation contact. However, in most of
the geometries (except linear) dipole-dipole cross-
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Figure 7: The calculated net magnetization in percentage of spin M is shown as a function of rm, after a
selective inversion of spin M at rm=0 for the linear geometry of the three spins AMX for three different values
of WTC. In the left hand diagrams, the dashed curves represent the calculated magnetization without cross-
correlations and the solid curves with cross-correlations. In the right hand diagrams the differences between
these two calculated magnetizations are shown by solid curves.

correlations are small. The CSA-dipole cross-
correlation for protons are also usually small and
perhaps can be ignored. The CSA-dipole cross-
correlation is significant for other spin 1/2 nu-
clei such as 19F, 13C, 31P and 15N and may
not be ignored. More work is required to as-
sess whether proton-proton dipole-dipole cross-
correlations should be included in biomolecular
NOE studies of large molecules.
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