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A stochastic theory for clustering of quenched-in vacancies—
III. A continuum model
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Abstract. In continuation of our earlier investigation on the problem of clustering
of quenched-in vacancies reported earlier, starting from the discrete model, we derive
a second order partial differential equation for the growth of the clusters. The solu-
tion of this equation is shown to be in reasonable agreement with the solution of the
discrete model proposed earlier. However, the total number of vacancies is not.
conserved under slightly less stringent conditions than the conditions dictated by the
solution of the discrete model, suggesting a slightly modified differential equation for
the concentration of the clusters. The solution of this modified differential equation
has the required properties. The leading part of the distribution when transferred
I into the space designating the linear dimension of the cluster has a Gaussian form.
| This feature is shown to be consistent with writing a Langevin equation with the linear
; dimension of the cluster taking the role of the random variable. This permits the
identification of the smallness of parameter. An alternate formulation is also given
where the concentration of the vacancies stored in a cluster of a certain size is con-
sidered as the dynamical variable, The solution obtained in this alternate formulation
is shown to be consistent with the other formulation.

Keywords. Continuum model; Fokker-Planck equation; dynamical variable; Gaus-
sian distribution; random variable; Langevin equation.

1. Imtroduction

In our earlier papers (Ananthakrishna 1977; 1979 a, b referred to as papers I and II)
we introduced the constant binding energy model for clustering of quenched-in
vacancies. This model was introduced with a view to obtain the solution in ¢used
form for the concentration of single vacancy units and the distribution for the cluster
sizes. The model has several attractive features but the distribution has also two
undesirable features. First, the peak of the distribution does not evolve in time
when transformed to the space where the linear dimension of the defect is used as a
measure of the size of the defect. Second, the distribution is rather peaked. It is
possible to overcome the first drawback by appropriately changing ¢(n) and ¢(n)
from the choice given by equations (I. 17) and (I. 18). (the equations from papers I
and II will be referred by their prefices.) But this poses some other problems. It is
“the purpose of this paper to evolve a continuum model, a model where the random
variable takes on a continuum of values. This poses lot of problems and has to be
carried out in a self-consistent manner.
We recall certain features of the constant binding energy model:

(i) Decoupling of the equation for rate of change of the concentration of sir}gle
vacancy units and the equation for the growth of clusters is not possible
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unless the number of absorption and emission sites are taken to be (n-1)
and z respectively, and the binding energy is considered independent of the
number of vacancies contained in the clusters.

(i) The quantity x, = exp (—b/kT), where b is the assumed constant binding
energy, in the final analysis is related to (n) and therefore has to be con-
sidered as a parameter. Thus x, is a function of the average size.

(i) A discrete time version of the model is not physically meaningful since the
number of jumps a vacancy has to make to reach a cluster has no specific
relation with jump time.

It is most likely that the non-evolution of the peak and the rather peaked distribution
result from the feature given by (i). Regarding the non-evolution of the peak we note
that all the experimental distribution are measured in the r-space. So the evolution
of the peak in the n-space is not necessary. It is sufficient to have a distribution in n-
space which when transformed into r-space makes the peak evolve in r-space. When
a continuum version of similar models is attempted, the procedure to be adopted is
well known. There can be several limiting cases corresponding to different physical
situations (See Kalrin and McGregor 1964). In general, there is a small or a large
parameter which helps to take these limits. In the problem at hand, there is no such
parameter. In some cases, one can start by regarding both the parameter of the
random variable and the random variable to take on discrete values, and take appro-
priate limits as can be done in the case of problem of diffusion (Wang and Uhlenbeck
1945). This possibility is ruled out due to point (iii). In addition to these points, it is
important to note that the dynamical variable in our problem is N, the concentration
of the cluster with z-units because of the fact that the model describes the growth of
clusters and not the number of vacancies in the cluster. (The latter would have been
the right choice if a Fokker-Planck equation had to be set-up. Since the normal
methods available in literature cannot be used, we will have to rely on some other
physical considerations.) There is an additional problem about the choice of the right
dynamical variable. There are two choices one can make. One is the concentra-
tion of the clusters N, and the other is the concentration of vacancy units p, in a
vacancy cluster of concentration N,. If the latter is used a generalised F okker-Planck
can be set-up. As we will show, if we use some results available from the previous
model about the short time constant for p, using N, and p, as the dynamical variable
gives rise to consistent results. The basic physical assumption in the problem is that
as for the growth of clusters after the initial incubation period, the effect of the varia-
tion in the binding energy is small and hence the growth of the clusters is smooth.
As far as the construction of the continuum model, since the normal methods available
in literature cannot be used, we will have to rely on the correspondence of the method
of constructing the continuum limit to the original model and use other physical
information. We will see that once the continuum limit of this model is constructed

ip the n-space, we can identify a small parameter by writing down a Langevin equa-
tion for the random variable r, the radius of the loop.

2. Continuum model

In cases where a Fokker-Planck equation has a small parameter, the Kramer-Moyal
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the equation with the full time dependence of Nj, we shall solve the above equation
after N; has reached its asymptotic value. By using the asymptotic value of N; in
(2), we cannot expect the solution obtained in this fashion to be valid for shorter times.
Also we assume that for shorter times, the evolution of clusters is smooth and using
the actual physical boundary condition gives the correct distribution. We also wish
to remark that x, will be related {»n) (as was shown in the discrete model and will be
shown to be true here also) and therefore should be regarded as a parameter. Indeed,
when we started with the original equations (equations (I. 4), (I. 17) and (1. 18)) x,
was a function of n. Now it has to be regarded as a function of {n). By consi-
dering x, = x, ({n)) we can dump all unknown features into this parameter.
We shall rewrite (2) in the following manner

2
ON =N 2 ) + 3y ot V) 2 -, eyt n 28
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In the last term we could replace Ny x,/(Ny+x,) by x, since x, € N, (as we will show
later or see Ananthakrishna 1979b, paper II). Then we have

oON X X2 0 ok
— === Z [(m—1DN] + x; x, — (nN). 3).
= T 5 DN+ 5z 2 () ©
(The procedure of splitting the second term into a contribution that can be absorbed
in the first term plus another one that can be absorbed in the term n(9*N/on?) is
expected to cause less error than directly using Ny = N, xo/(Ny+x,) in (2).)

In order to solve (3), we use methods of Laplace transforms. Define

x(s,1t) = j 8° N(n, t) (exp—sn) dn. @

Here few comments are in order. First, the physical domain of definition of n does
not extend upto zero. Thus by extending the domain of definition of n, we have to
assume N(0, £)=0. Second, this integral does not have contribution from n=1, i.e.,
N(1, t) # Ny(t). Third, equation (1) is expected to hold for n=2 for analytic calcu-
lgtions only. Indeed, due to the fact that we have used continuum approximation
to obtain (2), it is probably not valid for small n. Further, we attempt a solution of (3)
only with the asymptotic value of N,. By this time several clusters with sizes in the
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small n region would have formed. So the statements concerning n=0, 1 and 2 are
for mathematical convenience. We shall also assume that

0
N t)],=0 =0.
ann ( )‘n—O

Thus we assume

Ny(t) # N(1,1) =0, )
. 7]
0,t) =0;1 = =0
N( > t) 07 ’:If:O annN(ns t) ’ }_ (5)
and lim N(n,t) =0.
n—> o

With this we can write a differential equation for x (s, £)
ox[ot = —As x—s (A+Bs) (9x/0s),
where

The method of obtaining the solution is shown in Appendix 1. The solution is given
by

x(s, ) = (4/By4E {""P "B [A/Bisj(l —4’)]} ”

[(A/B)+s(L —#)] 4%, | (6)
with ¢ = exp — A4t.

N(n, t) can be calculated by using the inverse laplace transform (The details are given
in Ananthakrishna 1979c.) With »; = 4/B, we get

25 = - 35

n g/l =)

Since the leading term in

I, (Z[2) = GZ/T(;+1), Rewy>—1,
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for small Z, we can use this to compare with our earlier result. With this we have,

_ An+4) !
An ]A/B =P B(l—-qS)}
N 1) e [B(l—¢> 7 T (4/B)
k n”No/(No"}'xz) X (N+ 95)
gt P g No—}-xz(l—-qb)%
. . . Xt , (8)
= ka7 exp { Gz + No) (1—¢)§

where & and k' are constants. (We have used NO/(No—i—xz).N 1 sinpe X, € Ny.)
The distribution function that we have obtained via the generating funct:lon appr<?ach
gives two terms one of which identically vanishes as - co. The leading term is

__ X3 (2N, +.¥2) No(1 —¢) ) (9)
M= {" " T —No‘?s/(No‘["xa)]}

With the same approximation that XX N,

No ~ "2

In o
No+x, No—+x,

and In 1—-¢ ~ b [Xo/(No + xg)] ,
1 — [Nob/(Ny+ x,)] 1—[N, 0b/(No+x5)]

o x B nx,
gives N, =~ 5 P { (No+x;) {1 — [¢No/(No+x2)]}}

~ A - X 10
or N ~ nlx, exp { FT o _@} . . (10

Thus the leading behaviour in both cases isnearly the same. ‘Therefore the expansion
scheme that we have used appears to give consistent distribution as the one obtained
for the differential-difference equation.

Now we remove the two inadequacies namely the highly peaked nature of the dis-

tribution and the non-evolution of the peak in the r-space. To avoid the later, we
note that if N(n, £) has a maximum at n=0,

~ 2
¥, o =:N(r_, ,)
a a?

has a maximum at non-zero r, - In order to achieve the above objectives, we note that
In view of our earlier remarks about the absence of a small parameter or relevant
time scale in the continuum model we should demand consistency between the decay
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of the concentration of single vacancy units and the equation for the growth of clusters.
This implies conservation of the total number of defects in the system. We do not
have any reason to believe that this conservation of defects should hold even after
the truncation of the differential equation at the second order by ignoring the higher
order terms in the Taylor series. Further, since we need a nice behaviour at the origin
for the distribution function N(n, ¢) the boundary condition under which we expect
to solve the growth of clusters is different. This is another reason why the conser-
vation may not hold. We recall that the behaviour of N, as n—>0 is singular (if n=0
is considered as a point in the physical domain for #), even as n—1, N, becomes highly
peaked. So the least stringent conditions, on N(n, t) are dictated by our earlier
knowledge about N, based on the solution of the discrete model. These lead to

lim n® N(n,t)—~>0 and lim N(n, t) - 0.

n—>0 n—>o0

(This is due to the fact that 1/n factor contributes as 7—0.) The behaviour of N(n, 1)
as n->o0 in the parent model is sufficiently strong and we shall retain this feature.
However, a slightly less stringent condition is required as far as the behaviour of
N(n, t) as n->0 is concerned.* So we require

lim n N(n,t)—=0, lim N(n, )0,

n->0 7n—>00
and im 22N o
n>0 On

We can now proceed to check the conservation of the total number of defects. This
can be easily checked by calculating f(#). Here it is important to remember that the
contribution to n=1 comes from the equation for Np. (See (IL. 4)). Thus when we
integrate (2), we should include the contribution from N, term in the integration.
Then we have ' :

af . ae fw'a(nN) f°° oN 4
7t—x,Nl—l—Al 0n o dn + 2B, Onan n

o0 aEN
2 0 iy,
—i—Blfon o n

where A, ==x,(x,—N,) and B, =x,(x,-+Ny)[2. Here the first term is the contr_ibution
to the integral from the equation for N,. Using the above boundary conditions on
N(n, t), we have

i ) fw N
= — B < an. (11)
= x,N2—A; f(1)+-By o " o n

*¥Tt is important to note that we have set N(0, £)=0 for the unphysical point #=0. This require-
ment is common for all the cases considered.
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This equation should be consistent with the equation for (written in the continuum
limit)

—dN,

. 0 [+ ¢]
— = X Ny -, Ny f o (nN)dn—x;x, f o (nN)dn.

This is possible if the last term in (11) were absent. (It may be worthwhile to point
out that (2) does not conserve the total number of vacancies even with the boundary
condition dictated by the solution of the parent model.) This means that we should
modify the differential equation appropriately to suit the boundary condition on
N(n, t). Then the modified differential equation reads,

ON 0 O*N ON
— = A4, Z(mN)+Bn% 2 1 p 9 12
ot 1an (n )+ 11 an2+ 15’1 ( )

It may be recalled that we have remarked at the end of paper II that using an appro-
priate choice of the number of absorption and emission sites, it is possible to overcome
the peaked unphysical nature of the distribution. In fact, the above equation corres-
ponds to a slightly different choice of Y(n) and H(n). If we use

Y(n) = n—} and §(n) = n+i

and go through the usual procedure of truncating the Taylor series at the second
order, we would get the above equation. The solution of (12) can be obtained typic-

ally the same way as the solution of (3) and is (see Appendix A of paper IV, Anantha-
krishna 1978c)

_ K4 (P4, [ AVng 13
N(n, t) 5 exp[ m]lo(m). (13)

where K is a normalisation constant to be determined. The method of obtaining the

solution is presented in the next paper. Here we note that the leading term desig-
nated by N 1(n, t) is given by '

Ny(n, t) = (cl:ojj) X exp [_B(Tn—"—zigﬁ)} (14)

If we wish to write the distribution in terms of the radius of the loop (or the edge
length of the tetrahedra) we see that

ﬁL(r, t) = 2a(r/a®) N 1 (ar?[a?, 1)

_ 2ar . Ar?
= const X = exp [ m} (15)
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in the r-space has the peak at a non-zero value of n. (The relation n=ar® Ja® has been
used, where o is a geometrical faptor.) We also note that N, (ar?/a?, ¢) is a Gaussian
inn,

Consider equation (11) without the last term, i.e.,

d
a{= — Af + x1x2. (16)

This equation describes the growth of the total number of vacancies in clusters of
all sizes. Strictly speaking f(¢) is independent of ¢ since we have used the asymptotic
value of N;. (This of course would be true only as t~~c0.) But N; has a very
short time constant and N; attains its asymptotic value in a very short time
of the order of a second. We can therefore use the asymptotic value of N,
and regard f(z) as a weak function of ¢. (Physically, this is equivalent to introducing
all the vacancies initially and allowing only a redistribution of vacancies with a slow
variation in N(n, t). Alternatively, we could regard the total number of vacancies
to be strictly constant after N; has reached equilibrium with the rest of the clusters.
This implies that we allow only a strict redistribution of vacancies among the various
clusters. This also implies that the dynamical variable of interest is p(n, t) rather

than N(n, t). We shall elaborate this point later.) This procedure would offset N very
little since, by about a second, the term

- %N

N 4+ Mo

T Notxa  Notxy
and the last term is of the order of the first. Then the solution of (16) is
S(t) = a exp —Ar + (x1x,*/4)-
At =0, f(t)=0, so

exp —xy(Xa+Np)

() = (xyx5%/4) (1—exp—At). )]
_Notx [ [exp — 2 )| | 18
{n) = [1 (exp (No—l-xz))] (13)

(Note that N should be independent of time. Physically it is clear that N(t) should
reach its steady state much faster than (#n).) This is the result that one would get
if (14) is used. From (14) it is clear that N is strictly normalised. (This is what is
implied in the above statement.) So the slow growth of the average size can .be
obtained from (17) itself. In the following we shall see how (18) helps us to identify
a smallness parameter in the r-space.

3. Identification of smallness parameter and the connection with Langevin equation

There are several points in the above analysis which suggest tl.lat it should be possible
to identify a parameter to terminate the Taylor series expansion at the second order.
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This parameter may be easily identifiable in an appropriately transformed space as is
the case in our problem. The clue that there is such a parameter is at least three-fold.
First, the parent equations for deriving the continuum model were modelled as a
Markoffian process. Secondly, the leading form of the solution of (12) is Gaussian
in r suggests that it may be possible case that leading contribution into a Markoffian
form, although (12) may not describe a Markoffian situation (due to thp continuum
approximation we have made). In this connection it may be important to observe
few points. An equation of the type (12) is to be regarded as an equation for the
distribution function, not necessarily a Fokker-Planck equation. In the present situa-
tion this statement is more relevant for yet another reason namely N(#, t) is not a
probability distribution. However, in the approximation we use namely using the
asymptotic value of N, soon after the initial nucleation period, i.e., when N, has almost
reached its asymptotic value, N is regarded as strictly constant. The above
restriction concerning N(n, ¢) is therefore not physically relevant. These points

suggest a strong possibility of writing a Langevin equation for the random variable r.
Consider an equation for r ‘

dr A =
c‘ﬁ—_‘a‘r“*‘;(t)s

where Z(t) is the noise term which can arise due to several reasons. Indeed, the
diffusive motion of vacancies, which is the main cause for the growth of clusters, is
random. There can be other sources like the presence of the motion of dislocations

(which are always present in the system), etc. With the usual assumptions about Z(t)
being a stationary, Gaussian white noise and with the initial condition {ry=0 at
t =0, we have (see Wang and Uhlenbeck 1945)

@y =exp () [ [ e (S < T e v

Using  (Z(x) {0)) =2D 8(x—y),
we have  {r*) = (2D/4) [1— (exp—A1)]. o 19
Multiplying (19) by a/a? and comparing with (18) we get

2D = a® x; x,%/aN. (20)

(Here N is independent of ¢ and is determined by comparing the solution of the
Fokker-Planck equation with (14).) Thus it is clear that the smallness parameter is a,

the lattice parameter in the r-space. The associated Fokker-Planck equation in
r-space is .

ONL(r,t) A p @ x, x? 92 ,
————L =22 [NL G, )] + LK O : gt
Y 26r[’ L(r, 1) PR é)erL(r, 1) (21
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It is clear from the above connection with the Langevin equation that the continuum
model we have constructed based on the earlier presented discrete model has built-in
internal consistency. ‘ :

We shall make a few more remarks on some aspects of the model. It may be re-
called that the slow growth of the clusters after an initial transient during which Ny
rapidly decays increasing the concentration of N, rapidly (during that interval)
reaching a quasiequilibrium is what we have described by (12). This point has been '
amply brought out by showing the connection of the slow change of f(¢) (after the
initia] transient) with the Langevin equation. It may also be recalled that we have
mentioned that it is possible to regard the concentration of vacancy units in the
clusters to be constant right from the period after the initial transient and allow only
a strict redistribution of vacancy units. Such a description should be expected to be
consistent with our earlier description where N(t) rather than f(r) was regarded as
constant (and f(f) varied slowly due to slow flux of vacancies to N,). Hence dfjdt is
strictly zero and the dynamical variable which should be of interest is obviously
p(n, 1), the number of vacancy units in the cluster. In this description we regard that
py has already attained equilibrium with p(n, t) in a short time. The value of p;(0)
to be used is taken from our earlier knowledge. Since this happens in a very short
time, we assume that we have introduced all the vacancies into p(n, t) right at the
start. The starting point is a slightly altered equation for px(t) in comparison with
(I1. 5) (or equivalently (I. 9) with (I. 17) and (L. 18)). ‘

dpajdt = 1 py Puy X1 — (0+1) Py Pn X1

+ 7 Ppyg X Xg — (B— 1) Xy X3 P (22)

This equation corresponds to a slightly different choice of ¥(n) and Ji(n). Going
through the Taylor series expansion for p,,; upto second order we get

o _ 40y 5P (23)
ot on on?

Again, introducing

E(s, 1) = f 80 exp (—sn) p(n, t) dn (24)

where the contribution p, is not included. p,#p(1, £)=0and the contribution from
n=2 is included in the same sense as in the earlier case while dealing with (2) and
(12). One can easily check that df]dt is strictly zero if we assume

lim p(n,£)>0 : lim n% -0, and lim p(z,£)->0. 25)
n-0 n—>0 On n—>w

These conditions are consistent* with the conditions imposed on N(», £) in obtaining
(12). Going through steps similar to that for obtaining the solution of (12), the

*It is important to note that we have set N(0, #)=0 for the unphysical point n=0. This require-
ment is common for all the cases considered. '
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solution of (23) can be obtained. The details of the method of obtaining the solu-
tion is given in Appendix B and the solution is

p1(0) x,2 m [ exp — 2 (n+4) J

P, 1) = (—4) (N, Fx) (Not-2x2) (1—4)

L (vnd :
y i (‘/""5 (No+x,) (l—qb))' (26)
X

! 2
VI e )

Clearly the leading behaviour of p(n, t)/n is exactly the same as N(n, t) that we have
obtained earlier except for the additional time-dependent factor of 1/(1—¢). Thus
we have shown that we could either regard the total number of vacancies to be const-
ant (from the time when N, has reached equilibrium with the clusters) or regard N
to be constant (which implies f(¢) varies slowly). Both these approaches give the
same result as far as (») is concerned as we have shown in paper IV (Anantha-

krishna 1979¢c). In both cases N; has been taken to be already in equilibrium with
the rest of the clusters.

4. Summary and conclusions

The basic problem that we have pursued in this paper is to build a continuum model
for the problem of clustering, more specifically the problem of the growth of clusters
after nucleation. To do this we have strongly made use of the discrete model that
Wwe proposed in paper I and relied using some properties of its solution obtained in
paper II. The feature that is useful in the parent model is that the equation for the
growth of clusters could be decoupled from the equation for the decay of the con-
centration of single vacancy units and thus leading to closed form solution for (V,(¢)).
The decoupling can be achieved by regarding x, to be independent of n. Although
this at the first sight appears as a gross simplification is actually exploited since X
is directly related to {r). Thus a quantity which was initially a function of n,
in the final analysis should be regarded as a function of average n. However, this
approximation probably leads to a singular distribution and the non-evolution of
the peak in the r space. To overcome these two problems, we have resorted to build-
ing a continuum model retaining the good features of the parent model. A simple
truncation of the Taylor series expansion leads to a partial differential equation for
the growth of clusters. Here it is assumed that N, (o) obtained from earlier work can
be used. Alternatively it is sufficient to assume that N, approaches its steady state
value very fast. The amount of vacancies in clusters of all sizes can be estimated as

equal to the total number of quenched-in vacancies minus their number in the steady
state. This can always be fo




Stochastic theory—III , 577

equation. The solution of this revised differential equation has the nice behaviour for
small r as well (which is the space used for experiments). Thus the peaked nature of
the parent is removed. The leading behaviour of this distribution is a Gaussian in
and is shown to be related to writing an appropriate Langevin equation for r. This
also helps identify the smallness parameter. The description of the growth process

via the differential equation for N(n, t) involves keeping N constant from the start
of the growth process. The decoupling of the equation for the growth is done at the
time when the second term in Ny(z) is of the same order as the first. It is the contri-
bution from the second term in N; ofter the decoupling that supplies the slow influx
of vacancies which contributes to the slow variation of f(2). This slow change of f(t)
is essential in this description which implies that {n) changes slowly. The slow influx

of vacancies which we have taken to be entirely contributing to {»n) and not N,
is such that it would affect the magnitude of N very little even if we allow the influx

of vacancies to affect N over the entire interval of time. These points imply that only
a quasiequilibrium has been assumed to be prevailing between Ny(f) and N(n, 7).
Only as t—00, a strict equilibrium is attained. It should be noted that we have used
N(0, t)=0 for the unphysical point n=0 in order to obtain the solution for (12).
In addition we have required a physically reasonable behaviout for N(n, t) for small
n. Tt is this that leads to (12). Thus as for the continuum model, we should regard
(I1. 3) for the single vacancy units along with (12) for the growth of the clusters to be the
starting point. It should be noted that these two equations are consistent for all
times, i.e., one can start with these equations and proceed to get the solution for f(¢)
and hence Ny(z). One can then use the asymptotic value of Ny in (12) and obtain
a solution' of N(n, t). The only point that should be borne in mind is that while
integrating (12) after multiplying by » to get an equation for f(¢), we should write
down the contribution to the term N, from N(2, ), as we did while constructing (12).
The alternate picture is to regard p(n, t) to be dynamical variable rather than N(z,?).
In this picture f(¢) is strictly zero from the start of the growth process, i.e., after Ny
has attained its asymptotic value, which we assume has been attained in a very short
time. Only a strict redistribution is allowed. Both these approaches give the same
time development for {n) as we have shown in the paper IV. However, the time
development of the distribution function for the cluster sizes is different. It is this
factor which can be used to distinguish the two methods and identify the suitablity
of the method for a particular situation. The actual physical situation is probably
somewhere between the two approaches. Only an experimental situation can decide
which approach is suitable. Thus starting out from the discrete constant binding
energy model (which we cannot expect to give correct representation of the single
yacancy concentration, the nucleation barrier and hence the nucleation time; in other
words the short time behaviour, but is intended to give just sufficient information
for us to solve the problem of growth) we have made use of the results on the decay
of N; namely short time constant and the asymptotic value, in solving the equation
for N(n, t). The equation for the growth itself has been evolved in such a way that it
is consistent with equation for N, and is based on the discrete model. We have evolved

two possible ways of solving the growth problem, one via keeping N(t) constant and
another keeping f(¢) constant. It is expected that these two methods approximate
different physical situations. In the next paper (paper IV) we shall apply this model
for the case of formation of stacking fault tetrahedra and faulted vacancy loops.
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Appendix A

Consider equation (6). The subsidiary system of equation we have to solve are

dz= ds _ dx
1 s(44+Bs) “sdx

The characteristic solutions are

§

eXp —At = C, = y
s+ = —
T3 5

¢ (), (A1)

and (S+ %)A/B =t | (A2)

Eliminating C; and b, from the above two equations we get

_ s
x(s, 1) = (s + %) 48 &“[ yiay )], (A.3)

S+]§

where #(y)is an arbitrary function of its arguments to be determined from the initial
conditions. The initial condition s dictated by the fact that at t=0 all the vacancies
are in the form of single vacancy units, which implies

lim N, 1) 8 (n—1).
t—->0

Therefore, lim &(s, 1)~ exp —s ,
t—>0
5 A\A/B '
and F (-ﬁ) = ( s+ —é\) exp (—s). (A4)
s+ %

/
I R ee=i e

(A.5)
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Using (A.5) in (A.3) we get

(s, 1) 4 : . exp - ki (A.6)
X\ = )7 . .
£ e S pr e A

which is the solution of equation (6). The inversion of this equation is very similar
to the inversion of the solution of equation (12) in the transformed space. The
details have been given in Appendix 1 of the next paper (paper 1V, Ananthakrishna

1979¢).

Appendix B

In tﬁis Appendix we shall outline the method of obtaining the solution of the equation
for p(n, t) described by (23). Using 249 and (25) in (23) we geta differential equation
for

E (s, t)=~ASa_§__SzB@_§_2BS§, (B.1)
ot 0s 0s

The subsidiary system of equation to be solved are

a__as __ df (B.2)
1 s (A+Bs) 2Bs & '

The characteristic solutions are

f(%+ s)2 —c, B (B.3)

{S:_%g exp——At=Fi“%]¢ t) = G- (B-4)

Eliminating C; and C, from (B.3) and (B.4) we have

£60=|s +4) zﬁ[;ﬁﬁ} - ®9)

and

where ¢(y) is an arbitrary function of its arguments to be determined from the initial
condition on . The initial condition in this problem dictates that as £->0, p(n, 1)-=>
p,(0) 8(n—1). Using this we have

lim £ (s, t) > p,(0) exp —s. | (B.6)
t—>0 '




580 G Ananthakrishna

Here p,(0) corresponds to the amount of vacancies introduced at the beginning of
the growth and is equal to

-~ _ Nyx,
p(0) ~ No No:‘xz'
s\ _ _ 4)? B.7
Thus ‘l'(s+,4/3) (exp —s) ( s +B) 2,(0) (B.7)
Then £ (s z)=p(0)exp[—- __Asé ]
’ ' B [s (1—¢) + (4/B)]
(3 o]

The method of inverting (2.8) and obtaining p(n, ¢) is the same as inverting x(s, t)
and has been outlined in Appendix 1 of paper IV.
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