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1. General mathematical properties |
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Abstract. The problem of clustering of quenched-in vacancies into various types of
extended defects is considered. A master equation for the evolution of the concen-
- tration of clusters of various sizes is written down with general transition rates. It
is shown that this model represents a continuous time non-stationary Markoff process.
A particular choice of transition rates corresponding to the formation of vacancy
loops and stacking fault tetrahedra is considered in some detail. It is shown that
this choice of transition rates allows us to obtain the solution for the concentration
of the single vacancy units, and hence yields some information on the nucleation time.
Further, the transition matrix becomes stationary and doubly stochastic dueto the
short time constant of the concentration of single vacancy units. This in turn leads
to an unphysical stationary state. Finally we show how the rate equations for the

irradjated situation can be written down and derive the phenomenological rate equa-
tions that are conventionally used.

Keywords. Vacancy units; vacancy loops; stacking fault tetrahedra; Markoff pro-
cess; master equation. .

1. Introduction

Clustering of vacancies into various configurations has been observed when a material
is quenched. The nature and the kind of defect configurations that are produced
depend on the precise conditions of quenching such as the rate of quenching, the
quenching and ageing temperatures, the medium of quenching, etc. (Kiritani et al
1964; Kiritani 1964; Westmacott 1966). The defects observed include vacancy
loops, stacking fault tetrahedra and voids. These defects are also formed in the case
of irradiated samples. In addition, one can have interstitial configurations. 'I:here
are sinks for both vacancies and interstitials such as grain boundaries, disloc.atxons,
and the surface of the specimen. In addition to the recombination of vacancies and
interstitials, the interstitials are known to diffuse to these sinks preferentiaily. Thus
there will be an excess of vacancies in both cases (quenched and irra'tdiated samples).
It is the excess vacancy over and above the equilibrium concentration that leads to
vacancy clustering in both instances. ) "

The purpose of this work is to evolve a model for clustering of‘ 51.1.p¢:r.satur.a.teccil1
system of vacancies induced by quenching. Clustering of vacancies in 1rrad1a.ted
samples is clearly a more complicated situation due to the presence of another k;m
of an elementary defect, namely the interstitials and will be thte object for future
investigation. We shall however touch upon some aspects 9f this problem. Therg
have been some theoretical attempts to understand the formation of vacancy loops an
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voids. Most of these theories treat nucleation and growth separately. . In addition,
as for the growth part, the equations describe the growth of a cluster of-an average
size only (Katz and Weidersich 1971; Weidersich 1974; Harkness and Li 19695 Norris
1972). Our line of attack differs considerably from these studies both in content
and in spirit. In our theory nucleation and growth are treated on the same footing,
in the sense that both the formation of small clusters (nucleation) and their growth,
are described by the same set of equations, with the growth of large clusters resulting
from a continuous evolution of small clusters. Indeed, there is no well-defined
demarkation between the nucleation of small clusters and the growth of large clusters.
" From this point of view, our approach is closely similar to that of Kiritani (1973)
and Hayns (1976). Another basic difference is that we consider the problem as one
wherein statistical methods have a natural role to play unlike the previous theories
which take a deterministic approach. The support for this view is clear. . Primarily
the problem is a many body problem wherein fluctuation in the number of clusters
at any instant is a natural consequence of the subsystem (i.e., the entire configuration
of vacancy clusters and the vacancies) being in * contact * with its surroundings. - The
underlying physical cause may be varied; for instance, the fluctuations may bethermal
or due to the diffusive motion of the elementary defects, and so on. So the number
of vacancies contained in a cluster is considered as a random variable, with N, repre-
senting the distribution function of the clusters with n vacancy units.
The basic idea is to set up a general model for clustering of vacancies starting from
a microscopic point of view. We shall only be interested in the statistical aspects of
clustering. The physical input is incorporated in the transition rates of association
and dissociation. The present paper is the first of a series of papers which addresses
to the general problem of clustering. In order to present the logical sequence of
long winding modelling undertaken in this series of papers, we would like to give at
the outset an outline of how we go from a general model of clustering to a particular
continuum model. In the present paper to be referred to as paper I, we introduce'a
general model of clustering described by a master equation for the evolution of-the
clusters. A natural step would be to specialise the model to the formation of specific
kinds of extended defects. Solving the rate equations for the formation of any kind
of extended defect starting from small clusters (nucleation) and following the growth
of clusters until the formation of stationary distribution of the clusters is an extremely
complex problem. For this reason we attempt a much simpler problem which we
have outlined below. : RS
The problem of formation of extended defects can be viewed as a composition of
the formation of small clusters (nucleation) and the growth of these clusters. This
means 2}11 the clusters are formed within the nucleation period. This is valid in many
interesting sitpations. The first one-namely nucleation, may in principle be-under-
§t°°d by solwgg the appropriate rate equations on a computer. The difficulty. here
is one of _putting the information about the binding energy, the iinpurity content,
sources, S{nks, etc. Since the nuclei are expected to form in a short period, there is-no
d@.cult.y in solving these equations on a computer (see Wiberg and Vingsbo 1977;
i::tt;‘;lfzg aaillf Ha)gls 1976). Often the problem of nucleation can b.c treated
However obtainh:rmlo yzafmlc basis (K?tz and Weldersmh. 1971; .W.elderslchgl'974.).
rate equa’t ions o fr c g‘sgl orm expressions for the nuclez}t}on, starting from k‘lnet:lc
furictions of ﬂ; y difficult due to th.e fa}ct tha? the transition rates are complicated
e number of vacancy units, impurity concentration, etc. Onthe other
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hand, the problem of growth has the difficulty of handling a very large number of
equations and hence is difficult to solve on a computer as we have already mentioned.
But, since the evolution of clusters after the initial incubation or nucleation period,
is expected to be smooth, it is expected that the dependence of transition rates on the
number of vacancy units is much simpler. Therefore we expect that it may be simpler
to solve the problem of growth if the initial distribution of nuclei can be obtained in
some way. It is this simplified problem that forms the subject matter for this series
of papers. More specifically, our aim would be to evolve a model in which we can
obtain the above information by calculating the concentration of single mobile units
in a some-what idealised situation which provides just sufficient information for
solving the growth problem. This involves decoupling of the equation for the decay
of the concentration of single vacancy units from that of growth. That such a
decoupling is possible comes from the physical consideration that the time constant
for the decay of the concentration of single vacancy units should be small compared
to the time scale involved for the growth of clusters of large size.

We have achieved the above objective in two stages. We first introduce a model
which deviates considerably from the actual physical situation as far as the concen-
tration of single vacancy units is concerned, but yields a closed form expression and
therefore allows the decoupling mentioned above. This also gives us sufficient infor-
mation to proceed with the problem of growth. This model corresponds to a parti-
cular choice of the transition rates leading to a solvable model. In this model the
probability of emission is regarded as constant for clusters of all sizes. In areal situa-
tion however, the probability of emission xy, is a function of n, the number of vacancy
units in the cluster, i.e., x,=x,(, T). This is expected to lead to somewhat unphysical
results as far as the concentration of single vacancy units is concerned. However, the
results that we use for the problem of growth are reasonably consistent with the
computer calculation of Kiritani (1973). Although it appears that we have disregarded
the dependence of x, on n, it turns out that this parameter in the final analysis depends
upon {nd, where the angular brackets refer to the average over the distribution N, i.e.,
x,=x; ({n> T). Thus it should be regarded as a parameter to be determined from
experiments. Therefore this parameter can indirectly take care of some idealisations
(see discussion in Ananthakirshna 1979a and 1979¢ which are referred to as papers II
and IV respectively). The main advantage is that it is a solvable model and gives a
hint as to how the inadequacies of this model can be removed. The solution of this
model forms the content of the paper II.  The solution in closed form is only possible
due to the choice of the number of sites for absorption and emission and the assump-
tion about constant binding energy. Although some comparison is possible with
experiments, the model has two inadequacies, namely, the highly peaked distribution
and the non-evolution of the peak of the distribution (when transformed into
the space where the radius of the loop rather than the number is measured.) 'In
order to preserve the solvable nature of this model and to remove the inadequgcles
we attempt to construct a continuum model based on the above model. The idea
here is to go to the continuum limit and construct an equation for growth of clusters
consistent with the equation for the single vacancy concentration. This has been
successfully carried out in the third paper of this paper (Ananthakrishna !979b,
teferred to paper III). We then apply this continuum model to the formation qf
vacancy loops and stacking fault tetrahedra. This forms the subject matter of the
fourth paper. ‘ ' ‘
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The plan of the present paper (paper I) is as follows. In §2, we introduce a model
with two principal idealisations, namely the absence of sinks and the existence of 3only'
one mobile species. These two idealisations make the problem transparent and
easily tractable. We provide justification for these idealisations. (Relaxing these
two idealisations only complicates the problem and gives no better insight. How-
ever, we do remark on the master equation with more than one mobile species. We
also hint on how the existence of sinks can be included when we briefly touch upon
the irradiated situation.) In this model the total number of vacancy units is ‘con-
served. The process is shown to be a continuous time non-stationary Markoffian
process. A discrete time Markoffian process is argued to be unphysicaL In§ 3, we
introduce a model for the formation of vacancy loops and stacking fault tetrahedra
where we make a slightly unphysical assumption which allows us to decouple the
equation for the rate of change of the concentration of single units from the equations
for the rate of growth of other clusters. This gives us a closed form expression f or
the concentration of single vacancy units and allows us to obtain some informationn
about the nucleation time which is in agreement with the computer calculation of
Kiritani (1973). From this we prove some general properties about the stationary
state of the system. The predicted state is nearly the same as the solution obtained
via the generating function method (see paper II). Some features about the averages
can also be seen in this result. Finally, in § 4, we write down the rate equations for
the irradiation situation. 'The phenomenological rate equations for the total number
vacancy units contained in a cluster is derived after averaging

and shown to be nearly
the same as written by Bullough et af (1975). ' ‘

2. Formulation

We first sum up a few results on clustering in quenched metals which are of relevance
and which give a physical feel of the problem. Specimens are taken in the form of
thin ribbons and annealed. The quenching temperature Ty is usually about two thirds
the melting point. The specimen is quenched at a certain quenching rate (in an
environment determined by the nature of the study) to a temperature T, at which
the specimen is aged. The concentration of single vacancies between these two
temperatures differ by nearly ten orders of magnitude. The quenched-in vacancies
cluster into various configurations such ag vacancy loops stacking fault tetrahedra,
etc. There is an energy ¢, associated with the formation of such tetrahedra and
loops as a function of the number 1 of vacancies (Cotterill 1965). We shall not be
interested in the exact form of the energy of formation but we shall note that the
binding energy b, of a vacancy in a cluster with # vacancy units, given byv '

by=EF — (¢, — ¢,.,), M
is a rapidly saturating function of »,
formation of a single vacanc
A slight modification is nece

We assume as mentione
mobile units in some syst

In the above expression Ef is the energy of
y (for more details see paper II, Ananthakrishn@ 1979a).
ssary while the unit of vacancy is not single. , o
d in § 1, that there is only one kind of mobile unit (the
ems like gold and aluminium are the divacancies). Thus
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the growth of clusters is assumed to proceed via the absorption and emission of single
mobile units. This assumption is justified in most cases. For example, the mobility
of monovacancies in aluminium and gold is nearly three orders less than that of the
divacancies near room temperature. (For additional support of this assumption see
Kiritani 1973, Kiritani e al 1969; Jain and Siegel 1972b). Itis expected that the next
mobile species may become important only at late stages of clustering. (In any
event it is possible to write down a model where several species can be considered
as mobile) As a second idealisation we consider a’'system in which sinks are
excluded. This idealisation is not serious since as far as the phenomenon of cluster-
ing is concerned, only supersaturation of vacancies is required. (We refer the reader
to paper II for additional justification.) o ’
Now we can write down the rate equations for the growth of clusters. Let Ny, Ny,
N,... be the concentrations of 1-, 2-, ..., #-unit clusters.  These clusters evolve by
absorbing and emitting vacancy units. The rate equations are I

- T 2 WyNiNi_y + z W1iNi, o . @
i=2 i=2 ’ ’

for the change in concentration of single vacancy units and for n=2

f.LN_2= %&le’-@N2—W31N1N2+W1 3N3- (3)
dt 2 2

Forn = 3
dn,

—3}.’53 WnlNl Nn-—l—Wn+11N1 Nn"" WlnNn+ W1"+1N'1+1' (4)

In the above equations W, , is the rate at which single units collide with clusters with
(n — 1)-unit clusters to form clusters with n-units, W, ,is the rate of dissociation of
clusters with #-units. For n=2, the rate of association and dissociation are 3 Wy 4
and 3 W, , respectively. Now for any W, ,and Wy, the above equations conserve
the total number of vacancies. It is physically clear that this should be so because
we do not have any sinks, and the above equations have been written with this in
mind. To see this consider

ZI’I dfivt'n=§n U/nlN]N"_l—"ann_,_llNan

2 3 3

_z n Ny W]_n + z n W n+1'Nn+1
s s ’

Wy y N2 — Wy g Ny — 2Wy 1 Ny Ny +2 Wy Ny

By appropriate manipulation we find .

" dN.
zn @r_’l:—: @: z WnlNlN,,_l—-le,,N,,=~—-—-—}-“. (5)
Lo de £ . £ R
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Thus "Ny () +F(0) <o

Usmg the fact that at =0, f(#)=0 and Nl(O)---N0 we get c=N,, and
ft) = Ny — Ny, | ©)

where N, is.the concentrationof quenched-in vacancies. The above expression
simply means that whatever amount of single vacancy units are lost from N, should
be in the form of clusters. This result is independent of the form of W’s.

. Now we shall show that the process of clustering as we have modelled is a con-
tinuous time discrete non-stationary Markoff process. We shall rewrite equations
(2), (3) and (4) with the probabilities (unnormalised) namely p,=nN, which are the
concentration of vacancies in a cluster with n-vacancy units. (This step would be
essentxal smce the Markoﬁ‘ property apphes to probabilities only. )

dp . E - C g
P = i s 7
& ( __1) P1P 1 + "D ( )
d ' S
5: Wz 1P1 ““]‘W1 2P2 — W31 P1Ds + $W1 3 P, . (8)
dp, n

= =;1-—_—:i Wi 101 Pu1 — W1 101 Pa

— Wy nbu+ -_Fi W wi1 Putr- _(_9)

These three equations can be cast into an equation representing the rate of change
of probability vector p with M components, M being the total number of quenched-

in vacancies. Since M~10'8 to 10, for all practical purposes it can be considered
infinite. '

o
2 =Wy, :
X p : . | . o
M
oo Z Wam P o

' and W,,,,, can be easﬂy wnttcn down Now we can identify W with the tran31t10n
matrix connecting different states of a non-statlonary Markoffian system. For the
sake of completeness we have outlined in Appendix 1, the derivation of a master
equation similar to (10) starting from the Smoluchowski equatlon governing the
conditional probabilities of a stationary Markoffian process. In the case of non-

stationary Markoffian process the transition matrix connecting different states. of
the system with the master equation i in such a case reads

Z‘“ (n/m, 1) = z W(m, m', :t) P ('n/n.1’,.t)v. - t12)
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P(n/m, t) is the conditional probability which in a general case has to satisfy an initial
condition

m P(fm )~ 80w
-0 ’ : -

The dependence on the initial state enters only this way. The transition matrix
obeys T

2 W mjn', 1) = 0. T ¢

Itis clear that W,, ,; () corresponds to W(m/m', t) and p,, (£) to P(n/m, ¢). (Theindex
nin P(njm, t) gets suppressed due to the particular form of the initial condition in the
present problem as seen below.) The fact that such a matrix would satisfy the condi-
tion (14) has been proved in deriving (5). We shall not write ‘down the-explicit form
of the transition matrix for the case when general W’s are involved since we consider
a special case in detail. The explicit time dependence comes from the dependence

of W on py-  Since the material is quenched at =0 and at #=0, only single vacancy
units exist, the initial condition obeyed is

lim p, (t)~> py (0) 83
=0

Thus the conditional probability P(n/m, t) reduces to a column vector. (I.\Io'te t].aat
Pa (t) we have defined are not normalised and therefore the additional multiplicative

factor p;(0).) Thus the model we have introduced is non-stationary Markoffian'in

character. From this analysis it is clear that by relaxing the assumption that there is
only one mobile unit introduces more non-zero off-diagonal elements and more
rows in the upper triangle of the transition matrix. It is also clear that a discrete
time Markoff process of the type generally introduced (see for instance Wang and
Uhlenbeck 1945) is not physical, since the number of jumps-a vacancy unit has to

make in order to reach a cluster is not correlated with the jump time.

3. Constant binding energy model

1t is physically clear that the concentration of quenched-in vacancies should rapidly

decrease with time at temperatures of interest (near room temperature). _However,

this feature cannot be seen except in some special choices of Wy, and W, ,. There
appears to be only one choice and this choice also leads to a s‘olyab!g: model fgr }‘.hc
growth of clusters and is the subject matter of paper IL In‘thlsvsec.tlonk we will only
use some preliminary results of this model to investigate stationary state of the model
based on the principle of entropy maximum. Ina general situation the form C;)ff Wy
and W, , are complicated enough to spurn attempts at solution in closed form.
Their general forms can be taken as |

W,y = v (1) Z, exp (—EM/KT), : " (15)
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ad. . Wa=ri@Zew [-EM +b)kT, g

where EM is the energy of migration of the mobile unit, b, the binding energy of single
‘vacancy unit in a cluster with n-units, » is the attempt frequency, Z; and Z, are the
co-ordination numbers for hopping, and (n)and #(n) the number of absorption and
emission sites respectively. As mentioned in §1, b, is a complicated function of n,
-.and it saturates fast. For the case of stacking-fault tetrahedra and vacancy-loops,
$(n) and ¢ (n) can be taken to be linear in the number of vacancy units in the cluster,
(In other situations like void formation these are not linear in #n) We shall take
P(m)=n—1 and F(n)=n. This choice is not arbitrary but has been chosen to facilitate
decoupling. Since b, is a complicated function of n, equations (7), (8) and (9) cannot
be solved. We have earlier introduced and solved a model which involves a slightly
unphysical assumption (Ananthakrishna 1977). This model assumes that the binding
- energy of a vacancy unit in a cluster with z#-units is independent of » and is a constant.
Although this assumption is unphysical, the model is solvable in closed form. - Fur-
ther, in the final analysis as we will show in paper II this parameter x, which ori ginally
is a function of #, in this model, is a function of (n). We shall not go into details
of justification of the assumption (which are given inpaper]I, Ananthakrishna 1979c)
but consider some properties of this model relevant for obtaining the stationary state

of this system. With this assumption and with these choices of ¢(n) and J(n), (15)and
(16) take the form ‘

Way = (n—1)v Z, exp [—EMJLT], 17
and Win =nvZ,exp [—(EM L b)/kT]. (18)

Using these and equation (6) in (2) we get

N,

N(t) = py(t) = 7 _:x [NV, exp {—xl(x2+No)r}] . | (19)
0 2 !

This equation tells us that the single vacancy concentration decreases rapidly. (This
follows from the fact that x, < Ny, %,~1078 and x,~106 and Ny~1075.  The value
of x, is related to {n) which can be determined by solving (4). See paper II for
details about the values of various parameters used.) If we define the time required
to reduce the concentration of N, to a fraction (say 10%) of its original value to be the
nucleation time ' (i.e., on an average there are a few vacancies in a cluster) then
7'~1072 sec at 280°K and 300°K for vacancy loops in aluminium and for stacking
fault tetrahedra in gold respectively. This value agrees quite well with the computer
calculations of Kiritani (1973) for the case of aluminium. (In the case of aluminium,
both the computer calculations and experiments of Kiritani (1973 and 1969) indicate
that there is no nucleation barrier and is interpreted as due to gradual increase in the

binding energy of the clusters. See for more details paper I.) This analysis further
tells us that '

Z‘ N, == Ng* [1—exp {—x, (xs+Ny) 1} ’ .‘(20)
5 <n> (Na+xa)

]
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and theref()ré, there will be only redistribution of vacancy units among the various
clusters after N, has reached its near asymptotic value. The average (n) is over
the distribution N, has a slow time dependence as we will show (paper II, Anantha-
krishna 1979c). What comes out of the above equation is that as t~co the tempera-

ture dependence of (n) and N are opposite. Now we can write down the matrix
explicitly:

+  scsce + gvesss

+ + +

The matrix has entries wherever -is marked. Thus the transition matrix is mainly
a tridiagonal one with additional entries in the first row. The entries are:
- first row: (—4, B—A, B—A4, ....,B—A4, ....)

second row: (4, —B—24, 2B,0,.. ., 6,....)

main diagonal: forn =3 : —n(4-+B)

lower diagonalw forn=3:n4d

upper diagonal forn >3 :nB.
where A=x,; p, and B=x; x,. Several interesting features follow. After the short
initial transient during which the concentration of single vacancy units decreases
rapidly attaining quasi-equilibrium with rest of the clusters with a value of N; ~
Ny x/(Ny+ X5), all the elements in the first row except the first element are nearly
zero. Thus after this short initial transient, the elements along the rows as well as
columns add up to zero (to within an accuracy determined by the value of N; at the
end of the transient). This immediately allows us to determine the final stationary
state on the basis of a theorem concerning the increase of entropy for such systems.
The theorem states that if the transition matrix which connects the probability vector
with its rate of change has the property that elements along the rows and columns add
up to zero, then the stationary solution of pin themostprobable value (No/ M) (1’, Lo
1), where M is the dimension of the matrix. This theorem has been outlined in
Appendix B. (Ananthakrishna et al 1975; Okubo and Ishihara 1971). It may be
noted that when M is taken to be finite, we have to write down two more equations
for clusters with M—1 units and M units. Thus

Pu =0 N, NoJM = 1/Z, | 22)

%
l

-
+ +
PP
+ 4+
+
O

@1

where Z is the number of atoms per cm™.  Then
Z N, = 1/n. | " (23)

Thus the stationary distribution is highly peaked a:c the origin. The distrit;;tllggst;ll;l:
we obtain for this model via the generating function approach (see Anantha ‘
1979a, paper 1) is

N, ~const X [Np/(No+ 21" Um). (24
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. -This model tells us that the elements along rows of the transition matrix should not
add to zero, if.we wish to obtain a physically reasonable distribution. Although the
model introduced can be solved in closed form it gives rise to the unphysical distrj-
bution (see paper II). In the next paper we will show that any other choice of W,,
and W, render the problem intractable. For this reason we attempt to evolve a
continuum model for the problem of clustering (paper III). We will try to retain
some features of this model in building a continuum version of this model.

4. Derivation of phenomenological rate equations for irradiated materials

In this section we introduce.rate equations for irradiated situation and show that the
phenomenological equation that are usually written can be derived by performing an
average. We explicitly write down the various choices for the transition rates that
could be used. '

In the case when a material is irradiated there are two species namely vacancies
and interstitials. As we have mentioned in § 1, these recombine removing equal num-
ber of vacancies and interstitials, but it is the preferential loss of interstitials to the
sinks that produces supersaturation of vacancies. It is this supersaturation of vacan-
qws that leads to clustermg We shall assume that there is only one mobile unit in
vacancies and interstitials. ~ However we can relax the assumption about the non-
existence of sinks.  The rate equations are

dN,[dt = K —z Wiy N1 Nx-1 + z Wi N,

2 2
. ,v,"'(DI/a ) Nx N‘[“" pp Ny D, + W, 1 Ny Ny, (25)
”‘z 'Wn[NuN]“I' J2‘ W21N1N2: (26)

szldt 3 W21 Nl W31 Ny Np -+ Wy3 Ny

Tf%,Wl?,y?,""%_WﬂINI.N2+ Wi N3 My, @n

andfbrn> §o RSO S
dNn/dt = Wnl N]. Nu-—l - Wn+11 Nl N, — Wl et Vntg .
“WlnNn—Wu[NINn+ Wn+1INn+1N[- (28)

In the above equations, N 118 the concentratlon of interstitials, K is the rate at which
the vacancies and interstitials are produced, P p is the dislocation density, Dy, and D;
are'the diffusion constants of the vacancies and interstitials respectively, a is the lattice
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parameter-and W, ; is the transition rate for the interstitial capture. by a vacancy

cluster with n-units (we have ignored the emission of interstitials by vacancy clusters
since this process has a very low probability. Inclusien of this term does not com-
phcate the situation for the aspects con51dered here.) Usmg the above equatlons, .
we: get : :

dfldt = Wyy N2+ Z Wat 1 Nl N, — 2 Wy,
~2 Wag N, N o e - (29},
A |

We can now consider the growth of loops as an illustrative example.

Choose . W,y = (r—1)2 Dy, n |

P . = \/n (‘DV/ag) €Xp ('—bnlkT), v . :

Wt W =vaoge. e

Nﬁrmélly the phenomenologlcal equations are wntten in terms of the average radius
Er ) of the loop Therefore we shall cons1der conVertmg n mto r. USmg n—~—qrr2}“a*

and-
Z N,=2m f N(r/a) f N(r/a)

we have

ﬂ—<r2 SN = D, N2 + N, D,,S—a—>N\/w - DININ(r/a)fr

—D,W «/,,< xp (— b (Ha)/kT) > o a1

, where the average is with respect to the dlstnbutlon N(r/a) Also we have converted
the bmdmg energy b, to b (r/a). Wc note the form of b(r/a)

b(r[a) = ['y+Fel @1,

where b is the Burgers vector, v is the stacking fault eriéi'g‘y and F,, is the elastic
energy stored in a loop of radius#. To compare with the equatlons normally Wntten, :
we have to make the following approximation

Cros 20075

~ {rlay Cy {exp [y b2‘+ Fél' (r) b’]) ‘ .
=G over bR,
- = <r/a> C'V,Pe T T DS DT TR 25
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If iixlé’:éib‘ov_e approximation is made, with p=N+/7 {r), we get

d . = Dy N2
G 0N = o[ 2 +N1£I—/"—D-—I—JY£—DVCVP¢]- 3
dt P a a

- The above equation is very similar to the equation written for the number of vacancies

contained in a vacancy loop (see for instance equation (8) of Bullough et al 1975;
the term eK does not arise in the situation at hand.) The first term is an extra term
which presumably is not written down in their approach since they are interested in a
situation when the vacancy and interstitial concentrations have reached a steady
state. Similar equations can be derived for the voids, and interstitial loops.

5. Summary and conclusions

In this paper we have introduced a general rate equation model for the problem of
clustering of supersaturated system of vacancies. For the case of quenched-in
vacancies, the model was shown to conserve the number of vacancy units. It was
alsQ shown that the model represented a non-stationary Markoffian process. A parti-
cular modelling of the transition rates for the case of the formation of vacancy loops
and stacking fault tetrahedra was considered in some detail. The choice of transition
rates was made in a way that the equation for the rate of change of single vacancy
unit concentration could be decoupled from the equations for the growth of other
clusters. This yields some information about the nucleation time of small clusters
which agrees well with the computer calculations of Kiritani (1973). It was then
shown that after a short transient the transition matrix is doubly stochastic which
therefore leads to an unphysical distribution. For the irradiated situation, the pheno-
menological equation normally used for the number of vacancies contained in a
cluster is derived starting from the microscopic rate equations. This equation is
very similar to that written down by Bullough et al (1975).

The model introduced for the clustering of quenched-in vacancies into vacancy
loops -and-stacking fault tetrahedra, although gives an unphysical distribution, has
the feature that it is nearly exactly solvable. (See paper II). The unphysical nature
of the distribution, namely the peaked nature of the distribution probably results
from the particular choice the number of absorption and emission sites and the
assumption of constancy of binding energy. This choice however is essential for
obtaining closed form solution. We shall attempt to construct a continuum model,
which retains'some of the featuires of this model, in a following paper.

Appendix A

In this appendix we show that the phenomenon of clustering of quenched-in vacan-
cies can be modelled as a continuous time non-stationary Markoff process. For the
sake of completeness, we start out from the continuous time Markoff process and
derive an equation which gives the rate equations that we have written when a parti-
cular choice for the transition rate is made. (The derivation of the differential-
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difference equation for the conditional probability is well known. See Wang and:
Uhlenbeck 1945.) The discrete version of Smoluchowski equation is

P(nfm, t-= AE) = » P(n[m', 1) p(m'm, At). (A1)

'
As for this derivation, we shall consider a stationary process. P(n/m, t)has to be
determined once P(n/m, At) is given where P(n/m, t) is the probability that the ran-

dom variable takes on a value m after a time ¢ given that it has a value n initially.
Generally

lim  P(n/m, At)[At
At =0

is given from physical considerations. We shall use a new symbol for the basic
probability

P(nfm, At) = Q(n/m, At). ' (A.2)

This satisfies

> Qjm, AD=1. (A3)

Following Wang and Uhlenbeck (1945) and taking the limit as Az—-0 we get

‘j;: (m, t) = Z W(m, m') P(m'; t) — [z W (m', m) ]P(m, 1), (Al4)

where we have suppressed the index dcsignziting the initial state ie., P(ri/ni, 1) =
P(m, t) as the dependence of P(n/m, t) on n enters only through the initial cond?tipu

lim p (n/m, I) —> 8nm'
r—>0 '

The elements of the transition matrix are given by

W(m, m') = lim Q(m'[m; Al , , ‘A‘I(A,S')
At—->0 Nk
and W(m, m) = — lim z M, (A.6)
At—=0 At
k .
where the prime on the summation denotes that k#m | o

P8
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‘(Fano 1957). We shall now state the theorem. ‘
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Appendix B

In this appendix we shall state a theorem concerning the entropy increase for a system
which connects the two states of the system by a doubly stochastic matrix. We shall

relate this theorem to our present situation. Let P be the probability vector and A ;
be the elements of the doubly stochastic matrix, then

P (t+ A1) = ) A, (A1) Py (1), | (B0

J

with A;; =0, (B.2)
z Ay = Z Ay = 1. (B.3)
i J

The matrix A is called a doubly stochastic matrix. Defining entropy by

§ = — z P, 1n P, (3-4)'
Then s=0 when p is pure ) (B.5)
and s=In M when P is most impure i.e.,

s=1In MforP = 1/M (1, 1, ...1). (B.6)

For any probability vector P, this quantity has a value bounded by these two limits
If the states of a system described by a probability vector P with M components
are connected by a matrix A with the property given by (B.2) and (B.3) then s(z') >s(z)
for all t'>1.
The proof of the theorem is well known (Ananthakrishna et a/ 1976; Okubo and

Ishihara 1971). As a consequence of this theorem the entropy should reach its
maximum value In M as t— co. This implies that

lim p,— All (B.7)

-0
or with appropriate identification of p,, we get

lim N, Yo !
1> w0 M n

The connection of (B.1) with the present situation comes by identifying 4,; (At) with
QQli, At) of Appendix A. We have indicated how O(fj, At) is related to the
elements of the transition matrix W(j, j) in Appendix 4 : '

.
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