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VIII—Finite Strain in Elastic Problems

By B. R. Sern, M.Sc., Ph.D.
University College, London

(Communicated by L. N. G. FiLon, F.R.S.—Received July 23—Read November 8, 1934)

I—INTRODUCTION

1—Components of Finite Strain

The mathematical theory of Elasticity, as at present developed, is based on the
assumption that the displacements that have to be considered in elastic solid bodies
are so small that the squares and products of the first differential coeflicients of
u, v, w with respect to x, y, 2 can be neglected in comparison with their first powers.
That is why we cannot use it to get a satisfactory solution of many a problem in
elasticity in which the displacement is finite and the strain produced is not small
enough to justify the above assumption. For example, we can bend any rectangular
plate in the form of a cylinder by couples applied to the edges only. As far as
I know there exists no exact solution for this simple problem. In Section III
I have attempted to give its solution based on the theory of finite strain.

The first step towards the solution of the type of problems we have in mind is to
get the components of strain corresponding with any displacement. Like the
body-stress equations, these should be referred to the actual position of a point P
of the material in the strained condition, and not to the position of a point considered
before strain. The importance of this point, overlooked by various authors, cannot
be exaggerated. Apparently FiLon and Coker* were the first to notice it and
stress its importance. To a first approximation it is immaterial which method of
reference is adopted, for the values of the strain components in the two cases differ
only in the second order terms. In the first case they are given by such expressions

as
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and in the second by

_ou | 4 [[ou\? 0v\* | [ow\?
S”_a_;c+2[<5c> +<é7c> +(\ax,>], Y 5 §)
v | ow oudu , dvov , dwodw
= 274 %% e A e 2
T T %y +[3y 8z+8y 0z 9zJ 22

For our present purpose we must use the values of S,, s,,, etc., given by equations
such as (1.1) and (1.2).  We shall, therefore, call x, y, z the co-ordinates of the
actual position of a point P in the strained solid.

An important point may be noticed here. The fact that two or more solutions
are additive in the ordinary theory ceases to hold good after the introduction of the
square terms in the values of S,, ,., etc.

2—Conditions to be Satisfied by the Displacement

It is obvious that without some restrictions placed on the displacement the
mathematical solution of an elastic problem treated on the hypothesis of a finite
displacement is not going to be unique. This is illustrated by the well-known
example of a piece of rubber tubing turned inside out. We cannot now use the
well-known Consistency equations given by

(L4 n) Ve + o (o + g+ 22) = O,

2

0
0y0z

(1 +7) vopz + (xx + 9 + 22) = 0, etc.

The new Consistency equations are obtained by eliminating u, v, w between the
stress-strain relations. These equations will be very complex in character and
cannot be of any important use to us. The conditions that u, v, w must always
satisfy are that theyshould be both differentiable and continuous throughout the region
occupied by the body. These are implicitly involved in obtaining the strain
components given by (1) or (2).

3—Form of the Boundary

In all problems of the type under consideration we must know the nature of the
boundary surface of the solid after strain, otherwise we cannot satisfy the boundary
conditions. We, therefore, assume that the equation of the boundary of the
strained solid is known. In small displacements it does not affect the results
whether we use the boundary of the strained or unstrained solid, but not so for


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org on November 10, 2011

IN ELASTIC PROBLEMS 233

finite displacement, e.g., a straight rubber tubing bent into the form of an anchor
ring. '

4—VorieT’s Extension of the Strain-Energy Function

If Hookr’s Law is regarded as a first approximation valid for very small strains,
it is natural to assume that the terms of the second order in the strain-energy function
also constitute a first approximation. For a second approximation we should
include terms of the third order in the invariants of the strain quadric. An attempt
has been made in this direction by Voiet.* He takes the three invariants,

5=8,+8,+S,
g = Sysz _!_ stx _!_ SxSy - % (ny2 —i_ Gyzz + szg)a
L= SxSySz + %:Gx:vcyzczx - 7}? (chyzz + Syczx2 —i_ Szcxyz)a

of the strain quadric, and putting
I=25%— 2,
constructs the new energy function
| 2W = ¢,82 + ¢, I 4 2 ¢/, 8% 4 ¢/,I5 4 2¢'5C,

¢y, ¢’5, ¢’3 being three new elastic constants. In applying his method to a few
particular cases, he assumes that the displacements given by the present theory are
a first approximation. For example, in treating the problem of the torsion of
a circular cylinder, he takes

u= — 1z +u,
v= tzx + 0,
w=w,

W', v', w being the corrections to be added for a second approximation. Assuming
', v', w' to be of the second degree in =, he calculates the stresses from the modified
energy function neglecting all powers of « higher than the second. It is obvious
that this method cannot be justified for finite displacements.

5— Fustification of our Assumption

In general, the elastic behaviour of a material has reference to certain directions
fixed relatively to the material. If, however, the material is isotropic the formule

* ¢ Ann. Physik,” vol. 52, p. 536 (1894).

212


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org on November 10, 2011

234 B. R. SETH ON FINITE STRAIN

connecting stress-components with strain-components are independent of direction.
Since we assume throughout this paper that the elastic body to be considered is
always isotropic any assumption that we may make with regard to the stress-strain
relations must be such that these relations are an invariant for all transformations
from one set of orthogonal axes to another. In other words, these relations must
be in tensor form. Now we know that this condition is satisfied if we take

—

xx = A3 -+ 2pS,,
Yz = po,, etc.,

where S,, 6,, are now given by (1). Since this is the simplest tensor form that
we can take, it is quite natural for us to assume that the stress-strain relations are
governed by equations of the above type.

6—O0bject of the Paper

The object of this paper is to discuss the following three particular cases in the
light of what has been said in the foregoing pages.

(1) A cylinder subjected to a uniform tension T.
(2) A rectangular plate bent into the form of a right cylindrical surface.
(8) Torsion of a right circular cylinder.

Virtually, SAINT-VENANT’s semi-inverse method has been used in all the three cases.
Frequent applications have also been made of his ““ principle of the elastic equivalence
of statically equipollent systems of load.”

II-—CyrLINDER SUBJECTED TO A UnrrorMm TENsioN T

7—Comparison with experimental results

Various authors have drawn attention to the fact that the elongation produced
in a wire is not always proportional to the stretching force even when we remain
within the limits of perfect elasticity. GERSTNER* assumed an empirical relation

of the form
T=As+B?+Cs®*4+Ds*+ ..., . . ... ... (3

T being the tension and s the total stretch. His experiments led him to the
conclusion that C, D, etc., are all zero, and that B is negative. Later in 1844,
HobckinsonT confirmed this result. The names of WErTHEIM] and THOMPSONS

* ¢ Handbuch der Mechanik,” Part I, p. 241 (1831).
T “Rep. Brit. Ass.,” Part 2, pp. 25-27 (1844).

I ¢ Ann. Chim. (Phys.),’ vol. 21, p. 385 (1847).

§ ‘ Ann. Physik,” vol. 44, p. 555 (1891).
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must also be mentioned in this connection. From his experiments THoMPsON
concludes that a relation of the form,

s=al + T2 413 . . . . . . . . ... (4)

fits in best with his results. If we solve GERSTNER’s relation T = As -+ Bs% and
neglect powers of (B/A?) higher than the third we get an equation of the form
given in (4). Without going any further into the details of the experiments
conducted by these authors let us see what result our form of analysis is going to give.
Consider
u = x — px,

v =) — 9,
w =z —13,

b, ¢, r being constants. The generalized strain components are given by

S, =3 (1 —p%,

Sy = %‘ (1 — 92)’

S.= 11—,
6,, = 6, = o, = 0.

Therefore
— S+ 8, + 8. =13 — (" + ¢ + )]

Since all the components of stress are constant, they satisfy the body-stress equations.
Again we have assumed that the cylinder has any form of boundary whatever.
We must, therefore, have xx = y» = 0. Thus we get

A < 2uS, = A8 + 2uS, =0,
or .

Pr=s o (5.1)

and

Again, if T is the uniform tension applied to the plane ends of the cylinder, we have

2T = (3x + 2u) — 22p% — (A + 2p) 12,

and using (5.2) we get
T=4E (1 — r?) = ES

z)

which was to be expected from the stress-strain relations.
Therefore

T:j:(l-—--—_;. L T T Y (6)
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To decide the sign we observe that for a simple tension z is always positive or
negative according as z’, the co-ordinate before strain is positive or negative. Since
7z = rz, we must take the positive sign with the square root in (6). This is also
confirmed by the fact that if we neglect powers of T/E higher than the first we get
w = TZ/E, a result true for small strains.

From (5.2) we have
p= s (1+2T),

and neglecting the negative sign as before, we get

h—q :/1+2nT>

Thus the only physically possible solution is given by

TRIRIIES 5
v —_yll—— +2%T>J

o=<[1-(1-2]

It appears, therefore, that the longitudinal displacement measured per unit
length of the length of an extended fibre is not proportional to T/E as in the
approximate theory. If we assume that s is the ordinary longitudinal stretch we
easily get from (6) and the relation T = ES,

_r/ 1
2T =E{l— g )}
R (2 — 32 A8 ) N

If 53, 54, 5%, etc., be too small to be taken into account, we see that the above relation
reduces to the same form as assumed and experimentally verified both by GERsTNER
and Hobpckinson. It is interesting to observe that the conclusion that the
coefficient B of s2 in (8) is negative is confirmed by this result.

From the above equation connecting T and s, we also see that T = }E leads to
an infinite elongation and therefore roughly corresponds to the yield point.
Apparently no material can stand a tension of this amount. It follows that the
W-displacement, and hence the solution, is always real if we remain within the
limits of perfect elasticity.

The stress-strain curve given by (A) is very suggestive and not unlike that which
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is actually found in some materials. In fig. 1 we have plotted this curve by taking
S as the abscissa and T/E as the ordinate.

T/E -y
/E T-%E

04

0-3-

T

0-2

01 -

III—BeNDING OF A RECTANGULAR PLATE IN THE ForM orF A RicHT CYLINDRICAL
SURFACE

8—History of the Problem

It is a well-known fact that long beams can be bent by terminal couples without
producing any anti-clastic curvature in them. In all such cases the displacements
are not in any way small, and the curvature produced by the applied couples is
considerable. Hence it is that the stress-distribution varies from that indicated by
BernouLLI-EULER theory. KEeLvIN and TaArr* have drawn attention to the problem
of the ¢ flexure of a broad very thin band (such as a watch spring) bent into a circle
of radius comparable with a third proportional to its thickness and breadth.”
Lams? has given an approximate solution of this problem based on the theory of small
strains. The drawback in the solution is that it cannot be applied to those physically
possible cases where u, v, w are finite.

Love} has shown that if the thickness of the plate is small enough, or the radius
of curvature great enough, the plate can be bent into a cylindrical form by two
couples applied at its edges only. Without imposing any such restrictions we
propose to solve the same problem in the following pages. We shall also show that
the two applied couples reduce to the values obtained by Love if the thickness of
the plate be small.

* ¢<Natural Philosophy,” Camb., vol. 2, pp. 264-265 (1886).
1 ¢ Mem. Manchr. Lit. Phil. Soc.,” vol. 3, p. 216 (1890) ; also ¢ Phil. Mag.,” vol. 31, p. 182 (1891).
1 ‘ Mathematical Theory of Elasticity,” p. 554, 4th ed.
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9— Tentative Values for the Displacement

We suppose that an initially plane rectangular plate is bent into the form of a
circular cylinder with two edges as generators, and seek the forces that must be

applied to it to hold it in this form.
Let (x', »’, 2’) be the co-ordinates of a point P

z of the plate before strain. We assume that two
r\ faces of the plate get bent into right cylindrical
surfaces of inner radius ¢ and outer radius b, and
that the other two into axial terminating planes
given by 0 = + z. The axis of 2’ is parallel to
the axis of the cylinder, which we take as the axis
of z, see fig. 2.
[T x From the symmetrical manner in which the plate
d~\_ is strained, it appears—
s\ (1) that a cross-section perpendicular to the
N axis of 2’ remains plane after strain ;
(2) that every fibre parallel to the axis of 2z’ is
’ extended, if at all, by the same amount ;
v (8) that the planes given by &' = constant get
' bent into right cylindrical surfaces with
the z — axis as their common axis.

These tentative considerations lead us to assume

Fie. 2

u=x—f(r), ... ... ... ... (7]
v=9p—9¢ (%), . . . . .. .. ... (12
W=0Z2, . « . « « .. ... (1.3

where / (r) is afunction of r = (x2 -} »?)! only, ¢ (x, ») an undetermined function of
(x, ), and o a constant.

10—Components of Strain and Stress
From (1) we have

12 402 a N2o .
&:%_%PJ+6§J,.....ﬁ.. (8.1)

1212 ( a 2
g:%—%[£-+@%],........ (8.2)
S, =a — 32, . . ... ... ... (83
S— (8.4)

o _ [[Pxy 2434
L= [ﬂ~+M®J,....... .@@
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where
p_df
J'= dr’
Therefore
§=S,+S,+ S,
, /9 ¢ 2 P ¢ 2J
_ K _ 1|2 o9 99 .
K 2[f +Kax> +(.B_y> . )
where

K=1+a— ia2

The stresses are now given by

—

S S I I,
O N A e
a=K—p{r+ (2 + (2]} |+ 2 & -1, (103)
o | (10.4)
5= —u [f/;fy 4 _%?5 gﬂ .................. (10.5)

11—Satisfaction of the Body-Stress Equations and Boundary Conditions
These stresses have to satisfy the body-stress equations. The equation,
o, op_
S oy,

0x
gives

Bl (G BT e [R5 - G e ] o

ox | X)) ox 0y r%
or
sl G @G el [Fo i@ (3]

Similarly
oy o _
ox T ay 0

VOL. CCXXXIV—A 2 K
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gives
Sl i G+ G e b R a1 (G 1 ()]
o [ﬁ + ayﬂ 9 _o, (11.2)

0x2

and the third body-stress equation is identically satisfied. Differentiating (11.1)
with respect to » and (11.2) with respect to ¥ and then subtracting one from the
other, we get the equation satisfied by ¢ as

a_ay[g_j vzqs] -2 [gy‘é quS:', ......... (12)

or
V24 = a function of .

Let us now turn to the boundary conditions. The first
. xx + . J/Q\y =0

is to hold good both over r = @ and r = b.  Substituting the values of xx, xy from
(10), we have

[ e (G + G 0] BB

...... (13.1)
and the second in like manner gives

2 ¢ 06 12 o[, 04 2\ _

sR =+ (S (B a2y ) -
...... 13.2)

Hence we must have on the boundary (

29 o)/, 06 _ ¢

( T )( 2 ay) 0, ... (14)

T o 2p
i.e., either —~ = 0 or —= 56 = 0.

But " = ¢ (x,) from (7.2), and since the planes )’ = constant cannot also get
bent into r = constant we must take

$=A0+B, . ... (15)

where A and B are constants. This value of ¢ also satisfies (12).
Putting the value of ¢ given by (15) in (11.1) and (11.2), we see that both of
them reduce to the same differential equation, viz.,

(%x—l—u)f’z—i—ujj-p—rfdr-i—%-()\—l-g)é;:aconstant. ... (16)
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Putting /"2 = B and differentiating (16) with respect to r, we have

2
B+ o) BBy 8

which is a linear equation in B, whose solution is

, [ Az
B = s e (17)

[ being a constant of integration.
The boundary conditions (13.1) and (13.2) both reduce to

K —3 (2425 2y — 18
MK=b( R e - =0 (8
Substituting the value of /2 from (17) we get the two equations
x A2 ({a [
OK +u) + 225 GLEWl_o (19.1)
and
A (x4 ) !
(K + ) + B2 (2[)2“:;;,’;)) N (19.2)

Let us put ¢ = (1 — 29)/(1 — v), where 7 is the Poisson’s ratio. Since n > % it is
clear that ¢ always lies between 0 and 1. In the extreme case of 1 = } we have
¢=0. From (19) we now have

whe = QR T (@) cld —0) (20.1)
=08 ER@ZF) (20.2)

As for the constant B in (15) we can assume that ' =0 for 6 = 0 so that B = 0.
The constant K has still to be determined.

12—The Bending Couples M, and M,

Let us now consider the tractions across a plane 0 = constant. For this we first
calculate the values of rr, 70 and 00. They can easily be seen to be given by

— 1

7= 3K 4+ *’*;2‘2 _ (ﬂjj wi (21.1)
PO =0, . « o v e (21.2)
é?a:ijLu—&rf_?_%%f ......... (21.3)
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If n denotes the direction of a normal to 6 = constant we have the tractions across
it given by
m =0,

— —_

On = 06.

Again, if the beam is bent by terminal couples only we must have

b
J 060 dr = 0,
i.e.,

(K + ) (b — a) + pA® G) _ 61_1) — LGt w) (B —a) = 0.

Multuplying (19.1) by a and (19.2) by & and subtracting one from the other, we
see that this condition is satisfied. Accordingly the resultant traction across

0 = constant reduces to a couple.
If M, be the moment per unit length of this couple about the z — axis,

M1=j:ré“edr

=} (K ) (5 — @) — pA? (log b — log @) — et (7 — 0. (22)

We have still to consider the tractions across a plane-section given by z = constant.
Since yz and xz are both zero,

xn = yn = 0,

=z
If — M, be the elementary couple in the axial plane applied to the plane ends of
the cylinder between 6 and 6 + 46, we must have

b~ b —
[ rzzdr =0, ' rrzzdr= — M, . . . . . .. (23)

The first of these gives

1 R 0 AN 2p) e o
FIO-+20) K —20] (32— ) - HRE2 e — ) =0

and putting the value of / from (20.2) we get

r (AWK 4 p)
A2 K —2p — 22— 1 =/ =0,
o (% + 2u) @ e
which gives K = 1.

Hence
. 1 4+ o — fa2 =1,
Le.,
o« =0, or o = 2.
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a= 2 gives w = 2z, and, therefore, z = — z’. This is a physically impossible
solution, for the present problem* and hence must be neglected. o« = 0 only
means that fibres parallel to the 2z’ — axis suffer no change.

The second of equations (23) gives

Mﬁ:—xL @—wﬁw

:—)\[(( —43)+12—0(@_1)2)@1—”%’)}. L2

a?—-c . b'ﬁ-fc

13— Determination of f and the Neutral Axis

To determine f/ we go back to equation (17). We have

ad_ _ (’_ B Az‘)%_

dr \7° r2

If we assume that x" increases with r we see that we should take the positive sign
with the square root on the right-hand side of the above equation.t Putting

Iri®=9 = A Sec ¢,
we get
(2 —¢)f=2A (tan ¢y — ¢) + a constant

Jy2—c 37
=2 [(lr”‘“ — A%} — A Sec™! (%) J -+ a constant.

The general value of ¢ is given by
¢ = 2nx + ¢, or 2nr + (= — o),

according as,// is taken with a positive or a negative sign, ¢, being the principal
positive value of ¢. Now we can always assume that x" = f is positive. We have
already taken »" = A6. The constant in the value of f only affects the original
distance of the plate from the origin, and hence can be assumed to be zero. Thus
we can write

S=g2 (tan ¢, — ¢

=2 L iyt i (Z;)_;—(fa(;v_ 1 s R

(25)

* If the cylinder is turned upside down we get w = 2z. Accompanied by a change of sign of
A given by (20.1) it only amounts to a rigid body displacement.

1 Taking the negative sign with the value of df/dr only amounts to bending the plate in the
opposite direction.
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From (8) we easily get
N
sazg(l—r—2>, ........... (26)

which shows that » = A is the unstretched longitudinal fibre.
From (21) we have the principal stress difference

0 — = (L2,

e r?

This does not vanish over the neutral axis (r = A) since [ # 2A".

14—M, and M, for a Thin Plate

From (22) we have

M, — . {% (b — g2y — 2 =9 (logf(;}?giaézgti;?)z“‘ (¢ — b”)J .(27)

If the rectangular plate is very thin we can put b = a +- &, where £ is very small.
In such a case M, is given by

2 . 2—¢ _ ¢ /
= 12— B L 2]

Let us neglect all powers of £ higher than the third, then

— 1 (p2 2""21{ h 1 }lz\t
M,=up|3z(h +2a/z)———c—a )1+(2—€)6‘Z+§(2—0) (l*c)c—lgj

(‘//l h? n By 1—(1+ /z/a)‘] . (28)

T 2% T3S T+ hja)
Now
1— (U +hfa) ¢ 14+3C—=1) (h/a) +§(c—1) (c—2) (h/a*)
A+ ko~ Z2—¢ T3 (1—0) (h/a) (I — ick/a)

We know that ¢ < 1. So is #/a, therefore
2 (1 —¢) (b/a) <1,
(1 — §ch/a) < 1.

and also

Therefore
$ (1 —¢) (h/a) (1 — Lch/a) < 1.

Hence we can expand
[T+ 31 —0c) (Ba) (1 —Fch/a)]™

in powers of &/a.
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The above identity now becomes

S T LT
XD_%U_@_+aa—dg+%ﬂ—ﬂﬁa
—1-a-9tria-0a-0k

We can now rewrite (28) as
M, — p,[;; (h + 2ak) — ah (1 —}
=4 (2—0)—.
The factor u (2 — ¢) £ is what Love calls D in his treatment of the problem of

plates. Thus we get

a result which is the same as obtained by Love* for small strains.
Again, from (24) we have

M, — — k[%/z(3a2+3a/z—|—/z2) —{—%.%—E—z.a(h?—I—Zah) } = E}ﬂ”’/")?”]

and proceeding as above we get

in LovE’s notation.

15—Values of u, v, w, xx, _)/)_z\, elc.

To recapitulate we have the displacement (u, v, w) given by

_ 24 _
u==x— g— (tan g, — ¢.),
v =27y — A0,
w = 0,
where A is the positive value given by (20.1), and ¢, is the principal positive value of
| =9 = A sec ¢,

* Op. cit., p. 554.
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[* being the positive value given by (20.2), and the components of stress by
- [ {lx2 A2 ]
__ I S o LA R V- SRy
XX = A + (%] 27\ 7,5 7,2 _7'0 7'2 (x .y ) b

p= b = - E[E B ey,

2| 7 72

Ll
w=1(1-1%),

vz = zx = 0,
@:_w[é__%é%]_

r2 | r r2

The principal stresses are given by

—

2
=kt B+,

—_

70 = 0,
—_ 2
00 = A 4+ o — A —%Al—c.

72

The v — displacement shows that all planes »" = constant have changed into
planes passing through the axis of the cylinder. This is quite a natural thing to
expect. In fact, from a physical point of view it is the simplest change which
can happen to a plate bent into a cylinder.

IV—TorsioNn oF A Ricat CircurarR CYLINDER

16—Need for Extension of the Present Theory

The necessity of calculating the torsional couple on a circular cylinder to a greatet
degree of accuracy than what exists in its present well-known value, futra’, has
been recognized by various authors. SAINT-VENANT himself has calculated the
correction which should be added to it if powers of < higher than the second
can be neglected. To this we shall refer later. One of the most important cases
in which <2, and possibly a few more of its higher powers cannot be neglected,
is that of the conduction of heat and electricity along twisted wires. Recent
experiments by Lees and Cavtarop* on wires made of steel, copper,
aluminium, etc., have shown that the effect of twist on them is to decrease both
their heat conductivity and electrical conductivity. This decrease is independent
of the direction of the twist and is proportional to «2? for small values of . The
earlier experiments of JoHNSTONET show that when a wire is strefched the heat
conductivity along it is slightly increased. Thus arises the need of determining
axial stresses, neglected in the approximate theory, in cylinders under torsion.

* ¢ Proc. Phys. Soc.,” vol. 35, p. 225 (1923).
1 ¢ Proc. Phys. Soc.,” vol. 29, p. 195 (1917).
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BaLiNkIN* has carried out an optical determination of these stresses for long
rectangular plates. Later in the paper we shall have occasion to point out that the
theoretical discussion given by him is not very accurate.

17—-SAINT-VENANT on Large Torsional Shifts

SAINT-VENANT himself has given a modified form of his well-known solution of
the torsional problem for large torsional shifts. On p. 347 of his famous memoirt he
says that the displacements

U = — 7JIR,
vV = TXZ,
w= t¢,

do not hold good for large torsional shifts. By an easy process of summation he
finds the new values as

u= —ysin vz + x (1 — cos 72),
v = «xsin 7z + y (1 — cos 72),
w= ¢,

¢, the torsion function remaining unchanged, and x, », and z being the co-ordinate
of a point P in the strained solid. The above values of the displacement give a
correct solution only if the second order terms in the components of strain are
neglected. Presently we shall show that for a right-circular cylinder (u, v, w)
should be taken as

u=x(1— pcosrz) — ppsin 7z,

v =y (1 — Bcostz) + xB sin =2,

w = ag,

where B is a function of 7 = (x* + »?)* only, and « is a constant. These reduce to
the values given by SAINT-VENANT if we take 8 = 1 and « = 0. But on calculation,
after using the values of the strain components given by (1), we find that the body-stress
equations are not satisfied if we take SAINT-VENANT’s values. In fact, we get

dxx | dxp | oxz
Pdddd 4 22— 2
x "y oz o
dxy |, oy |, Oz
—_— Rl SN = . AT2
ax Ty Tz i

oxz | 0z | oxy
8x+ 0y + 02

Since we have assumed the strain to be finite we cannot use SAINT-VENANT’S values
of the component displacements.

* ¢ Phys. Rev.,” vol. 30, p. 520 (1927).
T ¢ Mém. des Savants Etrangers,” vol. 14 (1855).
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18—Finite Components of Displacement

We shall now calculate the displacements when a right circular cylinder is subjected
to a finite twist =. From considerations of symmetry we know
(I) that cross-sections must remain plane ;
(IT) that straight radii must remain straight.
Moreover, the displacement w, if the conditions are uniform, must be of the form
«z. The displacement in the cross-section,
Y therefore, must consist of a rotation tz, about
the axis of z and a radial elongation which
P must be a function of r = (¥ 4 »2)* only.
Thus accented co-ordinates referring to the
initial positions
x¥'=OP’cos (0 — tz) = Br (cos 0 cos tz
P + sin 0 sin 72)

=B (xcos Tz -+ ysin z),

TZ
9" = OP’sin (0 — tz) = B7 (sin 6 cos 72
6-7x — cos 0 sin 72)
0 e 3 x =B (ycos 1z — xsin 1z),
where ¢ is a function of 7 only.
Therefore
u=x—x =x(1—Bcostz) —ypsinrz, . . . . . (30.1)
v=y—9 =91 —Bcostz) +apsin<z, . . . . . (30.2
W==02Z « « e e e e (803)

19—Calculation of Strains and Stresses

We now calculate the strains. Substituting the values of u, v, w from (30) in (1)
we get

So=3(1—pn)—fw(p=+28) . @L
=11 —p)—dr(en+ 2 L @1
S, =« — o — 1p2c22, (31.3)
6, = ©f%x, Ce e (31.4)
6.=—1B%, . . . . . . .. ... ... . (315
0y = — (8 + 2E) (31.6)

where B’ = dp/dr.
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The stresses are given by

\

E:K[l_g2_%r2<ﬂ’2+g¥_’)_{_“
)/’}: 7\{1—82_%72 <g'2+g%3,)+a

Yz = uwB%, . . . . ..

—_ %az —_ %,Bz,tzrz

— da? — 1p2¢ 272]

249

w1 g (g 2B | (32

+u[1—ﬁ32—)’2

— %“2 —_ ;BZ 272}

+ 1 (2“ —a? — 527272):

20—Satisfaction of the Body-Stress Equations

These stresses have to satisfy the body-stress equations.

equation,

8xx+ Bxy 4 axz

gives

210w+ dprema ot (e 4 ) 8

which can be rewritten as

0

or as

.
s [ﬁ{z (h + 20) 4 re2r2) g2 + (o

i+ 2]

0
%

Similarly, the second body-stress equation,

By W Bz,

2L 2

The first body-stress

Z 0w e e ) (20 + 2B o [ e 4 2 0] — o,

-+ 2u) <§’2 + %%B—l> 2+ 2u j B'Zrer = 0.
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gives

%[{2()\+2M)+)\1272}62+(7\—’_2“)(\3/2+'%TB)72+2HJ@,27dT:I:0.

The third is obviously identically satisfied.

21—Dyfferential Equation Satisfied by 8

Hence 8 which is a function of r alone can be determined from the differential

cquation
[2 (0 + 2u) + ae2r] 82 4 (0 + 20) (B2 +2—‘jﬁ—)r2 +2u [ e dr = K,

where K is a constant of integration.

If we put
A 1 — 2

7 = a—— and ¢ =

T+ u) =

>

the above equation becomes
[2+ (1 — o) w2l pr o (0 + 222 ) o o[y = K,

where K, is also a constant.

Let us again put
(1 —¢) wr =8,

and We get
(1 - S?) B2 - (SB’ | p)? —l—cJSB'z ds — K,, where p' — g%. . (33)

It may be remarked that since ¥ > 7 > 0, we have 1 > ¢ > 0.

22— The B-Series
If we put 8% = ¢ in (33) we get

(14 1) 32+<2t§§+s>2+2cjt<§-t@>2dz=1<l. (3

We shall try a solution in series of the form
B =A,+ Ayt + A2 + A2 + LA+ ...
Substituting this value in (34), we get
(14-8) (Ag+Ayt+ At 4 ... A+ )24 (A 3A H8A 2+ ... (2n4-1) At ...)°

+ 2cj t(A; + 2A,¢ + A2 + oA+ )2 dt = K.
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Comparing the coefficients we get

2A02~iK1)
Alz—%AOa
A, (6—
Azx%isz—”), L 3
A, = — A, &

0 W >
and so on. ‘
Though the numerical value of A;/A, is less than 0- 00003 the region of convergency
of the infinite series remains unknown. We shall now prove that the series at least
converges for all values of t = 1.

23—Convergency of the B-Series
Differentiating (34) with respect to ¢, we get

B2 4 288" (1 + 4) -+ 2 (268" + 8) (248" + 3p") + 2etp" = O,

,__li@ //__de
=g ad BT =T

where

Dividing by 82 we have

1 +2(1 +t>g_'+ 2<2t§—l+ 1\1><2t%:—l— 3-gl>+2ct§; — 0.

We now put y = B/@, so that v' = dy/dt is given by v’ + y2 = p”//g. Our last
equation now becomes

A" 20y + 1) + 4oy (20 + 1) + 6y (2ty + 1) + 20ty 4 (2t + 1) + 2y = 0.

If ¢ = 2 we get
(2ty + 1) (4" + 4ty + 8y + 1) =0,

2ty +1 =0,
4ty + 4iv2 + 8y + 1 = 0.

2y +1=0 gives B = K,t!, where K, is a constant. It can be ecasily seen that
this value of 8 satisfies (34) if ¢ = 2.
By means of the successive substitutions ty = A = uv, v = 1/, we can reduce

4ty + 4ty 4+ 8 +1 =0

to a RiccATr’s equation which can be solved in terms of BesseL’s functions. But
we have already seen that ¢ 1, and hence for our purpose this solution of ¢ = 2 is
of no use.

and hence either

or
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Let us now revert to our equation in v, and put 2¢y + 1 == y, so that 2¢&y" + 2y = y".
It now reduces to

4y +20 4+ (-1 2P+ +2—¢) =0 . . ... (36)
Ifweput T=¢t+2(y—1)and y — 1 =Y in (36), we get

4(14Y) (T — Y)<Z;r,—2)[2( _Y) (T — 2Y)

+ Y20 +Y)?24+c(l+Y)+2—¢] =
dl _2Y[2Y? + (4 - ¢) Y 4]
dY 2T (1 +Y) +Y2(2Y + ¢
The orthogonal trajectory of the family of curves, say, T = f(Y), given by the
above equation is

dT | T (1+Y) .+ Y2 (2Y + o) 0
Y "Y[2YT (A +o)Y +4] TY[YEF A+ Y 4]

which is a linear equation of the first order in T. Its solution is

or

fommt oo — [ fymee Y2 (2Y + ¢) dY
Tel Y1y te) V' =¢; .(6Y1Y4(4)Y}]XZY[2Y2+-(4—I—C)Y+4)’
or
T11261+211Y_—g-j11dy, L (37)
(L+Y)dY
where ¢, is a constant of integration and I, = ¢/ YV raY il
Now
( (1 +Y)dY l[_l__ 2Y + 2 4 e — (2 — ﬁc)J JY
JY[2Y2—}~-(4+)Y+4] 2Y 4[4+ (2440 Y + 2]
Y 1 4 —¢ tan 1 4(1+Y) ¢

DOl

S T E T Y 2 T3 (16— 8 — o) (16— 8 — ¢2)t

and hence we can write down the value of 1.

If we could easily represent graphically the system of curves given by (87) their
trajectories would give the solution of the differential equation in ». Since this is
not particularly easy we revert to our equation in y and put y = 1/z.  (36) now

gives

4gf—2t2—2—}—(2—0)z—~2(1~—0)62+(2*“-0)53:0-

Again let Z =V + d, where d is a constant as yet undetermined. The above
equation now reduces to
w2 (V24 @2 (VA —2(1—0) (V + 4
+ (2 —0) (V4 d? =
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Putting the constant term equal to zero, Awe have
—24+2—¢d—2(0—¢)d®2+ (2—¢)d® =0,
> d=1[(2—¢)d® 4+ cd+2] = 0.
Therefore, either d == 1, or (2 — ¢) d? 4 ¢d + 2 = 0, the roots of which are

— ¢ + (¢ + 8 — 16)}
2(2—c¢) ’

d —

and since ¢ < 1, both these values of d are imaginary. Hence the constant term
can be put equal to zero by only one real value of 4, i.e., 1. This remark is
important.

For d = 1 we have

t%JrV:%thtV—%M—c)Vz+%N2—%(2—€)V3- .- (38)

This type of equation has been studied by Brior and BouQuer.* They have
proved that it possesses a regular integral that vanishes with ¢, and that that is the
only integral vanishing with ¢ that is possessed by the equation. PoiNcARET has
further proved that an equation of the above type cannot have any non-regular
integral vanishing with ¢.

Let the infinite series which satisfies (38) be given by

V=cit+ c,t2 4 ...ct" + ....

The first few coeflicients are

o =1,
I
TS
— 3 0+ (5 + )
“= T(}—?83 * 32?&?4 T 326-283 T 456?84’
= 13076 + 1596 T 516 T shr1E T meTen ot

We have still to find a radius of convergence of the V-series.

* < J. Ec. Polyt. Paris,” vol. 21, p. 172 (1856).
t Ibid., vol. 28, p. 13 (1878).
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The general coefficient ¢, is given by

(n+ 1) ¢, = ¢, + % coefficient of " "in V2
(4 — ¢) coefficient of " in V?
(2 — ¢) coeflicient of " in V3.

1
4
1
4

It need hardly be pointed out that to determine the coefficient of ¢ in V2 or V3

only terms up to ¢, , £ ' in V are required. Now consider the equation

2V, = 1t + ¢V, + 3t V2
If an infinite series

Vi=c1t+ 2+ 58+ ...+ ...

satisfies the above equations we have

o1
1= 1%
' 1
Ca =%

5
c’3za,and SO on.

It is obvious that ¢;, ¢y, ¢; and ¢’y, ¢’5, ¢’5 are all positive and that ¢, = ¢,
¢'3>¢sy ¢'3>¢5. We assume that both these laws hold good from ¢, and ¢’y up

toc¢, ;and ¢/, ;. We now prove that it is true for ¢, and ¢’,.
¢’, is given by
¢, = ¢, + % coeflicient of "' in V2.

Since for the coefficient of ' in V,;2? terms up to ¢’, .# > need only be taken
and since all ¢”’s up to ¢’,_; have been supposed to be positive and greater than
the corresponding ¢’s which have also been assumed to be positive up to ¢, , we

have on comparing the general values of ¢, and ¢,

¢, > ¢,
Now V, is given by
tVi2 +2V, t—2) +t=0.
Therefore
VIZ—(t—Z) i2(1—t)*'
t

Obviously to get the infinite series,
Vi=ct+ 2+ ...+ ...,

we must take the minus sign. Thus the series converges for all values of ¢ < 1.
And since after the coefficient of the first term in V we have ¢, < ¢/, the V-series
also converges for all values of t = 1. For ¢ = 1, V; = 1, and it is obviously less than
1ift < 1. Hence, V is also less than 1 if t < 1.
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Thus we have proved that the infinite series,

V =it 4 ¢t + ¢ + ...ct" + ...,

is absolutely and uniformly convergent for all values of ¢ = 1, and that in this region
of convergency V is always less than 1.

Now
— oy ____1___ - 1 . __.Zty
V=z lmy 1~2ty—|~1 1= T
Therefore
___V_
2y = v
But since
B =P
:Aeiydi
= Ag_%jl%/"atl’
where A is a constant.
Again,
V J— - 2 3
——1_|_V—V(1 V+YV V3., ... ... (39

ifV<lort=l.
Since V is absolutely convergent for t =1, V2, V3, V4, V5, etc., are all absolutely

convergent series in the same domain. Hence we can rearrange the terms on
the right-hand side of (39) and get

v o 0 .
-—1+V—a1t+a2t + at"+ ...

= an absolutely convergent series

= — 2 Ut (say).
Therefore

B = Ael‘Udi = Ac¢% (say),

where W is also an absolutely convergent series.
Therefore

R TNLE R e

and since W, W2, W3, etc., are all absolutely convergent series we can once again
rearrange the terms and get

B=A,+ At + A2+ AL+ .,

a series which in turn should be absolutely convergent for ¢<1. To calculate the
A’s it is obviously better to substitute the B-series in (34) and then compare the

VOL. COXXXIV—A 2 M
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coeflicients of the various powers. This we have already done in (35). Hence
we can write

p:A[l~%t+§——“——”t2—~f——t3+. ] : (40)
’ 12. 82 9.8 B ST

It should be noticed that ¢ = 1 is only a lower limit to the radius of convergence
of the power series given by (40). Actually this radius may be much greater than

unity.

From physical considerations we see that the exact solution of the differential
equation (34), which holds good for ¢ = 0 should be valid for all magnitudes of
the twist. Hence, it cannot have any singularities for all real and positive values
of t. The value of p for £ > 1 may, therefore, be obtained by analytic continuation,

taking new initial values.
In what follows we shall suppose that ¢ = 1 unless otherwise stated.

23—Satisfaction of the Boundary Conditions

Now for satisfying the boundary conditions it is convenient to put g == AF (r),
where F (r) is a known function of the radius vector r, and A, is a constant whose
value is still to be determined from the boundary conditions.

The first two boundary conditions

xx cos (xn) “ ;cjz cos (yn) = 0,

and
Xy cos (xn) + pp cos { yn) =0,
give

L R R e il
=) —ue (g 2E) 0, 1)

which is to hold good over r = a, where a is the radius of the circular cylinder after
strain. If a, be its radius before strain we have the relation

a2 = a?B,?, where Bo=AJL (a). . . . . .. (42)
The third boundary condition,
Xz COS (xn) —|—.1’)2 cos (yn) = 0,

is obviously identically satisfied,
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We can now rewrite (41) as
(A1) — (o — 30®) = BAZ [(n + 20) aF’ (@) + F (@) + 2 (14 %) {F (a)}?],
or

(Bh42u) — & (1 —a)2 = A2 [(x + 2u) {aF’ (@) + F (@)} + » (1 - 22) {F (a)}],

where, of course, ¥’ (a) = I:é%ﬁ]

r=a

The tractions on any cross-section are, of course, statically equivalent to a single
couple whose axis is the axis of z. We have to show that

([szaxay=0, [[reaxar=o, [[maxdr=o0, .. (@41
ﬁyzz de dy = 0, ﬁ —wzzdedy=0. . . . .. ... (44.2)
Now from (32) we have Xy = — wTp2y, )’)% — urB2x; also zz and B® are both

functions of r only. Since the axis of z passes through the centre of the circular
cross-sections, we can see that all the above equations are satisfied excepting the
third in (44.1) which requires

j" Omrzz dr = 0,
0
or

[h + (0 + 2u) (@ — 3a)] a2 — 3A jo GF (1) +F (N} rdr

— A2 [0 O+ 20) ) F ()2 rdr = 0,
or
(Br 4 2u) — (0 + 2u) (1 — )2
— 247 j A F () £ F @R+ O+ (04 2u) <22 {F (N}2] rdr.  (45)

a Jo

We see that (43) and (45) are both necessary and sufficient to determine the unknown
constants A,2 and (1 — «)2. The value of the torsional couple N has been obtained
in § 25 infra.

Since all the boundary conditions and the body-stress equations have been
satisfied, the analytical solution of the problem is complete.

We notice that (43) and (45) determine A2 and (1 —«)2%, and not A, and
(1 —a). Since w=2z—2 we have 2= (1 —«)2. Now 2z is positive or

2 M2
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negative according as 2’ is positive or negative. Hence we should take the positive
sign with the square root of the value of (1 — «). In like manner, since " = 78
= Ay F (r), we should again take the positive sign with A,.
As far as the stresses go both A, and (1 — «) appear in the second degree in them.
It is in the displacements that one has to be careful regarding the sign of A, and

(1 — o).
24— Determination of « and A,

We shall now calculate expressions for the values of « and A2 by using the
infinite series,

B— A, Ay Ayl - Ay - AL,

which is at least absolutely convergent for ¢ =< 1.
We have

B2 = A2 {F (r)}? ,
. = A2 + 2A At + (A2 + 2A0A,) 2 4+ (2A0A; + 2A,A,) £ + ..., (46)
and

[dir (rm]z — A [dilr T (r)T

:[‘f? 4 LA A F A A }]2
& di T (I e T T Rl

— (A - BA,t -+ 5A,E  TALE + ...)2
— A2 4 6A0A L+ (94, + 10AA,) 22 +2(TAA; + 15A,A) £ 4 .., (47)

since ¢t = (1 — ¢) =272,
After dividing both sides of (43) by (» + 2p.) it becomes

(3-zc>—4(1»_c)(1—a)2=A0[ {rF(r)}] FA2(1—0) (1+ =22 {F (@)}, (48)

and in like manner we can write (45) as

(38— 20) — (1 —o)? = 20° J[(lmc/{——r}?(r)]f—l—{l——c) 7272}{F(r)}2;irdr. (49)

Substituting the values of [F (r)]? and [Zlér 7F (r)J2 from (46) and (47) in (48)
and (49) we have if ¢, = (1 — ¢) t%a®
(B—2)— (1 —¢) (1 —a)2=A2(2—c¢)+ 4 [A2+ 2AA; (4 —0)]
412 [2A0A; + 2 (BA2 + BAA,) — ¢ (A% + 2AA,)]
4+ 13 [AL2 + 2A0A; + 16 (AA,; + 2A,A,) — 2c (AA; + AjA,)] + ..., (50)
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and
(B—2) (1—¢)— (1—¢) (1 —a)? =
(1 — ¢)2 [2A0% + 4A0A 1t + % (BA2 4 6AA,) 1,2 + 4 (AAs + 2A,A,)]
+ [ Ac*lo + FAAL® + T (A + 2A0A,) & + ...] . (51)
On subtraction (50) and (51) give )
¢ (83— 2) = cA2 (3 — 2) + ¢, [2AA; (2 4 3¢ — 2¢2) + $A2]
+ 42 [5AA, + 2 (5A12 + 6AA;) — ¢ (A2 + 2A0A,)
— % (1 —¢)? (5A,2 + 6ALA,)]
+ (2 [3A2 + 3AA; + 16 (AA; + 2A,A,) — 2¢ (AA; + ALA,)
—4 (1 —¢)2 (AA; + 2A,A,)] + ...

Putting the values of A, A,, etc., and dividing both sides by ¢ (3 — 2¢) we get

24 — 20¢ 4 3¢?
L= ar[1—td Hl—how - FEEEL e L], 62
which gives the value of A2,
Since A2 is to be real, the numerical value of

24 — 20¢ + 3¢ s

p L (] — 1 2
[4t0 S 4 (1 TGC) t ] + 4.8 (3 — 2(;) v

is less than 1, and hence we can get A,? as an infinite power series in £, given b
> 0 y

_ 1 L ¢ ]ta -
12.8 3.8 ' 12.8 (3 —2)]|"

At =110+ L+ 60+ |

For « we substitute the values of A,, A;, A,, etc., in (51) and get

(1 — ) [(3—20) — (1 —a)?] = A2 [2(1 ) k2 —0)

¢
”‘3.82(

33 — 18¢ + ¢2) t? + 8 683 (50 — ¢ 4 Lte? — 1e3) 43 ...

L

Putting the value of A;? from (53) we have
(1= [B—2) — (1 —a)*] = 2 (1 — * + by + o4t? + v

(1—¢) (1 —a)2 = (1 —¢) — by — 35l + « « . . . (54)

or

which gives the value of (1 — a)2.

2mM3
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As we have already pointed out we should take both A, and (1 — «) with a
positive sign.  (52) now gives

A=1+4t+5br (U424, .. (55)
and (54)
RV W
(I—w)=1 20 —0¢ 24(1—0¢) "
=1— %12a2 — “2%; 1— (}) 4at ... )
i.e.,

o =472 + g5 (5 —2) tat 4+ ... . . .. ... (56)
For future use we can now write down the value of 82 as
62— 1—1 (1—0) =2 (1* —a?) +6_1§ (1—0)% 74 [ (12 — ¢) — 24a*r® 4 (8 +0) at].
...... (57)

It is obvious that to the first power of <a, A, =1, 8 =1, and « = 0. In such
a case we fall back on SAINT-VENANT’s solution of the Torsion problem.

25— Torsional Couple

The twisting couple N per unit length is given by

N = p= (: 822, 2nr dr.

Y

Substituting the value of #2 from (57) we have

N = %—rcpxra‘* [1 -+ —1l2' (1 — 6') 7202 — %—‘:‘12—2 (1 - %6‘) wiat "'] R (58)

If ~a is so small that all its powers beyond the first can be neglected, we get
N = Inpat = pel,

where I is the moment of inertia of the cross-section round the axis of the cylinder.
This result is already well known. If only powers of ta beyond the second can be
neglected we see that N = p<I remains unchanged, a result obtained by SaInT-
VENANT and also stated without proof by Youne.* If +3a¢® can be retained the
term to be added to p<l to get the next approximation is

Sarp (1 —c) w808 = Jm . S a3g8. . L L L (59)

I —n

* ¢ Lectures on Natural Philosophy,” vol. I, p. 139.


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org on November 10, 2011

IN ELASTIC PROBLEMS 261

SAINT-VENANT in a footnote given on pp. 477-8 of his memoir on Torsion
calculates the correction for N on the supposition that longitudinal fibres suffer a
stretch. He obtains the correction as

FrEr3ad = g4 . 2u (1 4 ) 3ab.
The difference between his correction and ours is

1 2 —n — 29*

SATE . . 1348,

1—nq

This can only be zero if
20 +0—2=0

1=1 (/17 —1),

or

which is obviously greater than 4. Hence the difference can never vanish.

It appears that if the longitudinal stress modulus E be replaced by the constant
@ (1 — ¢) the two results become the same.

I may here point out another inference from the above result. BALINKIN*
compares the observed values of the axial stresses in long rectangular plates under
torsion with the calculated values based on an analysis similar to SAINT-VENANT’S
and taken from WEBER.T If the results of SAINT-VENANT’s approximate theory
do not agree with our theory in such a simple case as that of a circular cylinder it
is obvious that we cannot expect a very good agreement between the two values
of the axial stresses in a complicated case like that of a rectangular plate. In his
experiments BALINKIN twists the plate through an angle of 60° which no one can
call a small angle of twist.

26—Comparison Table
Let

N, == inpat

= the torsional couple given by the ordinary theory, and N, = the same couple
given by our more exact theory from (58).

Since (57) shows that N,/a® is a function of ta we have compared the values of
N,/a® and N, /a* for different values of ra, and have calculated the percentage error
that arises from taking N, /a® for N, /a3.

We take v = { or ¢ = %. The condition of convergency of the P-series gives
Ta = \/ 3.

* ¢ Phys. Rev.,” vol. 30, p. 520 (1927).
T ¢ Forsch. Arb. vers. deut. Ing.,” No. 249.
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TaBrE 1
(Nofa®> = pK,)  (N/a* = pK,)
Ta. K, K, 9% error
T 0-4112 0-4120 0-19
i 0-8235 0-8288 0-64
in 1-2337 1-2548 1-68
i 1-6449 1-6951 2-96
in 2-4674 2-6364 6-41

From the above table we see that the percentage error increases with ra.
ta = in this error is as much as 6-419,.

27— Lines of Principal Stress

If
[=% m=2, n==20
r r

we have
i == [k + my + 2Umay
=1 g+ — Jor 3 (prar 4 g2 - ZBE ) e
+u (1 — g% — u(B’z +2_Br£3_> r?

16 = W'xx + mm'yy + (Im' + I'm) &y

00 = I'2xx + m'>yy + 2'm'xy
== 8 b — e — 3ot 1 2B ] (1 e,

-----

and zz is given by (32.3). In (60.1) g’ stands for dB/dr
Thus the principal stresses at any point on the z-axis are rr, 00 and zz.

When

(60.3)

But this

is not so at any other point of a cross-section. 77 still remains the principal stress,
but 00 and zz do not. If P and Q be the principal stresses in the (0, 2) plane, and
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é, 37 -+ ¢ be the angles they make with the direction of 0, we have, by a well-known
result,
tan 2¢ = /—\g‘?é: s
00 — zz

P— Q=1[(06 — z2)? + 4022]* = + R (say),

the ambiguity of ¢ being settled by
06 — zz — R cos 24,
267 = R sin 2¢.

From (60.3) and (32.3) we have

00 — 2z = p(l —a)? — B2 (1 — =22).
Therefore
27p2r

tan 2¢ = Ay — e (1= )

In the ordinary theory we neglect v242? and all its higher powers, and hence it is
that the principal axes at any point of a cross-section are included at an angle of
45° to the axis of the prism. In the present case, it happens only when r satisfies

the equation
p2 (1 — =2r2) = (1 — «)?,

which, if we neglect powers of ta higher than the second, gives

r=a (‘2 — if

On the surface of the cylinder we get

tan 2¢ =: :;ia (approx.),

or .
¢ = in —

ooj=

Ta.

28—7Value of z’z

The value of the axial stress zz can be obtained with the help of (32.3), (56)
and (57). A little calculation gives

=30+ 20 ¢ (2—0) 1 (Ja — 1),
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neglecting 7343, t4a%, etc. This vanishes when

r=a/\/2.
If a, is the radius of the cylinder before strain, we have

aO =a (ﬁ)r:a*

or using (57)
1

_ . |
a, —~a{1 —‘—:782(1 —_ 6)2 tdat ...JI‘,
which shows that g, remains unchanged to the fourth power of va. Hence a can

always be replaced by g, in the foregoing approximations.

In conclusion I have to thank Professor L. N. G. Firon, F.R.S.; and Mr. A. C.
STEVENSON, M.Sc., of University College, London, for their many useful suggestions
during the course of the work.
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