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Abstract. We characterize the dicriticals of special pencils. We also initiate higher
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1. Introduction

The analytical (topological) theory of dicritical divisors was developed in [15–19]. It was
algebracized in [8,9]. The algebraic theory was furthered in [10,11,13,14]. In this paper
we shall make further progress in this theory. In particular, in Theorem 8.2 we shall prove
a converse of Proposition 3.5 of [11] characterizing the dicritical set of a special pencil
on a nonsingular surface; see §8 for the statement of this and other related results. In §9
we shall initiate the dicritical theory of higher dimensional normal varieties, which may
be algebraic or arithmetical, and we shall indicate how this could be used in attacking the
higher dimensional Jacobian conjecture.

We shall use the notation and terminology introduced in [3–9] and more specifically in
[10,11]. Relevant background material can be found in [1,2,20–22].

It may be pointed out that the theory of graded rings, say as found on pages 206–
215, 236–241, 272–277, 399–408 and 585–587 of [4], is a cornerstone of this paper. The
basis of that theory is the idea of collecting terms of like degree in a polynomial coming
from classical algebra. This idea is used in geometry in the aphorism which says that the
factors of the highest degree terms of a bivariate polynomial give points at infinity while
the factors of its lowest degree term give tangents at the origin. Another cornerstone of
this paper consists of the theories of blowing up and Veronese embedding as developed
on pages 7–45, 155–192, 262–283 of [3] and reproduced on pages 146–161, 534–552,
553–577 of [4].

In §2 to §5 we shall review some notations to be used frequently. In §6, which is the
heart of the paper, we study natural extensions of valuations, which are sometimes called
Gauss extensions. Behind all this are Rees rings and their suitable homomorphic images
which we call form rings and which are sometimes called fiber rings. In §7 we make
connections with extended Rees rings.
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2. Quasilocal rings

Recall that a ring is commutative with 1. A quasilocal ring is a ring S with a unique
maximal ideal M(S); by

HS : S → H(S) = S/M(S),

we denote the residue class epimorphism. A quasilocal ring S dominates a quasilocal
ring T means T is a subring of S with M(T ) = T ∩ M(S), and then we say that S is
residually rational (respectively residually algebraic, residually transcendental, residually
simple transcendental, residually almost simple transcendental, . . . ) over T if H(S) =
HS(T ) (respectively H(S) is algebraic over HS(T ), H(S) is transcendental over HS(T ),
H(S) is simple transcendental over HS(T ), H(S) is almost simple transcendental over
HS(T ), . . . ). Note that a field k∗ is simple transcendental over a subfield k means k∗ =
k(t) for some element t which is transcendental over k, and a field k∗ is almost simple
transcendental over a subfield k means k∗ is simple transcendental over a finite algebraic
field extension of k. A local ring is a noetherian quasilocal ring.

As usual N (respectively N+) denotes the set of all nonnegative (respectively positive)
integers. The set of all nonzero elements in a ring A is denoted by A×.

For any set U of quasilocal domains and any i ∈ N, Ui denotes the set of all
i-dimensional members of U .

For the definitions of dim(R), spec(R), mspec(R), htR J , dptR J , vspecR J , mvspecR J
and nvspecR J , for a ring R and an ideal J in it, see pages 115 and 127 of [4]. Note that
nvspecR J stands for the minimal spectrum of J in R, and its members are called the
minimal primes of J in R. For the definition of vector space dimension

[L : K ] = dimK L ,

see page 9 of [4].
For the definition of coefficient set, coefficient ring, and coefficient field of a quasilocal

ring, see the third paragraph of §3 of [10].

3. Modelic blowups

Referring to pages 145–161 of [4], for the foundations of models, recall that: V(A) =
{AP : P ∈ spec(A)} = the modelic spec of a domain A. SN = the set of all members
of V(S̄) which dominate S where S̄ is the integral closure of a quasilocal domain S in its
quotient field QF(S). UN = ∪B∈U BN for any set U of quasilocal domains. W(A, J ) =
∪0 �=x∈J V(A[J x−1]) = the modelic blowup of A at a nonzero ideal J in a domain A;
note that J x−1 = {y/x : y ∈ J }; see pages 152–160 of [4]. W(S, J )�i = the set of
all i-dimensional members of W(S, J ) which dominates S where J is a nonzero ideal
in a quasilocal domain S and i ∈ N. D(S, J ) = (W(S, J )�1 )N = the dicritical set of
a nonzero ideal J in a quasilocal domain S; members of this set are called dicritical
divisors of J in S. C̄(A) = the set of all nonzero complete ideals in a normal domain
A. See the second paragraph after (2.3) of [11] for the definitions of normal domain,
simple ideal, valuation ideal, complete ideal, normal ideal and completion of an ideal.
C(S) = the set of all M(S)-primary simple complete ideals in a normal local domain S.
ordSa = max{d ∈ N : a ∈ M(S)d or a ⊂ M(S)d} where S is a local ring and a ∈ S or
a ⊂ S, with the understanding that if a = 0 or a ⊂ {0} then ordSa = ∞. ordS(α/β) =
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(ordSα) − (ordSβ) for α �= 0 �= β in a regular local domain S. DVR (discrete valuation
ring) = one dimensional regular local domain. o(S) = the natural DVR of a positive
dimensional regular local domain S, i.e., the DVR V with QF(V ) = L = QF(S) such that
ordV (a) = ordS(a) for all a ∈ L . V (a) = v(a) for all a ∈ L where v : L → G ∪ {∞} is
a valuation of a field L and V is its valuation ring. Note that V (a) = ∞ or V (a) ∈ v(L×)

according as a = 0 or a �= 0; see page 41 of [4]. Now let I ⊂ S where S is a noetherian
subring of L with S ⊂ V . If I ⊂ {0} then we let V (I ) = ∞. If I �⊂ {0} then we let V (I ) be
the unique element of v(L×) such that for some 0 �= x ∈ I we have V (I ) = v(x) ≤ v(y)

for all y ∈ I . Note that the noetherianness guarantees the existence of x . Also note that
the equation V (I ) = V (x) is equivalent to the equation I V = xV .

4. Graded rings

Referring to pages 206–215 of [4], for the foundations of graded rings, recall that:
ER(I ) = R[I Z ] = the Rees ring of an ideal I in a nonnull ring R relative to R with
variable Z . Note that R[Z ] is the univariate polynomial ring as a naturally graded homo-
geneous ring with R[Z ]n = the set of all homogeneous polynomials of degree n including
the zero polynomial, and n varying over N. Now ER(I ) is a graded subring of R[Z ] with
ER(I )n = {gZn : g ∈ I n}, and every f ∈ ER(I ) can uniquely be written as a finite sum

f =
∑

n∈N

fn Zn with fn ∈ I n . (4.1)

Details are in the third paragraph after (2.3) of [11] where you can also find the the def-
initions of: an element or subset of a nonnull ring S to be integral over an ideal J in a
subring of S, the integral closure of J in S, and the reduction of an ideal.

FR(I ) = ER(I )/M ER(I ) = the form ring of an ideal I ⊂ M = M(R) in a local
ring R relative to R with variable Z . Note that M ER(I ) is a homogeneous ideal in ER(I )
and hence FR(I ) is a naturally graded homogeneous ring over the field R/M , and for its
homogeneous n-th component FR(I )n we have a canonical R-epimorphism

μn : I n → FR(I )n (4.2)

with kernel M I n . Details are in the third paragraph after (2.3) of [11], where we slightly
generalized the matter by letting I to be an ideal in a nonnull ring R with I ⊂ M =
a nonunit ideal in R, and denoting the form ring by F(R,M)(I ). Note that F(R,M)(I ) is
isomorphic as a graded ring to the associated graded ring grad(R, I, M) of Definition
(D3) on page 586 of [4].

5. Quadratic transformations

Let R be a two dimensional regular local domain with quotient field QF(R) = L . Recall
that:

D(R)� = the set of all DVRs V with quotient field L such that V dominates R and is
residually transcendental over R; by [1,2] it follows that H(V ) is almost simple transcen-
dental over HV (R). Members of D(R)� are called prime divisors of R. QDT = Quadratic
transformation or quadratic transform. Q j (R) = the set of all two dimensional QDTs of
R. Q(R) = ∐

j∈N
Q j (R) = the set of all two dimensional regular local domains which

birationally dominate R, i.e., whose quotient field is L and which dominate R; proof of
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the second equality in [1]. oR : Q(R) → D(R)� is the bijective map given by S �→ o(S).
The QDT sequence of R along o(S) is the finite sequence (R j )0≤ j≤ν with R0 = R and
Rν = S such that R j+1 ∈ Q1(R j ) for 0 ≤ j < ν. A finite QDT sequence of R means the
QDT sequence of R along some V ∈ D(R)�. See proofs in [1]. ζR : D(R)� → C(R)

is the bijective map given in Appendix 5 of [22] which we call the Zariski map. Details
are in §2 of [11]. aR(z) (respectively bR(z), JR(z), IR(z)) = the numerator (respectively
denominator, first asociated, second associated) ideal of z in R. Details are in the fourth
paragraph after (2.3) of [11]. D(R, z)� ⊂ D(R, z)� ⊂ D(R, z) = (W(R, JR(z))�1 )N,
where D(R, z)� (respectively D(R, z)�, D(R, z)) is the set of all sharp dicritical divi-
sors (respectively flat dicritical divisors, dicritical divisors) of z in R, i.e., the set of those
DVRs V ∈ D(R)� at which the element z ∈ L× is a residual transcendental generator
(respectively residually a polynomial, residually transcendental) over R. We call D(R, z)�

(respectively D(R, z)�, D(R, z)) the sharp dicritical set (respectively the flat dicritical
set, the dicritical set) of z in R. See the material starting with the second display in §2 of
[10].

Geometrically speaking, we may visualize R to be the local ring of a simple point of
an algebraic or arithmetical surface, and think of z as a rational function at that simple
point which corresponds to the local pencil of curves a = ub at that point. We say that
z generates a special pencil at R to mean that b can be chosen so that b = xm for some
x ∈ M(R)\M(R)2 and m ∈ N, i.e., zxm ∈ R for some x ∈ M(R)\M(R)2 and m ∈ N.
We say that z generates a semispecial pencil at R to mean that b can be chosen so that
b = xm yn for some x, y in M(R) and m, n in N with M(R) = (x, y)R, i.e., zxm yn ∈ R
for some x, y in M(R) and m, n in N with M(R) = (x, y)R. We say that z generates a
polynomial or nonpolynomial pencil in R according as D(R, z) = D(R, z)� or D(R, z) �=
D(R, z)�. We say that z generates a generating or nongenerating pencil in R according
as D(R, z) = D(R, z)� or D(R, z) �= D(R, z)�. See the material starting with the second
display in §2 of [10].

For a moment let J be a nonzero ideal in R. We call J a pencil (in R) if J = y JR(z)
for some y ∈ R× and z ∈ L×, and we note that D(R, J ) = D(R, z). If J is a pencil with
J = y JR(z) then we let D(R, J )� = D(R, z)� and D(R, J )� = D(R, z)�, and if J is not
a pencil then we let D(R, J )� = D(R, J )� = ∅. Note that now we have

D(R, J )� ⊂ D(R, J )� ⊂ D(R, J ) = (
W(R, J )�1

)N
.

We say that J is a polynomial or nonpolynomial ideal in R according as J = y JR(z) for
some y ∈ R× and z ∈ L× such that z generates a polynomial or nonpolynomial pencil in
R. We say that J is a generating or nongenerating ideal in R according as J = y JR(z)
for some y ∈ R× and z ∈ L× such that z generates a generating or nongenerating pencil
in R. In the last two sentences we may say pencil instead of ideal. Regardless of whether
J is a pencil or not, we say that J is primary to mean that the ideal J is M(R)-primary.
We say that J is special (respectively semispecial) at R if J = y JR(z) for some y ∈
R× and z ∈ L× such that z generates a special (respectively semispecial) pencil at R.
We put

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B(R, J )� = {o−1
R (V ) : V ∈ D(R, J )�}

B(R, J )� = {o−1
R (V ) : V ∈ D(R, J )�}

B(R, J ) = {o−1
R (V ) : V ∈ D(R, J )}

Q(R, J ) = {T ∈ Q(R) : (R, T )(J ) is not principal}
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and we note that Q(R, J ) is a finite set (for a proof see Proposition 2 on page 367 of [22])
with

B(R, J )� ⊂ B(R, J )� ⊂ B(R, J ) ⊂ Q(R, J ) ⊂ Q(R).

We say that J goes through the members of Q(R, J ) but not through the members of
Q(R) \ Q(R, J ). See the middle of §2 of [10].

6. Natural extensions of valuations

Let Y be an indeterminate over a field L . Let v : L → G ∪ {∞} be a valuation of L . By
(J4) to (J9) on pages 79–80 of [4] we get a unique valuation w : L(Y ) → G ∪ {∞} of
L(Y ) such that for all

∑
i∈N

ai Y i ∈ L[Y ] with ai ∈ L we have

w

(
∑

i∈N

ai Y
i

)
= min{v(ai ) : i ∈ N} (6.1)

with the understanding that w(0) = ∞. We call w the natural extension of v to L(Y ); see
[12]. We rename the valuation rings Rv and Rw by putting

V = Rv and W = Rw

and we call W the natural extension of V to L(Y ). Note that if v is real discrete, i.e., if
G = v(L×) = Z, then V and W are DVRs.

Let R be a noetherian domain with quotient field L . Let I be a nonzero ideal in R. Let

E = ER(I ) = R[I Z ] =
∑

n∈N

En = the Rees ring of I .

Assume that R ⊂ V . We claim that there exists a unique valuation

w′ : L(Z) → G ∪ {∞}
such that, for all 0 �= f ∈ E , in the notation of (4.1) we have

w′( f ) = min{v( fn) − nV (I ) : n ∈ N with fn �= 0}. (6.2)

Namely, we can take 0 �= x ∈ I with V (x) = V (I ), and for any such x , upon letting
Y = x Z , by (6.1) and (6.2) we get

w′ = w. (6.3)

So we call w the (R, I )-extension of v to L(Z) and we call W the (R, I )-extension of V
to L(Z).

Let A be a noetherian domain with quotient field L , and let us consider the mero-
morphic polynomial ring B = A[Y, Y −1]. Also consider the multiplicative set M∗ =
{1, Y, Y 2, . . . } in the usual polynomial ring B∗ = A[Y ]. By T(30.1) on page 233 of [4]
we see that

⎧
⎪⎨

⎪⎩

for any P ∈ spec(A) we have:

PB∗ ∈ spec(B∗) with M∗ ∩ (PB∗) = ∅
and P = A ∩ (PB∗) with htA P = htB∗(PB∗).

(6.4)
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Clearly B equals the localization B∗
M∗ and hence by taking (B∗, M∗) = (R, S) in (T12)

on page 139 of [4] we get
⎧
⎪⎨

⎪⎩

for any Q∗ ∈ spec(B∗) with M∗ ∩ Q∗ = ∅ we have:

Q∗ B ∈ spec(B) with M∗ ∩ (Q∗ B) = ∅
and Q∗ = B∗ ∩ (Q∗ B) with htB∗ Q∗ = htB(Q∗ B).

(6.5)

Taking Q∗ = P B∗ in (6.5), by (6.4) and (6.5) we see that
⎧
⎪⎨

⎪⎩

for any P ∈ spec(A) we have:

PB ∈ spec(B) with M∗ ∩ (PB) = ∅
and P = A ∩ (PB) with htA P = htB(PB).

(6.6)

Since every element of L[Y, Y −1] lands in L[Y ] after we multiply it by a high enough
power of Y , by (6.1) it follows that for any

∑
i∈Z

ai Y i ∈ L[Y, 1/Y ]× with ai ∈ L we have

w

(
∑

i∈Z

ai Y
i

)
= min{v(ai ) : i ∈ Z}. (6.7)

Note that if A ⊂ V then, upon letting P = A ∩ M(V ) and Q = B ∩ M(W ), we
clearly have P = A ∩ Q ∈ spec(A) with Q ∈ spec(B), and by (6.7) we get B ⊂ W with
PB = Q. Therefore by (6.6) it follows that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if A ⊂ V then,

upon letting P = A ∩ M(V ) and Q = B ∩ M(W ), we have:

B ⊂ W with P = A ∩ Q ∈ spec(A) and M∗ ∩ Q = ∅
and Q = P B ∈ spec(B) with htA P = htB Q.

(6.8)

Having separately dealt with the strands of the two subdomains R and A of L , let us
now weave them together.

Lemma 6.9. Assume that Y = x Z and A = R[I x−1] where 0 �= x ∈ I is such that
V (x) = V (I ). Then

A ⊂ V and E ⊂ B ⊂ W (1)

and

M∗ is a multiplicative set in E with EM∗ = B (2)

and upon letting

P = A ∩ M(V ) and Q = B ∩ M(W ) and P∗ = E ∩ M(W )

we have

P∗ ∈ spec(E) (3)

and

P = A ∩ Q ∈ spec(A) with Q ∈ spec(B) (4)
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and

M∗ ∩ Q = ∅ (5)

and

P B = Q = P∗ B with htA P = htB Q = htE P∗. (6)

Finally, if V ∈ (W(R, I )1)
N then we have

htA P = htB Q = htE P∗ = 1. (7)

Proof. Clearly A ⊂ V and hence by (6.8) we get B ⊂ W .
Now Y = x Z ∈ E1 ⊂ E and hence M∗ is a multiplicative set in E . Every element

of E1 can be written as y Z with y ∈ I , and we have y Z = (yx−1)Y with yx−1 ∈ A
and hence E1 ⊂ A[Y ]. Also E0 = R ⊂ A and therefore E ⊂ A[Y ]. Consequently
EM∗ = E[Y −1] ⊂ A[Y, Y −1] = B.

To prove the reverse inclusion, note that R ⊂ E and for every y ∈ I we have
(yx−1)Y = y Z ∈ E1 ⊂ E . Consequently, for every a ∈ A we have aY m ∈ E for some
m ∈ N. Therefore B = A[Y, Y −1] ⊂ E[Y −1] = EM∗ .

This proves (1) and (2). Now (3) and (4) are obvious.
By (6.8) we get (5). By (6.8) we also get the first equalities in the two assertions

P B = Q = Q∗B and htA P = htB Q = htE Q∗

of (6), whereas the second equalities in these assertions follow from (2), (4) and (5), by
invoking (T12) on page 139 of [4]. This proves (6).

If V ∈ (W(R, I )1)
N then clearly htA P = 1, and hence by (3) and (6) we get (7).

Remark 6.9. The above proof is not difficult but, because of the mixing of two strands,
it is certainly subtle. Thus first we go up the ladder A ⊂ B∗ ⊂ B with prime ideals P ⊂
Q∗ ⊂ Q and then down the ladder R ⊂ E ⊂ B with prime ideals R ∩ M(V ) ⊂ P∗ ⊂ Q.
This enables us to compare the ideal theories of the two seemingly uncomparable rings A
and E , neither of which is contained in the other. This subtlety is accentuated in the proof
of the following Lemma 6.11. The subtlety of these proofs reminds me of the engraving
which I had seen in Fine Hall of Princeton University Mathematics Department citing
Einstein’s quotation “Raffiniert ist der Herr Gott, aber boshaft ist er nicht.”

DEFINITION–OBSERVATION 6.10

Inspired by Lemma 6.9(7), for any nonzero ideals J ⊂ M in a domain S and any i ∈ N

we put W(S, J, M)�i = the set of all i-dimensional members T of W(S, J ) such that
M ⊂ M(T ). We also put D(S, J, M) = (W(S, J, M)�1 )N which we call the dicritical
set of (J, M) in S, and we call its members the dicritical divisors of (J, M) in S.

We make the following observations concerning these concepts.

(I) If N is an ideal in S with J ⊂ N such that radS N = radS M then we have
W(S, J, N )�i = W(S, J, M)�i and D(S, J, N ) = D(S, J, M). If M = S then
W(S, J, M)�i = ∅ and D(S, J, M) = ∅.
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(II) If S is quasilocal and M = M(S) then W(S, J, M)�i = W(S, J )�i and
D(S, J, M) = D(S, J ).

(III) If R is a noetherian domain and I ⊂ M are nonzero nonunit ideals in R then
D(R, I, M) is a finite set of DVRs. As in (5.6)(†∗) of [8], this follows from (33.10)
on page 118 of [20] or (33.2) on page 115 of [20]. Upon letting V1, . . . , Vh be all
the distinct members of D(R, I, M) and upon letting W1, . . . , Wh be their respec-
tive (R, I )-extension to L(Z), it follows that W1, . . . , Wh are distinct DVRs with
E ⊂ W j for 1 ≤ j ≤ h. Note that if M ⊂ radR I then clearly h > 0.

Lemma 6.11. Assume that R is a normal noetherian domain and let I be any nonzero
nonunit normal ideal in R. Then E is a normal noetherian domain with W(R, I )N =
W(R, I ), D(R, I, I ) is a nonempty finite set of DVRs, and upon letting V1, . . . , Vh be
all the distinct members of D(R, I, I ), and upon letting W1, . . . , Wh be their respective
(R, I )-extensions to L(Z), we have that W1, . . . , Wh are distinct DVRs with E ⊂ W j for
1 ≤ j ≤ h.

Moreover, upon letting

P∗
j = E ∩ M(W j ), P̄∗

j = E ∩ (I W j ) and J j = R ∩ (I Vj )

we have that P∗
1 , . . . , P∗

h are all the distinct members of nvspecE (I E) and

htE P∗
j = 1 with EP∗

j
= W j and P̄∗

j is P∗
j -primary.

for i ≤ j ≤ h. Furthermore,

I E = P̄∗
1 ∩ · · · ∩ P̄∗

h

is the unique irredundant primary decomposition of I E in E , and we have

I = J1 ∩ · · · ∩ Jh with J j = R ∩ P̄∗
j for 1 ≤ j ≤ h.

Now assume that Y = x Z and A = R[I x−1] where 0 �= x ∈ R is such that Vj (x) =
Vj (I ) for all j in a nonempty subset 	 of {1, . . . , h}. Then A and B are normal noetherian
domains with A ⊂ Vj and E ⊂ B ⊂ W j for all j ∈ 	. Moreover, upon letting Pj =
A ∩ M(Vj ) with P̄j = A ∩ (I Vj ) and Q j = B ∩ M(W j ) with Q̄ j = B ∩ (I W j ), for all
j �= j ′ in 	 we have

Pj �= Pj ′ with P̄j �= P̄j ′ and Q j �= Q j ′ with Q̄ j �= Q̄ j ′ .

Furthermore, for all j ∈ 	 we have that

x A = I A ⊂ Pj ∈ nvspecA(I A) and x B = I B ⊂ Q j ∈ nvspecB(I B)

and

htA Pj = 1 with APj = Vj and P̄j is Pj -primary

and

htB Q j = 1 with BQ j = W j and Q̄ j is Q j -primary
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and

Pj B = Q j = P∗
j B with Pj = A ∩ Q j and P∗

j = E ∩ Q j

and

P̄j B = Q̄ j = P̄∗
j B with P̄j = A ∩ Q̄ j and P̄∗

j = E ∩ Q̄ j .

Finally, if for all l ∈ {1, . . . , h} \ 	 we have Vl(x) �= Vl(I ), then

I A = ∩ j∈	 P̄j and I B = ∩ j∈	 Q̄ j

are the unique irredundant primary decompositions of I A and I B in A and B respec-
tively, and we have

nvspecA(I A) = {Pj : j ∈ 	} and nvspecB(I B) = {Q j : j ∈ 	}.

Proof. By (8.1)(VI) of [13] and the above Lemma 6.9(III) we see that E is a normal
noetherian domain with W(R, I )N = W(R, I ), D(R, I, I ) is a nonempty finite set
of DVRs, and upon letting V1, . . . , Vh be all the distinct members of D(R, I, I ), and
upon letting W1, . . . , Wh be their respective (R, I )-extensions to L(Z), we have that
W1, . . . , Wh are distinct DVRs with E ⊂ W j for 1 ≤ j ≤ h.

For 1 ≤ j ≤ h, let

P∗
j = E ∩ M(W j ), P̄∗

j = E ∩ (I W j ) and J j = R ∩ (I Vj )

but let us postpone considering the rest of the second paragraph.
Turning to the third paragraph: Now assume that Y = x Z and A = R[I x−1] where

0 �= x ∈ R is such that Vj (x) = Vj (I ) for all j in a nonempty subset 	 of {1, . . . , h}.
Then for all j ∈ 	 we clearly have A ⊂ Vj and hence B ⊂ W j . For all j ∈ 	, let

Pj = A ∩ M(Vj ) with P̄j = A ∩ (I Vj )

and

Q j = B ∩ M(W j ) with Q̄ j = B ∩ (I W j ).

Given any j ∈ 	, by taking V = Vj in (6.9) we see that

M∗ is a multiplicative set in E with EM∗ = B and E ⊂ B ⊂ W j (1)

and
{

Pj = A ∩ Q j ∈ spec(A) with Q ∈spec(B) and P∗
j = E ∩ Q ∈ spec(E)

and Pj B = Q j = P∗
j B with htA Pj = htB Q j = htE P∗

j = 1.

(2)

Since E is a normal noetherian domain, by (1) we see that B is also a normal noetherian
domain. Now B = A[Y, Y −1] tells us that QF(A) = L ⊂ L(Y ) = QF(B) with L ∩ B =
A, and hence the normality of B yields the normality of A. Thus

all the three rings A, B, E are normal noetherian domains. (3)
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By (2) and (3) we see that for all j ∈ 	 we have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x A = I A ⊂ Pj ∈ nvspecA(I A),

x B = I B ⊂ Q j ∈ nvspecB(I B),

P∗
j ∈ nvspecE (I E),

APj = Vj and BQ j = EP∗
j

= W j .

(4)

By the last line of (4) we see that for all j �= j ′ in 	 we have

Pj �= Pj ′ , Q j �= Q j ′ and P∗
j �= P∗

j ′ . (5)

If p, p̄ is a prime-primary pair (i.e., if p is a prime ideal and p̄ is a p-primary ideal) in
a ring, then their contractions q, q̄ to a subring constitute a prime-primary pair in that
subring; moreover, every nonzero nonunit ideal in a DVR is primary for the maximal
ideal; consequently, for all j ∈ 	,

{
the ideals P̄j , Q̄ j , P̄∗

J are Pj -primary, Q j -primary,

P∗
j -primary ideals in A, B, E respectively

(6)

and, because ideals which are primary for distinct prime ideals are obviously distinct, by
(5) we see that for all j �= j ′ in 	 we have

P̄j �= P̄j ′ , Q̄ j �= Q̄ j ′ and P̄∗
j �= P̄∗

j ′ . (7)

In view of (2)–(7) together with (T82) on page 355 of [4], the equation W(R, I )N =
W(R, I ) implies that

⎧
⎪⎨

⎪⎩

if for all l ∈ {1, . . . , h} \ 	 we have Vl(x) �= Vl(I ),

then nvspecA(I A) = {Pj : j ∈ 	} and I A = ∩ j∈	 P̄j

is the unique irredundant primary decomposition of I A in A.

(8)

In view of (2)–(8) together with (T17) on page 145 and (T30) on page 235 of [4], the
equation B = A[Y ]M∗ tells us that

⎧
⎪⎨

⎪⎩

if for all l ∈ {1, . . . , h} \ 	 we have Vl(x) �= Vl(I )

then nvspecB(I B) = {Q j : j ∈ 	} and I A = ∩ j∈	 Q̄ j

is the unique irredundant primary decomposition of I B in B.

(9)

Thus we have proved everything in the third paragraph.
Now let us prove the assertion in the second paragraph which says that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P∗
1 , . . . , P∗

h are all the distinct members of nvspecE (I E),

htE P∗
j = 1 with EP∗

j
= W j and P̄∗

j is P∗
j -primary for i ≤ j ≤ h,

I E = P̄∗
1 ∩ · · · ∩ P̄∗

h

is the unique irredundant primary decomposition of I E in E

(†)

and

I = J1 ∩ · · · ∩ Jh with J j = R ∩ P̄∗
j for 1 ≤ j ≤ h. (‡)
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Recall that R ⊂ E are normal noetherian domains and for 1 ≤ j ≤ h we have

{
E ⊂ W j with P∗

j = E ∩ M(W j ) and P̄∗
j = E ∩ (I W j )

and R ⊂ Vj with J j = R ∩ (I Vj ).
(1∗)

Given any j with 1 ≤ j ≤ h, we can clearly find 0 �= x ∈ I with Vj (x) = Vj (I ), and then
upon taking Y = x Z and A = R[I x−1] with 	 = { j}, by (2), (3), (4) and (6) we see that

{
P∗

j ∈ nvspecE (I E) with htE P∗
j = 1 and EP∗

j
= W j

and P̄∗
j is a P∗

j -primary ideal in E .
(2∗)

In (‡) it is clear that I ⊂ J1 ∩ · · ·∩ Jh with J j = R ∩ P̄∗
j for 1 ≤ j ≤ h. We shall show

that J1 ∩ · · · ∩ Jh ⊂ I and this will complete the proof of (‡). Since I is a complete ideal
in the normal noetherian domain R, by definition we have

I = ∩V ∈D̄(L/R)(R ∩ I (V )),

where for each V ∈ D̄(L/R), I (V ) is some ideal in V ; recall that D̄(L/R) = the set of
all valuation rings V with QF(V ) = L and R ⊂ V . It follows that

I = ∩V ∈D̄(L/R)(R ∩ (I V )).

Given any V ∈ D̄(L/R) with I ⊂ M(V ) we shall show that J1 ∩ · · · ∩ Jh ⊂ R ∩ (I V )

and this will complete the proof of (‡). We may assume that Y = x Z and A = R[I x−1]
where 0 �= x ∈ R is such that V (x) = V (I ). Then A ⊂ V and x A = I A ⊂ A ∩
(I V ). Since W(R, I )N = W(R, I ), it follows that Vj (x) = Vj (I ). So we may assume
that 	 = { j : 1 ≤ j ≤ h and Vj (x) = Vj (I )}. By (8) we have I A = ∩ j∈	 P̄j and
hence

∩ j∈	 P̄j ⊂ A ∩ (I V ).

By definition P̄j = A ∩ (I Vj ) and clearly ∩1≤ j≤h(A ∩ (I Vj )) ⊂ ∩ j∈	(A ∩ (I Vj ));
therefore by the above display we get

∩1≤ j≤h(A ∩ (I Vj )) ⊂ A ∩ (I V ).

Intersecting both sides with R we conclude that J1 ∩· · ·∩ Jh ⊂ R ∩ (I V ). This completes
the proof of (‡). Since I is a normal ideal, for every n ∈ N, the ideal I n+1 is a normal
ideal; consequently by (‡) we see that for every n ∈ N we have

I n+1 = ∩1≤ j≤h
(
R ∩ (

I n+1Vj
))

. (‡n)

Given any f ∈ ∩1≤ j≤h P̄∗
j , by using (‡n) we shall show that f ∈ I E and, in view of

(1*) and (2*), this will prove (†) which will complete the proof of Lemma 6.11. By (4.1)
we can express f as a finite sum f = ∑

n∈N
fn Zn with fn ∈ I n . By the definition of W j

as the (R, I )-extension of Vj we see that P̄∗
j is a homogeneous ideal in the homogeneous

ring E ; alternatively this follows because P̄∗
j = E ∩ (I EP∗

j
) = the primary component

of the homogeneous ideal I E with respect to its minimal prime P∗
j . Therefore fn Zn ∈
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∩1≤ j≤h P̄∗
j for all n ∈ N, and it suffices to show that for every n ∈ N we have fn Zn ∈ I E .

Assuming fn �= 0, for 1 ≤ j ≤ h we clearly have

fn Zn ∈ P̄∗
j ⇒ W j

(
fn Zn) ≥ Vj (I )

with

W j
(

fn Zn) = Vj ( fn) − nVj (I )

and hence

fn Zn ∈ P̄∗
j ⇒ Vj ( fn) − nVj (I ) ≥ Vj (I ) ⇒ Vj ( fn) ≥ (n + 1)Vj (I )

= Vj (I n+1).

Therefore

fn Zn ∈ ∩1≤ j≤h P̄∗
j ⇒ fn ∈ ∩1≤ j≤h

(
R ∩ (

I n+1Vj
))

and hence by (‡n) we conclude that

fn Zn ∈ ∩1≤ j≤h P̄∗
j ⇒ fn ∈ I n+1

and clearly

fn ∈ I n+1 ⇒ fn Zn ∈ I E .

Remark 6.11a. Alternatively, the normality of A and B can be seen thus. A is normal
because V(A) is an affine piece of the normal variety W(R, I ). Therefore B is normal
because it is a localization of A[Y ].

DEFINITION–OBSERVATION 6.12

For any nonunit ideal J in a ring S and any nonnegative integer i we define the depth i
portion of nvspecS J by putting

(nvspecS J )i = {P ∈ nvspecS J : dptS J = i}.
To use the above definition, referring to pages 206–215 and 399–408 of [4] for the

details of the theory of homogeneous rings and irrelevant ideals, let

F =
∑

n∈N

Fn

be a homogeneous ring over a field F0 with [F1 : F0] < ∞. As usual, let


(F) = F1 F =
∑

n∈N+

Fn = the unique homogeneous maximal ideal in F

and let


̄(F) = ∪n∈N+ Fn .
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Recall that a nonunit homogeneous ideal G in F is irrelevant means 
(F) ⊂ radF G, i.e.,
equivalently, 
(F) = radF G. Note that dim(F) ∈ N and for any nonunit homogeneous
ideal G in F we have dim(F/G) ∈ N with dim(F/G) ≤ dim(F).

Now given any nonunit homogeneous ideal G in F , upon letting dim(F/G) = e, let us
prove the following Observations (I)–(VI):

(I) F is integral over F0[G] ⇔ G is irrelevant ⇔ e = 0.
(II) ∅ �= (nvspecF G)e ⊂ nvspecF G. If e ≤ 1 then (nvspecF G)e = nvspecF G.

(III) For any y ∈ 
̄(F) we have dim(F/(G ∪ {y})F) = e − 1 ⇔ y �∈ P for all P ∈
(nvspecF G)e.

(IV) For any y ∈ 
̄(F) we have dim(F/(G ∪ {y})F) ≥ e − 1.
(V) For any elements y1, . . . , ye in 
̄(F), upon letting Gi = (G ∪ {y1, . . . , yi })F for

0 ≤ i ≤ e, the following conditions (1) to (4) are mutually equivalent.

(1) For 1 ≤ i ≤ e we have dim(F/Gi ) = e − i .
(2) For 1 ≤ i ≤ e we have dim(F/Gi ) ≤ e − i .
(3) For 1 ≤ i ≤ e we have yi �∈ P for all P ∈ (nvspecF Gi−1)e−i+1.
(4) For 1 ≤ i ≤ e we have yi �∈ P for all P ∈ Ĝi−1, where Ĝi−1 = nvspecF Gi−1

or Ĝi−1 = (nvspecF Gi−1)e−i+1 according as i = e or i �= e.

(VI) There exist elements z1, . . . , ze in Fs for some s ∈ N+ such that upon letting

Ge = (G ∪ {z1, . . . , ze})F

we have that dim(F/Gi ) = 0 and F is integral over F0[Ge]. Moreover, if F0 is
infinite then we can take s = 1.

Proof. Let us observe that the associated primes of any homogeneous ideal are homoge-
neous, and F1 F is the only maximal ideal in F which is homogeneous.

Now (I) follows from (T104) on page 401 of [4]. The proofs of (II) and (III) are
straightforward.

To prove (IV), consider the homogeneous ring F∗ = F/G. Also consider the homo-
geneous ring F ′ = F/(G ∪ {y})F and let dim(F ′) = e′. By the homogeneous noether
normalization theorem (T106) on page 408 of [4], we can find elements z1, . . . , ze′ in

̄(F) whose images z′

1, . . . , z′
e′ in F ′ are such that F ′ is integral over F ′

0[z′
1, . . . , z′

e′ ].
By (I) we see that (z′

1, . . . , z′
e′)F ′ is an irrelevant ideal in F ′, and hence upon let-

ting y∗, z∗
1, . . . , z∗

e′ be the respective images of y, z1, . . . , ze′ in F∗ it follows that
(y∗, z∗

1, . . . , z∗
e′)F∗ is an irrelevant ideal in F∗. Therefore, again by (I), F∗ is integral over

F∗
0 [y∗, z∗

1, . . . , z∗
e′ ]. Consequently, say by (O10), (O11), (T45), (T47) on pages 110, 111,

247, 250 of [4], we get 1 + e′ ≥ e and hence e′ ≥ e − 1.
Turning to (V), by (IV) we get (1) ⇔ (2), by (III) we get (1) ⇔ (3), and by (II) and

(III) we get (1) ⇔ (4).
To prove (VI), again consider the homogeneous ring F∗ = F/G. Now by the normal-

ization theorem (T46) and the homogeneous normalization theorem (T106) respectively
on pages 248 and 408 of [4], we can find elements z1, . . . , ze in Fs for some s ∈ N+,
where we can take s = 1 in case F0 is infinite, such that upon letting z∗

1, . . . , z∗
e be their

respective images in F∗ we have that F∗ is integral over F∗
0 [z∗

1, . . . , z∗
e ]. By (I) it follows

that (z∗
1, . . . , z∗

e )F∗ is an irrelevant ideal in F∗. Therefore

Ge = (G ∪ {z1, . . . , ze})F
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is an irrelevant ideal in F . Therefore by (I) we conclude that dim(F/Ge) = 0 and F is
integral over F0[Ge].

Lemma 6.13. Let the assumptions be as in (6.11). Also assume that R is a d-dimensional
normal local domain with M = M(R), and I is a nonzero normal M-primary ideal in R.
Let

F = FR(I ) = E/M E =
∑

n∈N

Fn = the form ring of I

and let

μn : I n → Fn with ker(μn) = M I n

be the canoninal R-epimorphism. For 1 ≤ j ≤ h let

Q′
j = μ1

(
P∗

j

)
and P ′

j = Q′
j F.

Also let

	′ = { j : 1 ≤ j ≤ h and dptE P∗
j = d}.

Then we have the following:

(I) P∗
1 , . . . , P∗

h are all the distinct members of nvspecE (M E) and we have

htE P∗
1 = · · · = htE P∗

h = 1

and

max
(
dptE P∗

1 , . . . , dptE P∗
h

) = d = dim(E) − 1.

(II) P ′
1, . . . , P ′

h are all the distinct members of nvspecF {0} and we have

htF P ′
1 = · · · = htF P ′

h = 0

and

max
(
dptF P ′

1, . . . , dptF P ′
h

) = d = dim(F).

Also we have

	′ = {
j : 1 ≤ j ≤ h and dptF P ′

j = d
}
.

(III) Given any j ∈ {1, . . . , h} and any x ∈ I we have

Vj (x) = Vj (I ) ⇔ x Z �∈ P∗
j ⇔ μ1(x) �∈ P ′

j .

(IV) Given any elements x1, . . . , xd in I let y1 = μ1(x1), . . . , yd = μ1(xd). Then
y1, . . . , yd are elements in F1 and we have

(x1, . . . , xd)R is a reduction of I ⇔ F is integral over F0[y1, . . . , yh].
(V) If x1, . . . , xd are elements in I such that (x1, . . . , xd)R is a reduction of I then for

1 ≤ i ≤ d we have Vj (xi ) = Vj (I ) for all j ∈ 	′.
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(VI) If d = 1, then h = 1 and 	′ = {1}.
(VII) If d = 2, then 	′ = {1, . . . , h}.

(VIII) If d = 1, then for any x1 ∈ I we have that

V1(x) = V1(I ) ⇔ x1 R is a reduction of I.

(IX) If R/M is infinite then there exist elements x1, . . . , xd in I such that (x1, . . . , xd)R
is a reduction of I .

(X) If R/M is infinite and x1 ∈ I is such that Vj (x1) = Vj (I ) for all j ∈ 	′ then there
exist elements x2, . . . , xd in I such that (x1, . . . , xd)R is a reduction of I .

(XI) Given any j ∈ {1, . . . , h} there exists x ′
j ∈ I such that Vj (x ′

j ) = Vj (I ). If R/M is
infinite then there exists x1 ∈ I such that Vj (x1) = Vj (I ) for 1 ≤ j ≤ h.

Proof. By Lemma 6.11, we know that

htE P∗
1 = · · · = htE P∗

h = 1

and P∗
1 , . . . , P∗

h are all the distinct members of nvspecE (I E). Since I is M-primary, it
follows that P∗

1 , . . . , P∗
h are all the distinct members of nvspecE (M E). By (6.4) of [13]

we also have dim(F) = d and hence we get (II). Now it follows that

max
(
dptE P∗

1 , . . . , dptE P∗
h

) = d ≥ dim(E) − 1.

So to complete the proof of (I) and (II) we only need to show that dim(E) ≤ dim(R) + 1.
But this follows from the Multiple Ring Extension Lemma (T55) on page 269 of [4] by
noting that E is an affine domain over R and transcendence degree of QF(E) over the
quotient field of R is 1.

The second implication in (III) follows from the fact that μ1(x) is the image of x Z
under the residue class epimorphism E → F . The first implication of (III) follows by
noting that for 0 �= x ∈ I we clearly have

Vj (x) = Vj (I ) ⇔ Vj (x) ≤ Vj (I )

and

x Z �∈ P∗
j ⇔ W j (x Z) ≤ 0

and

W j (x Z) = Vj (x) − W j (Z) = Vj (x) − Vj (I ).

(IV) follows from (6.1) of [13].
In view of Definition–Observation 6.12, assertions (V) to (X) follow from assertions (I)

to (IV) where we note that: in proving (IX) we take G = {0}F in Definition–Observation
6.12(VI), while in proving (X) we take G = μ1(x1)F in Definition–Observation 6.12(VI).

The first part of (XI) is obvious, and from it to deduce the second part, assume that the
field R/M is infinite. Let x1 = a1x ′

1 +· · ·+ah x ′
h where a1, . . . , ah in R are to be chosen.

For any a ∈ R, let ā be its image in R/M . Clearly Vj (x1) > Vj (I ) ⇔ (ā1, . . . , āh)

belongs to a certain proper subspace K j of (R/M)h . The infiniteness of R/M implies that
K1 ∪ · · · ∪ Kh �= (R/M)h and it suffices to take a1, . . . , ah to be such that (ā1, . . . , āh) �∈
K1 ∪ · · · ∪ Kh .



282 Shreeram S Abhyankar and William J Heinzer

Without assuming R/M to be infinite, we shall now prove the following variation of
parts (IX)–(XI) of (6.13).

Lemma 6.14. Let the assumptions be as in Lemma 6.13. Then, without assuming R/M
to be infinite, we have the following.

(I) Given any r ∈ N+, there exist elements x1, . . . , xd in I rs for some s ∈ N+ such that,
for every t ∈ N+, (xt

1, . . . , xt
d)R is a reduction of I rst .

(II) If r ∈ N+ and x1 ∈ I r are such that Vj (x1) = Vj (I r ) for all j ∈ 	′ then there
exist elements x2, . . . , xd in I rs for some s ∈ N+ such that, for every t ∈ N+,
(xst

1 , xt
2, . . . , xt

d)R is a reduction of I rst .
(III) Given any r ∈ N+, there exist s ∈ N+ and x1 ∈ I rs such that Vj (x1) = Vj (I rs) for

all j ∈ 	′.

Proof. Given any q ∈ N+, clearly I q is a nonzero normal M-primary ideal in R
with W(R, I q) = W(R, I ). It follows that V1, . . . , Vh are all the distinct members of
D(R, I q , I q). Moreover

E (q) = ER(I q) ⊂ ER(I ) = E

and W1, . . . , Wh are the respective (R, I q)-extensions of V1, . . . , Vh . Furthermore

P(q)
j = E (q) ∩ P∗

j = E (q) ∩ M(W j ) ∈ spec
(
E (q)

)
with htE (q) P(q)

j = 1

for 1 ≤ j ≤ h, and the prime ideals P(q)

1 , . . . , P(q)
h are all the distinct members of

nvspecE (q) (I q E (q)). Finally 	′ = { j : 1 ≤ j ≤ h and dptE (q) P(q)
j = d}. Note that the

above two displays include the definitions of the symbols E (q) and P(q)
j . Let

F (q) = FR(I q) = E (q)/M E (q) =
∑

n∈N

F (q)
n = the form ring of I q

and let

μ
(q)
n : I n → F (q)

n with ker
(
μ

(q)
n

) = M I n

be the canonical R-epimorphism. Applying (4.1) to E and E (q) we see that

M E (q) = E (q) ∩ (M E)

and hence, upon letting

ψ(q) : E (q) → E

be the inclusion monomorphism and

ν : E → F and ν(q) : E (q) → F (q)
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be the residue class epimorphisms, there exists a unique monomorphism

φ(q) : F (q) → F

such that

φ(q)ν(q) = νψ(q).

Note that the restriction of ψ(q) to E (q)
n gives an isomorphism E (q)

n → Enq , and the

restriction of φ(q) to F (q)
n gives an isomorphism F (q)

n → Fnq ; these isomorphisms are
the foundation of the Veronese embedding expounded on pages 263–283 of [3]; let it be
recorded that Veronese was the param-param-guru of Abhyankar whose guru Zariski was
a pupil of Castelnuovo whose guru was Veronese; going back one step further, Cremona
was the guru of Veronese; this makes Cremona Abhyankar’s param-param-param-guru.
The commutative diagram

Enq −−−−→ E
ν−−−−→ F ←−−−− Fnq

�⏐⏐ ψ(q)

�⏐⏐ φ(q)

�⏐⏐
�⏐⏐

E (q)
n −−−−→ E (q) ν(q)−−−−→ F (q) ←−−−− F (q)

n

exhibits various maps which we have discussed.
The above observations will be used tacitly.
In proving (I) to (III) we shall assume that r = 1; the general case will then follow by

taking I r for I .
To prove (I) and (II), by Definition–Observation 6.12(VI) we can find elements

z1, . . . , zd in Fs for some s ∈ N+ such that the ring F is integral over the subring
F0[z1, . . . , zd ], where in case of (I) we take G = {0}F , while in the case of (II) we take
G = μ1(x1) and z1 = μ1(x1)

s . Using the monomorphism φ(s) we get unique elements
y1, . . . , yd in F (s)

1 such that φ(s)(y1) = z1, . . . , φ
(s)(yd) = zd , and then the ring F (s)

is clearly integral over the subring F (s)
0 [y1, . . . , yd ]. In case of (I) we can take elements

x1, . . . , xd in I s such that μ
(s)
1 (x1) = y1, . . . , μ

(s)
1 (xd) = yd , while in the case of (II) we

can take elements x2, . . . , xd in I s such that μ
(s)
1 (x2) = y2, . . . , μ

(s)
1 (xd) = yd . By (6.13)

we see that, in case of (I), (x1, . . . , xd)R is a reduction of I s , while, in the case of (II),
(xs

1, x2, . . . , xd)R is a reduction of I s . Given any t ∈ N+, using Lemma 6.13(V) and the
monomorphisms φ(s) and φ(st), we conclude that, in the case of (I), (xt

1, . . . , xt
d)R is a

reduction of I st , while, in the case of (II), (xst
1 , xt

2, . . . , xt
d)R is a reduction of I st .

This proves (I) and (II). In view of Lemma 6.13(V), (III) follows from (I).

7. Extended Rees rings

An alternative way of approaching parts of (6.11)–(6.14) is provided by the theory of
extended Rees rings. To introduce these rings, let I be an ideal in a nonnull ring R. The
extended Rees ring ÊR(I ) of I relative to R with variable Z is defined by putting

ÊR(I ) = R
[
Z−1, I Z

] =
∑

n∈Z

ÊR(I )n
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which makes it Z-graded = an integrally graded ring. Note that ER(I ) is a graded subring
of ÊR(I ) and we have

ÊR(I )n =
{

{gZn : g ∈ R}, if n < 0,

{gZn : g ∈ I n} = ER(I )n, if n ≥ 0.

At any rate, every f ∈ ÊR(I ) can uniquely be written as a finite sum

f =
∑

n∈Z

fn Zn with fn ∈
{

R, if n < 0,

I n, if n ≥ 0.
(7.1)

Now consider

E = ER(I ) =
∑

n∈N

En ⊂ Ê = ÊR(I ) =
∑

n∈Z

Ên ⊂ R′ = R
[
Z−1, Z

] =
∑

n∈Z

R′
n

and note that

R′ = R− ⊕ R+, where R− =
∑

n∈Z\N

R−
n and R+ =

∑

n∈N

R+
n .

By (4.1) and (7.1) we see that
⎧
⎪⎨

⎪⎩

E ∩ (
Z−1 Ê

) = I E

which induces an isomorphism

Ê/
(
Z−1 Ê

) ≈ E/(I E).

(7.2)

Heuristically speaking, (7.2) says that Z−1 in Ê is sort of a generic element of I , but I Ê
is properly contained in Z−1 E . Indeed by (4.1) and (7.1) we see that

R− ∩ (
Z−1 Ê

) = R− and R+ ∩ (
Z−1 Ê

) = I E (7.3)

i.e., the negative portion of Z−1 Ê equals the entire R−, and the nonnegative portion of
Z−1 Ê equals I E . By (4.1) and (7.1) we also see that

⎧
⎪⎨

⎪⎩

for any homogeneous ideal J in E , upon letting Ĵ = R− ⊕ J ,

Ĵ is a homogeneous ideal in Ê such that

R− ∩ Ĵ = R− and R+ ∩ Ĵ = J.

(7.4)

Taking E = J in (7.4) we get

Ê = R− ⊕ E with R− ∩ Ê = R− and R+ ∩ Ê = E . (7.5)

Let us now prove a lemma about Ê .

Lemma 7.6. Let the assumptions be as in Lemma 6.11. Then Ê is a normal noethe-
rian domain and, upon letting P ′

1, . . . , P ′
h′ be the minimal primes of Z−1 Ê and upon

letting W ′
j = ÊP ′

j
for 1 ≤ j ≤ h′, we have the following. (Note that, by Krull normality

lemma (T82) on page 355 of [4], all associated primes of Z−1 Ê are minimal and have
height one.)
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(I) Upon letting M ′ be the multiplicative set {1, Z−1, Z−2, . . . } in Ê we have

ÊM ′ = R
[
Z−1, Z

]
and hence Ê = R

[
Z−1, Z

] ∩ W ′
1 ∩ · · · ∩ W ′

h′ .

(II) h = h′ and, after a suitable (obviously unique) relabelling, for 1 ≤ j ≤ h we have

P ′
j = P̂∗

j and W ′
j = W j .

Proof. The Krull normality lemma (T82) on page 355 of [4] gives us (I). Since
P ′

1, . . . , P ′
h′ are the minimal primes of Z−1 Ê in Ê and P∗

1 , . . . , P∗
h are the minimal primes

of I E in E , by (7.2) and (7.4) we see that h′ = h and after a suitable relabelling we have
P ′

j = P̂∗
j for 1 ≤ j ≤ h. Now, since ÊP ′

j
= W ′

j and Ê ⊂ EP∗
j

= W j , we get W ′
j = W j

for 1 ≤ j ≤ h.

Remark 7.6a. The purport of Lemma 7.6 is that we can either first get the P ′
j and the

W ′
j and then obtain W j and P∗

j satisfying (6.11), or we can first do (6.11) and then get

hold of the P ′
j and the W ′

j belonging to Ê by tacking on the negative piece R−. The ideal

Z−1 Ê contains R− and is hence quite powerful.

8. Dicriticals of two dimensional regular local domains

We are now ready to reap the harvest from the work done in the previous sections.
Let R be a d-dimensional local domain with quotient field L , let I be a nonzero ideal in

R with I ⊂ M = M(R), let Z be an indeterminate over the quotient field L of R, and let

E = ER(I ) = R[I Z ] = the Rees ring of I relative to R with variable Z .

Let

D(R, I ) = (
W(R, I )�1

)N = the set of all dicritical divisors of I in R.

From Definition–Observation 6.12(III) recall that D(R, I ) is a finite set of DVRs; upon
letting V1, . . . , Vh to be all the distinct members of D(R, J ), and upon letting W1, . . . , Wh

be their respective (R, I )-extensions to L(Z), we have that W1, . . . , Wh are distinct DVRs
with E ⊂ W j for 1 ≤ j ≤ h; for the definition of (R, I )-extension see the second
paragraph of §6; note that if I is M-primary then h > 0. Let

P∗
j = E ∩ M(W j ) ∈ spec(E) for 1 ≤ j ≤ h

and let

	′ = { j : 1 ≤ j ≤ h and dptE P∗
j = d}.

Theorem 8.1. Assuming that R is a d-dimensional normal local domain and I is a
nonzero normal M-primary ideal in R, we have the following:

(I) P∗
1 , . . . , P∗

h are all the distinct members of nvspecE (M E) and we have

htE P∗
1 = · · · = htE P∗

h = 1
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and

max
(
dptE P∗

1 , . . . , dptE P∗
h

) = d = dim(E) − 1.

(II) Given any j ∈ {1, . . . , h} and any x ∈ I we have

Vj (x) = Vj (I ) ⇔ x Z �∈ P∗
j .

(III) If x1, . . . , xd are elements in I such that (x1, . . . , xd)R is a reduction of I then for
1 ≤ i ≤ d we have Vj (xi ) = Vj (I ) for all j ∈ 	′.

(IV) If d = 1, then h = 1 and 	′ = {1}. If d = 2, then 	′ = {1, . . . , h}.
(V) If d = 1, then for any x1 ∈ I we have that

V1(x) = V1(I ) ⇔ x1 R is a reduction of I.

(VI) Given any r ∈ N+, there exist elements x1, . . . , xd in I rs for some s ∈ N+ such
that, for every t ∈ N+, (xt

1, . . . , xt
d)R is a reduction of I rst .

(VII) If r ∈ N+ and x1 ∈ I r are such that Vj (x1) = Vj (I r ) for all j ∈ 	′ then there
exist elements x2, . . . , xd in I rs for some s ∈ N+ such that, for every t ∈ N+,
(xst

1 , xt
2, . . . , xt

d)R is a reduction of I rst .
(VIII) Given any r ∈ N+, there exist s ∈ N+ and x1 ∈ I rs such that Vj (x1) = Vj (I rs)

for all j ∈ 	′.
(IX) If R/M is infinite then there exist elements x1, . . . , xd in I such that (x1, . . . , xd)R

is a reduction of I .
(X) If R/M is infinite and x1 ∈ I is such that Vj (x1) = Vj (I ) for all j ∈ 	′ then there

exist elements x2, . . . , xd in I such that (x1, . . . , xd)R is a reduction of I .
(XI) Given any j ∈ {1, . . . , h} there exists x ′

j ∈ I such that Vj (x ′
j ) = Vj (I ). If R/M is

infinite then there exists x1 ∈ I such that Vj (x1) = Vj (I ) for 1 ≤ j ≤ h.

Proof. By Definition–Observation 6.12 and Lemmas 6.13 and 6.14, we are done.

Remark 8.1a. The form ring FR(I ) was used as a tool in proving Theorems 8.1 and
8.2 but does not explicitly appear in their statements. Similarly, the Rees ring ER(I ) was
used as a tool in proving these theorems and does appear in their statements, but it is not
referred to in parts (V), (VI), (IX), (X), (XI) of Theorem 8.1 and in parts (V)–(XI) of
Theorem 8.2 below; in this list we can include part (VII) of Theorem 8.1 by changing the
phrase “for all j ∈ 	′ then” by the phrase “for 1 ≤ j ≤ h then”.

Theorem 8.2. Either assume that R is a two dimensional regular local domain and I is
a complete M-primary ideal in R, or assume that R is a two dimensional normal local
domain and I is a normal M-primary ideal in R. Then we have the following:

(I) P∗
1 , . . . , P∗

h are all the distinct members of nvspecE (M E) and we have

htE P∗
1 = · · · = htE P∗

h = 1.

(II) Given any j ∈ {1, . . . , h} and any x ∈ I we have

Vj (x) = Vj (I ) ⇔ x Z �∈ P∗
j .
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(III) If x1, x2 are elements in I such that (x1, x2)R is a reduction of I then for 1 ≤ i ≤ 2
and 1 ≤ j ≤ h we have Vj (xi ) = Vj (I ).

(IV) We have

dptE P∗
1 = · · · = dptE P∗

h = 2.

(V) We have dim(E) = 3.
(VI) Given any r ∈ N+, there exist elements x1, x2 in I rs for some s ∈ N+ such that,

for every t ∈ N+, (xt
1, xt

2)R is a reduction of I rst .
(VII) If r ∈ N+ and x1 ∈ I r are such that Vj (x1) = Vj (I r ) for 1 ≤ j ≤ h then there

exists x2 ∈ I rs for some s ∈ N+ such that, for every t ∈ N+, (xst
1 , xt

2)R is a
reduction of I rst .

(VIII) Given any r ∈ N+, there exist s ∈ N+ and x1 ∈ I rs such that Vj (x1) = Vj (I rs)

for 1 ≤ j ≤ h.
(IX) If R/M is infinite then there exist elements x1, x2 in I such that (x1, x2)R is a

reduction of I .
(X) If R/M is infinite and x1 ∈ I is such that Vj (x1) = Vj (I ) for 1 ≤ j ≤ h then

there exists x2 ∈ I such that (x1, x2)R is a reduction of I .
(XI) Given any j ∈ {1, . . . , h} there exists x ′

j ∈ I such that Vj (x ′
j ) = Vj (I ). If R/M is

infinite then there exists x1 ∈ I such that Vj (x1) = Vj (I ) for 1 ≤ j ≤ h.

Proof. Zariski’s theorem (2′) on page 385 of Volume II of [22] tells us that if R is a two
dimensional regular local domain then every complete M-primary ideal in R is a normal
ideal in R. Consequently by Theorem 8.1, we are done.

Remark 8.2a. Proposition (3.5) of [11] says the following:

(†) Assume that R is a two dimensional regular local domain. For any V, W in D(R)�

let c(R, V, W ) = ordV ζR(W ), i.e., c(R, V, W ) = min{ordV θ : θ ∈ ζR(W )}. Let
J be a special primary pencil at R and assume that J = (a, b)R where b = ηm

with η ∈ M(R) \ M(R)2 and m ∈ N+. Let D(R, J ) = U . Then clearly there exists
n(W ) ∈ N+ for all W ∈ U such that

I =
∏

W∈U

ζR(W )n(W ) (•)

is the integral closure of J in R, and hence

m ordV η =
∑

W∈U

n(W )c(R, V, W ) for all V ∈ U . (••)

As said in the Introductory Note (3.5)(0) of [11], the proof of (†) is contained in
its statement. Now by Theorem 8.2 we get the converse of (†) stated below.

(‡) Assume that R is a two dimensional regular local domain. For any V, W in D(R)�

let c(R, V, W ) = ordV ζR(W ), i.e., c(R, V, W ) = min{ordV θ : θ ∈ ζR(W )}. Given
any nonempty finite U ⊂ D(R)�, let I be the complete M-primary ideal in R given
by (•) with n(W ) ∈ N+. Then we have the following:

(1) There exists b ∈ I s for some s ∈ N+ such that for all V ∈ U we have V (b) =
V (I s); given any such b and s, their exists a ∈ I st for some t ∈ N+ such that the
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pencil J = (a, bt )R is a reduction of I st . Moreover, if R/M is infinite then we
can take s = t = 1.

(2) If b = ηm with η ∈ M(R) \ M(R)2 and m ∈ N+ are such that (••) is satisfied,
then there exists a ∈ I t for some t ∈ N+ such that the special pencil J = (a, bt )R
is a reduction of I t . Moreover, if R/M is infinite then we can take t = 1.

Example 8.3. We can ask the question: if R is a two dimensional normal local domain,
then what is the cardinality of D(R, M)? The answer is that it can be any preassigned
positive integer n. To see this let K be a field and consider the polynomial

g(X, Y, Z) = Zm − f1(X, Y ) . . . fn(X, Y ) ∈ K [X, Y, Z ],
where m > n > 0 are integers such that m is nondivisible by the characteristic of K ,
and f1(X, Y ), . . . , fn(X, Y ) are pairwise coprime homogeneous linear polynomials; for
instance g(X, Y, Z) = Z3 − XY . Clearly g = g(X, Y, Z) is irreducible in the polynomial
ring B = K [X, Y, Z ]. Let

φ : B → B/gB = A = K [x, y, z]
be the residue class epimorphism where we have identified K with φ(K ) and we have
let x = φ(X), y = φ(Y ), z = φ(Z). Upon letting R = A(x,y,z)A it can easily be seen
that R is a two dimensional normal local domain with coefficient field K and maximal
ideal M = M(R) = (x, y, z)R. We claim that now D(R, M) has exactly n elements.
Geometrically speaking, a section of the tangent cone of the surface g = 0 at (0, 0, 0)

consists of n lines f1(X, Y ) = 0, . . . , fn(X, Y ) = 0 in the (X, Y )-plane passing through
(0, 0), and they give rise to n elements of D(R, M). Algebraically it can be showed that
D(R, M) has exactly n elements thus. Let

A′ = R
[
x ′, y′], where x ′ = x/z and y′ = y/z.

Now

zm−n − f1
(
x ′, y′) . . . fn

(
x ′, y′) = 0

and hence, upon letting Pi = (z, fi (x ′, y′))A′ for 1 ≤ i ≤ n, we see that P1, . . . , Pn are
exactly all the distinct height-one prime ideals in A′ which contain M A′ = z A′ and the
localizations of A′ at them are exactly all the distinct members of D(R, M).

Remark 8.3a. Turning to a two dimensional regular local domain, let us cite some of the
things that have been achieved.

(1) In the joint paper of Abhyankar and Heinzer [13], the following existence theorem of
dicritical divisors is proved: Let R be a two dimensional regular local domain with
quotient field L . Let U be any finite set of prime divisors of R. Then there exists
z ∈ L× such that D(R, z) = U . Moreover, if the field R/M(R) is infinite then there
exists z ∈ L× such that D(R, z)� = D(R, z)� = D(R, z) = U .

(2) In the joint paper of Abhyankar and Luengo [14], the following fundamental theorem
of special pencils is proved: Let R be a two dimensional regular local domain with
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quotient field L . Let z ∈ L× be such that z generates a special pencil at R. Then z
generates a polynomial pencil in R.

(3) In Notes (3.5)(I)–(3.5)(IV) of [11], concrete examples are given to illustrate the above
Remark 8.2a.

(4) In Propositions (4.1)–(4.3) of [10] and Propositions (3.1)–(3.4) of [11], the sets

B(R, J )� ⊂ B(R, J )� ⊂ B(R, J ) ⊂ Q(R, J ) ⊂ Q(R)

of a special pencil J in a two dimensional regular local domain R, mentioned at the
end of §5, are studied.

9. Dicriticals of higher dimensional local domains

Lemmas 6.11, 6.13 and 6.14 of §6 together with Theorem 8.1 of §8 constitute the initiation
of the higher dimensional dicritical theory mentioned in the Introduction. Here is a scheme
of how this is expected to be used in attacking the higher dimensional Jacobian conjecture;
for a recent work on this conjecture, see [5–7].

Geometrically speaking, the possible relationship between dicritical divisors and the
Jacobian conjecture which is to be exploited may be described thus. A polynomial map
from C

n to C
n is given by

Y1 = f1(X1, . . . , Xn), . . . , Yn = fn(X1, . . . , Xn),

where X1, . . . , Xn are coordinates in the source C
n and Y1, . . . , Yn are coordinates in the

target C
n . For 1 ≤ j ≤ n we have the polynomial map

f j (X1, . . . , Xn) : C
n → C

1.

Going over to projective spaces we get the corresponding rational map

φ j (X1, . . . , Xn) : P
n → P

1.

Let Z1, . . . , Zn be local coordinates at a point π ∈ P
n \ C

n and let R be the local ring
of π on P

n . Then R is an n-dimensional regular local domain with maximal ideal M =
M(R) = (Z1, . . . , Zn)R and

φ(X1, . . . , Xn) = a j (Z1, . . . , Zn)

b j (Z1, . . . , Zn)

with

a j = a j (Z1, . . . , Zn) and b j = b j (Z1, . . . , Zn) in C[Z1, . . . , Zn].
We get a pencil I j = (a j , b j )R in R and we can consider the dicritical set D(R, I j ).
Let us call the n-tuple ( f1, . . . , fn) a Jacobian n-tuple if the Jacobian of f1, . . . , fn with
respect to X1, . . . , Xn is a nonzero constant, and let us call it an automorphic n-tuple if
C[ f1, . . . , fn] = C[X1, . . . , Xn]. The chain rule tells us that every automorphic n-tuple
is a Jacobian n-tuple. The Jacobian conjecture predicts that every Jacobian n-tuple is an
automorphic n-tuple. It is plausible that if ( f1, . . . , fn) is a Jacobian n-tuple then the
dicritical sets D(R, I j )1≤ j≤n are somehow related to each other and this may help us to
prove that ( f1, . . . , fn) is an automorphic n-tuple.
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