AN INTEGRAL THEOREM ON THE
EQUILIBRIUM OF A STAR

S. CHANDRASEKHAR

ABSTRACT

In this paper an integral theorem on the equilibrium of a star is proved which gives
the lower limit to the value of P,/p(#+1)/7 assuming that both p and P/p(n+1) /7 do not

increase outward. As a special case of the theorem (n = 3) it is shown that for a gaseous
star of a given mass in radiative equilibrium, in which p and [Ey]}g do not increase
outward, the minimum value of 1 — B¢ is the constant value of (1 — @) ascribed to a
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standard model configuration of the same mass. For n = « the theorem gives the |
minimum central temperature for a gaseous star with negligible radiation pressure. |
In some recent papers’ the author has proved a number of integral i
theorems on the equilibrium of a star. In particular it was shown ;
that for any equilibrium configuration (of prescribed mass and '
radius) in which the mean density p(r) inside r decreases outward |
it is possible to set an upper limit to the value of P,/p*+t9/* for I
1 < n < 3. The inequality in question is (I, Egs. [14] and [15]) |
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P,
S/ < SoGM =0/ RG=m/n - (1 <n < 3), (1)
where

n

Sy = (§m) /" =1

(2)
Furthermore, (1) is a strict inequality for » < 3, and for » = 3 is
equivalent to setting an upper limit to (1 — ;) for gaseous stars
(cf. Theorem 2, II).

The problem of finding a lower limit to the ratio P,/p®*+"/* has
proved to be rather an elaborate one. In this paper we prove the-
orems in this direction.

The numbering of the theorems is continued from IT and III.

I

THEOREM 10.—In any equilibrium configuration of prescribed mass
and radius in which both p and K = P/p®+t/™ (n > 1) do not increase

tM.N., 96, 644, 1936; Ap. J., 85, 372, 1937, and 86, 78, 1937. These papers will be
referred to as ““I,”’ ““II,”” and “III,” respectively.
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outward, the minimum value of K. is attained in the sequence of equi-
librium configurations which consist of polytropic cores of index n
and homogeneous envelopes.

More explicitly, we consider a composite configuration in which
the polytropic core extends to a fraction 4 of the radius R of the
star. Inside the polytropic core, K is constant and equal to K..
For such composite configurations, K, will be a function K,.(4)
of A only. The theorem states that the minimum value of the func-
tion K.(A4) is the absolute minimum of K, for any equilibrium con-
figuration in which p and K are restricted not to increase outward.

Proof: We shall first prove the following lemma:

Lemma: The configuration in which X, attains the minimum, either
dp/dr = o or dK/dr = o for all o < r < R.

For, if not, in the configuration in which K attains its minimum
there must exist a finite interval

o<rn<Lr<rn<Rk, (3)
in which

dp dK

E<°’ E<O' (4)

Let P and p refer to the configuration we are considering, namely,
the one in which K, attains its minimum.

By means of the following transformation we construct the pres-
sure and density distributions defined by

oLrsn: Pr=(1—-¢P; p*=(1—¢p, (5)
n<rirn: P* =P+ eP;; p* = p+ ep:, (6)
n<r<R Pr=P; b=, ()

where P* and p* refer to the new distributions of pressure and den-
sity, e is a sufficiently small positive constant, and P, and p, (which
are functions of 7 in the interval »; < 7 < #,) are, for the present,
unspecified.
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If P* and p* should refer to an equilibrium configuration of the
same mass M as the original configuration, then the following condi-
tions would be fulfilled.

i) Continuity of P* and p*.—From (5), (6), and (7) we see that to
insure continuity at » = r; and » = », we should have

pr= —p, (r=r); pr=0, (r=rm); (8)

Pi=—2P, (r=r); Pi=o, (r=rm). (9)

ii) Constancy of mass.—This requires

R R
47rf p¥ridr = 471'[ pradr . (10)
[o] (o]

By (), (6), and (%) we find that (10) reduces to
M(r,) = 47rfhplrzdr . (11)

The left-hand side of (11) is a known quantity. We can clearly
choose a function p, in the interval ; < r < 7, such that the equa-
tion (11) and the boundary conditions at 7, and 7, (Eq. [8]) are all
satisfied. We assume that p, has been chosen to satisfy these condi-
tions.

i) The distributions P* and p* satisfy the equation of hydrosiatic
equilibrium.—The pressure-density distributions in any configura-
tion of equilibrium must satisfy the equation

1i<f_”d1’

7\ E) = —47Gp . (12)

Given that P and p satisfy (12), we have to show that P* and p*
distributions (with a suitable choice of P,) satisfy (12).
It is immediately obvious that in the interval o < 7 < 7, and
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r. < r < R, equation (12) is satisfied. For »; < r < 7, we have, ac-
cording to (5), (6), and (7),

(T - -
r2dr\p dr p2pldr = T ATUp 3
From (13) we derive

1 d(r*dP;\ _

Fd—r<; dr> = F(r), (14)
where

1 d/r* dP
Fo) = a6+ % 5(0 0 L) (x5)

Since P and p are assumed to be known functions of 7, and p, has
been chosen according to (ii) above, we can regard F(r) as a known
function of . From (14) we easily derive

po= [ 2] [ er@a+ o fart e, (x6)

where ¢, and ¢, are two integration constants. We now choose ¢,
and ¢, such that P, defined by (16) satisfies the boundary conditions
(9)-

We thus see that with P; and p, chosen as specified in (ii) and (iii)
above, P* and p* refer to an equilibrium configuration of the same
mass and radius as the original configuration.

Finally, since in the interval », < 7 < 7,, p and K are strictly de-
creasing (Eq. [4]), it is clear that we can choose a positive (nonzero)
e sufficiently small that p* and K* (defined with respect to P* and
p*) are decreasing functions of 7.

We have thus shown that from the given equilibrium configura-
tion we can construct another satisfying the restrictions on p and K.
But the configuration specified by the functions P* and p* defines

Ki=(1—g—WnK, . (z7)
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Since we have assumed # > 1, we see that (17) implies
K< K., (18)

which contradicts our hypothesis that in the configuration in which
K. attains its minimum there exists an interval (3) in which (4)
holds. This proves the lemma.

The theorem now follows almost immediately. Itisonly necessary
to exclude the types of density distributions shown by the full-line
curves in Figures 1 and 2. In Figure 1, the regions r and 3 are regions
of constant K, while 2 is a region of constant p; in Figure 2, 7 and 3
are regions of constant K, while 2 and 4 are regions of constant p.

Ml 4

Fi6. 1 Fi16. 2

But it is clear that by the constructions indicated by the dotted
curves (in both cases 1’ corresponds to the analytic continuation of
the density distribution specified by 1) we are led to configurations
with a smaller P,, and hence a smaller K,. This proves the theorem.

It has to be noticed that we have only proved that the minimum
of K, along the sequence of composite configurations (consisting of
polytropic cores and homogeneous envelopes) is the absolute mini-
mum of K, under the restrictions dp/dr < o, dK/dr < o. But we
have not yet specified the particular composite configuration in which
the minimum of K, is attained; to be able to do so, we shall have to
study the function K,(4) where A is the fraction of the radius oc-
cupied by the polytropic core. We now proceed to study this func-
tion.
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II

The composite configurations.—We consider a composite configura-
tion in which the polytropic core extends to a fraction 4 of the radius
R. Hence, if r = r, defines the place at which we have the in-
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terface between the polytropic and the homogeneous regions, we

have

.= AR.

(19)

0
¢
; .
'
> AI'R, R
>
F1G. 3

Let p: be the mean density of the polytropic core and p, the constant
density in the homogeneous part. Let B denote the ratio

B=Ff"P (20)
P1

Finally, let P, be the pressure at the interface.
Consider first the equilibrium of the homogeneous envelope: We
have

M(r) = 47rip; + 47(r> — r)p:, (21)
or, by (19) and (20),

M(r) = $wR3p.A3B + 4773p, . (22)

The mass M of the configuration is therefore given by

M = 47R3p, (1 + A3B). (23)
The equation of hydrostatic equilibrium is

P GM({)
E; - 72 Pr, 7 (24)
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or, by (22),

- —cimn(TAE 1), (25)
or, integrating,

P=Gimt | F9E -y (26)

The pressure at the interface is obtained by putting r = AR in (26).
After some reductions we find that

P, = 37GpiR[x — 47+ 24°B(x — 4)]. (27)

Consider, now, the equilibrium of the polytropic core: in the core
we can write \
P = Kp(n+1)/n’ (28)

where K is a constant. The reduction to Emden’s equation of index
n is made by the substitutions

p = \G? ; P=K >\(n+1)/n 0n+1 , (29)
_ (7’1« + I)K] 1/ (1—n)/2n a
r = [ 47TG A E . (30)

Let 6 and & refer to the interface. Then P;, p;, and 7, are given by the
foregoing formulae. By (27), (29), and (30) we have

K)\(n-l-!)/n@n-l-l

= 36007 L DE o LZ A B2 ) (o

After some reductions the foregoing equation reduces to

I = Ezen—l

— A A?B(1 — A4
,"_gI.I +i12 (z ). (32)

Now introduce the homology invariant functions # and v defined
by

£6m &0’
w= -0 o= -8 (33)
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where 6 refers to the derivative of  with respect to £ In the terms
of # and v (32) can be re-written as

n—l—Iw: A? (34)
6 T — A2+ 24°B(1 — A) 34

Furthermore,

B = L = b 1, (35)
P1 P1
or, using the well-known relation between the mean and the central

densities for polytropic configurations, we have

3db
__tade 0
B— A" I = 3507; I, (36)
or, by (33),
-3 _
B=>—1. (37)

Equations (34) and (37) are our equations of fit. 1f the Emden func-
tion 6,(£) is known, then for a given £, » and » are known and (34)
and (37) determine A as the solution of a cubic equation. The con-
figuration thus becomes determinate.

We have next to determine K in terms of 4, R, and M. Using
(34), we can re-write (27) as

6
—_ 2 2 P2A42
PI = 37TGPIR A (—n——+ I)’],{,‘Z) . (38)
By (28) and (38) we now have
K = Z,n-Gp(n—I)/n RzAz __6____ (39)
shEE (n+ 1uv”

We now eliminate p, between (39) and the mass relation (23). We
thus have

K = 2:GR2A? —0 M }(HW (40)
AT G F D $7R3(1 + A3B) ’ 4

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1938ApJ....87..535C

T IB7C 5350

AgJ

(10384

EQUILIBRIUM OF A STAR 543

which, after some reductions, can be expressed as

K = %(%W)I/n GM(n—I)/n RG-n)/n , Qn, (41)
where
6 Az
o= (n+ 1)uv (1 + A3B)m—0/n" (42)

We verify the following: Q, measures K in units of the value of K.
for the configuration of uniform density of mass M and radius R. The
minimum of Qu(A) defines, according to our theorem, the minimum
value of K. in the specified umits.

Equation (34) is a cubic equation for A. Eliminating B between
(34) and (37), we find that the equation for 4 can be written more
conveniently as

2(n+ 1)v(3 — u)d3 4+ 34%((n+ 1)v(w — 2) + 2] — (n+ Duv =o. (43)

Furthermore,

=3 _
B=' —1. (44)

Equations (42), (43), and*(44) define, then, the function Q,(4).
We notice that, as # — o,

A—1; B —g% ; (45)
6 I (n—1)/n
Qn— P <3wn> ; (46)
where
dé
= (n+1)/(n—1) 277 .
“n (g dé >s=sx (47)

Inserting (46) in (41), we obtain equation (17), II.

11X

The case n = 5.—The case n = 5 presents some interesting fea-
tures. It is found that the Schuster-Emden integral for the case
n = 5 reduces to

tu=3 (48)
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in the (u, v)-plane. The cubic equation for 4 (Eq. [43]) now becomes
3(r+24)(1 — A" — 3(1— 49+ A= o, (49)

or, solving for v,

_ 31+ 4)— Vi — @+ 94 + 842 .
v= 601 + 24)(1 — A4) ‘ (s0)

Also,
v I A2
I— 9 Os = 30(1 — v) (1 + A3B)4/s” (s1)

Equations (50) and (51) present the explicit solution for the problem.
Furthermore, we notice that if » = 1, (49) reduces to
643 — 542 = o, or A=23. (52)
Hence, for 4 = §,v =1, B = », Q; = «. Hence,
Qs(4) > =, A—3. (53)

The details of the solution are given in Table 1.

IV

The case 1 < n < 5.—The solutions of the equations of fit have
been effected for # = 4.5, 4, 3, and 2. The details of the solution are
given in Table 1. The respective Q,(4) curves are shown in Figure 4.
From the figure we infer the following theorems.

THEOREM 11.—In any equilibrium configuration of prescribed mass
and radius in which both p and K = P/p0T/2 (1 < n < 3) do not
increase outward, the minimum value of K. is the constant value of K
which must be ascribed to a complete polytrope of index n having the given
mass and radius.

For the case # = 3 the foregoing theorem can be stated in the fol-
lowing alternative form:

THEOREM 12.—I%n a gaseous stellar configuration in which both
pand (1 — B) do not increase outward, (1 — (.) must be greater than the

2 The positive sign before the square root in (50) is easily seen to correspond to a
physically impossible solution.
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constant value of (1 — B) ascribed to a standard model configuration of
the same mass.

We shall comment on the implications of Theorem 12 in the
studies of stellar structure in Section VIII.

The case n = 1.—The theorem has been proved only for the case
n > 1. The arguments of Section I fail for this case (cf. Egs. [17]
and [18]). However, it seems likely that the theorem is also true for
n = 1. If it is true, Theorem 11 is also valid for this case.

For the case # = 1 the Emden function is known:

|
|
|
|
1 |
n=5 |
1o |
n=45 ’
® |
n=C0 ’

8
|
|
7 |
n=4 l
6 |
Q, |
s |
n=3 |

4
n=2 |
3 . |
|
2 |
|

I
' |
|
0 I 2 3 4 5 6 7 8 9 10 |
o |
F1c. 4 |
|
v |
|
|
|

__sin &
0 = rt (54)
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The appropriate equations are

160 Az

€ = 1 — A*+ 242B(x — A4)”’ (s5)

5=3|L- 2] -, (0
Az

QI = 352 . (57)

Ast— 7, A — 1and Q; = 3/7 The details of the solution are giv-
en in Table 1.

VI
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The case n = «.—For this case the conditions of the theorem are |
that both p and P/p do not increase outward. For gaseous stars i
with negligible radiation pressure P/p = (k/uH) T, and the theorem |
therefore sets a lower limit to the central temperature of such con- |
figurations.3 |
To determine the minimum value of Q_, we have to consider com- |
posite configurations consisting of isothermal cores and homogeneous |
envelopes. The analysis of these configurations is quite similar to |
that given in Section II. |
If ¢ is the Emden isothermal function, we define the functions |

u and v by |
|

|

|

|

|

|

|

|

|

_ ke _ W
U= 'ﬁbl ) v_gdé (58)
The equations of fit are
Az
1 =
S = T A+ 2A4°B(1 — 4)° (59)
B = %— 1, (60)

3 The problem of determining the minimum central temperature of a gaseous star
with negligible radiation pressure has been considered earlier by Eddington (Internal
Constitution of the Stars [Cambridge, 1924], pp. 91—93). However, his treatment of the
problem is different from our approach to it, as it is a special case of a more general
problem,
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and
P, 1 _i/[
<P7>min - 2 R QOD’ (61)
where
6 A2
Qm—’;t?)I“*‘ASB' (62)

Equation (59) can be written alternatively as
20(3 — u) A3+ 3A4%v(u — 2) + 2] —uv = o (63)

Now, it is well known that the isothermal function oscillates about
the singular solution

=7 (64)

as £ — ». In the (u, v)-plane this corresponds to the appropriate
curve spiraling around

u=r1, V= 2. (65)

Introducing (63) into (60) and (64) we find that

B=2; 443=1 or A=Vo.25. (66)
With these values of 4 and B, (62) gives
0 = Vo.5. (67)
Hence, the Qx(A) curve spirals around the point
© =+Vo.5=0.7937; A® =0.62996. (68)

The details of the solution are given in Table 1a. See also Fig-
ure 4.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1938ApJ....87..535C

548

S. CHANDRASEKHAR

VII

Numerical resulis.—In Tables 1 and 1a we give the details of the
solution for the cases

n=1,2,3,4,4.5 5and . (69)
TABLE 1
VALUES OF Qn
n=rtx n=2 n=3 n=4 n=4.5 n=s
A Ox A Q: A Q3 A Q4 4 Q4.5 A Qs
o. I. 0. I 0. 1.0 o I. o 1.0 lo. I.
0.366{0.8710 0.15 |0.9768
0.423]0.8339 0.410[0.841 |0.30 [0.914
0.6850.592 |0.557|0.722 |0.590/0.6046 | |  |........... 0.40 lo.8s505
0.73710.537 |.vuifoen.. 0.708l0.5787 |0.662[0.626 |0.716/0.570 lo.50 |o.7738
0.784(0.489 |0.785(0.499 |0.818l0.4833 |0.775/0.526 |0.764/0.538 |0.60 |0.6859
0.866lo.410 |.....|...... 0.872|0.4578 |0.819]0.508 |0.807|0.524 |0.70 [0.5031
0.919/0.363 [0.893(0.408 |0.912(0.4523 [0.845(0.516 [0.840/0.564 |0.75 [0.5521
........................ 0.949[|0.4519 |0.879l0.551 [0.875/0.681 |0.78 |0.5372
........................ 0.964|0.4517 |0.907]0.585 [0.033|0.837 |0.80 |o.5410
........................ 0.968l0.4516 [0.931{0.613 [0.961{0.803 10.832 |1.0361
0.968l0.325 [0.934/0.384 |0.971{0.4516 |0.974/0.648 |.....|...... 0.833 l1.1500
0.984/0.314 ]0.996/0.358 [0.986[0.4515 |.....|...... 0.090/0.940 |0.8333|2.2054
I.000|0.30396{1.000[0.3564|1.000[0.45154|1.000|0.6671(1.000/0.9572| ¥ o
TABLE 1la
VALUES OF Qc
3 A Qoo £ 4 Qw
O 0. I. 7O 0.608 0.849
2.0....... .542 0.743 100. . ...... .504 .833
4.0....... .663 0.646 I50........ .616 .808
5.0, . ... .. .680 0.640 200, ....... 615 .786
7O .689 0.655 300........ .629 .783
10.0....... .683 0.695 400. ... . ... .633 778
I2.. ... .. .673 0.721 500........ .635 776
16......... .661 0.766 700. .. ... .. .636 778
25. .. ... .636 0.826 1000. .. ..... .636 .784
300 ... .626 0.840 1500........ .627 821%
35 e .620 0.850 2000........ 632 796
50 ... o.609 0.859 @® L. 0.62996 0.7937

* There seems to be an error in Emden’s table of the isothermal function at this point.
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In Table 2 the minimum values of P,/p®*t%/* under the condi-
tions of Theorem 10 are given. From (41) and (42) it is clear that
we can express the theorem as

P

Ff—{m > Z,GM—1/nR(n—=3)/n (70)
4

where

%, = 1(4m)"* Minimum Qn(4) . (71)

The values of Z, are also given in Table 2.

TABLE 2

n A Min Qp Zn
I.0 i, I.0 0.30396 0.63662
I.5.0ceennnn.. 1.0 .3265 .42422
2.0 e 1.0 .3504 .36475
2.8 e 1.0 .3964 .35150
3.00cician... I.0 45154 .36304
4.0 .. 0.821 .508 .363
4.5 o.801 .524 .360
5.0 e 0.788 .535 .356
© L. 0.678 o.640 0.320

VIII

Some remarks on Theorem 12.—We have shown that if p and
(1 — B) decrease outward, then it is possible to set a lower limit to
(1 — B.) which depends on the ‘mass only. We now examine the
physical meaning of the assumption that “(1 — B8) does not increase
outward” for the case of radiative equilibrium.

We then have Strémgren’s relation (cf. ITI, Eq. [9])

L —
F— B = F), (72)
where 4
I r
kn(r) = — dP .
kn(r) Pﬁ K (73)
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Hence, (1 — B) will decrease outward if kn(r) decreases outward.
Analytically, the condition is

d _
S0 <o, (74)

or, since dP/dr is negative,

L) 2o, (75)

From (73) and (75) we derive that (74) is equivalent to
kn(r) 2 [in)k - (76)

In words: The necessary and sufficient condition for (1 — B) decreas-
ing oulward is that kn at any point inside the star must be greater than
the average value of kn for material exterior to r. It should be noticed
that the condition stated is less restrictive than the requirement that
kn decreases outward. It is clear from (76) that we can actually
allow a decrease of xy (within limits) as we approach the center.
In actual stellar configurations n might be expected to decrease out-
ward, but this will not generally be true of k. For this reason it is
important to realize that (76) does not require 7y to decrease out-
ward. We can now express Theorem 12 in the following alternative
way. In a wholly gaseous configuration in radialive equilibrium in
which the density and kn(r) as defined by (73) both decrease outward,
the central value (1 — B.) of the ratio of the radiation pressure to the
total pressure must satisfy the inequality.

1— 8. 21— 8, (77)

where (1 — B,) salisfies the guartic equation

[ _—I— _Ze_4§1_631/2 2d_0_§
M - 4m ('/TG>3/2|:</.LH> a ‘3;1. :I <£ ds >E=E1. (78)

It might be recalled that under very much less restrictive circum-
stances than in the foregoing theorem we have shown that

I_‘BCSI_.B*y (79)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1938ApJ....87..535C

EQUILIBRIUM OF A STAR 551

where (1 — §%) satisfies a similar quartic equation (cf. IT, Theorem
2). It is thus seen that we can solve the problem of finding both the
upper and the lower limits of 1 — 3,. We have (cf. III, Eq. [11])

_ 4mcGM (1 — B.)

L —
K7

; (80)

where k7 refers now to the average over the whole star. Hence, un-
der the conditions of Theorem 12 by (77),

Ly 4meMG = B (81)
K7
Let
K1 = KeTle (82)
where

If, further, we assume a law of opacity of the form

k= kpl =375, (84)
then
_  kHa B -3
Kc_KIksI—Bch, (85>
or, again by (77),
rH a B —S
Ke < Kz k 3T — Bs TC . (86)
Combining (81), (82), and (86), we have
L3 AmeM k3 (1= Bt s (87)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

- I Pe < K |

Ne = ]ch K:)ndP. (83) |

|

|

|

|

|

|

|

|

|

|

|

|

|

7 |

kme wHa B |

|

Comparing (77), (81), and (87) with the standard formulae in Ed-

dington’s theory, we see that the equations in that theory now be-

come inequalities. This makes the conclusions drawn on the basis

of the standard model have a “minimal’” character which is of con-
siderable physical importance.
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If in addition to the conditions of Theorem 12 we assume that T°
decreases outward, then, according to Theorem 7 (II),

1pHGM g,

For the case of vanishing radiation pressure we can improve (88).
For then (cf. the last row of Table 2)

’ H GM
> pa G
T. > 0.32 2 R (89)
We can now eliminate 7', between (8%) and (88) or (89) and obtain
an inequality of the same form as the luminosity formula used in
current studies on gaseous stars.

|

|

|

|

|

|

|

|

|

|

|

|

|

;

The main Theorem 10 was conjectured by the writer over a year |
ago, but the fundamental idea in the proof as given in the text sug- |
gested itself only during a discussion with Professor J. von Neu- |
mann. It is a pleasure to record here my appreciation of the kind |
interest which Professor J. von Neumann has shown in this and |
other problems of the stellar interior. I am also indebted to Mr. E. |
Ebbighausen for his assistance in the numerical work connected |
with Tables 1 and 1a. |
|

|

|

|

|

|

|

|

|

|
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