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THE PRESSURE IN THE INTERIOR OF A STAR

S. CHANDRASEKHAR

ABSTRACT
In this paper certain integral theorems on the equilibrium of a star are proved.

I

In a recent paper® the author proved the following theorems:
THEOREM 1.—In any equilibrium configuration in which the mean
density inside v decreases outward, we have the inequality

FGEm) 3pt3(r) M?/3(r) < Pe — P < 5G(3m)3ptM*/3(r) , (1)

where p (r) denotes the mean density inside t, p, the central density, P the
central pressure, and M(x) the mass inclosed inside t.

THEOREM 2.—If (1 — B.) is the ratio of the radiation pressure to
the total pressure at the center of a wholly gaseous configuration, then
under the conditions of Theorem 1

1— B <1 — B, (2)

where (1 — %) salisfies the quartic equation

_61/2 i4§1~:—6—*1/2i
M= <7~r> [<pH> a B* ] G3/z* (3)

TaEOREM 3.—If 1, is the integral defined by

zp=fRM, v <6, @)

rl’
where R denotes the radius of the configuration, then

= GUm) MO S I < g5 Glmp)sM @5 (s)
= -

t M.N., 96, 644, 1936. See also E. A. Milne, ¢bid., 179.
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II

In this paper we shall prove certain additional theorems on the
equilibrium of a star.
THEOREM 4.—Under the conditions of Theorem 1 we have

Pc< I

pYs S 6 — v

(4m) 0—3)/3GR M ©)/3 | (6)

provided
6>v 24, (7)

where (6) is a strict inequality for v > 4.
Proof: We have equation 7 (loc. cit.)

G M(ndM(r)

AT 74

ap = (8)

Introducing equation (8) in equation (4), we have

R 4P
I, = — 47r’£ i (9)

Since v 2 4, we clearly have

R
I,>— ]‘;‘Lf dP = ;L P.,. (10)

In equation (10) we have the equality sign only for the case
v = 4. For v > 4 we have a strict inequality.

Combining equation (10) with the inequality of Theorem 3, we
have

AT p, < I, < —3— G(4wp.)s M3 (11)

R4 PR —p
or
Po o T N sCR—a 65
s S gy mCAGRM . (12)
[4

Again, equation (12) is a strict inequality for » > 4. This proves
the theorem.
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11T

Comments on Theorem 4—When » = 4, equation (12) reduces to
an inequality from which Theorem 2 would immediately follow. If
we write

1
=3(s+3), (13)
then we can re-write equation (12) as

P,

PG < SaG REM/mp=n/n (1 < n < 3), (14)

where .S, stands for the numerical coefficient

= @Fm)/ (13)

3(% —1)°

Equations (14) and (15) bring out the very general “critical” na-
ture of » = 1 and » = 3, a circumstance only very partially dis-
closed in the theory of polytropes. For, if we consider a polytrope of
index #, then of course

P P,
G = Constant = SR (16)

For the polytropic case (16) we have
P,

o A0/n = T,.G RG—m/njf(n—0)/n (17)
where
- I am \Y"
L=mry <wg—r> ’ (18)
n+1
db,
Wy = <n I E‘>E=E . (19)

The symbols £ and 6 stand for the Emden variables, 8, is any Em-
den solution of index #, and the quantity in brackets in equation
(19) has to be taken at the first zero £ = £; of the Emden solution.?

2 An Emden solution of index #» is a function which satisfies Emden’s equation of
index # and is finite at the origin. Equation (19) can be evaluated at the boundary of
any Emden solution because it is homology invariant.
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Table I gives the values of S, and T, for different values of #.

TABLE I
300t 0.806 0.364 2.214
2.5 0.983 .351 2.803
2. I.364 -365 3.741
1. 2.599 .424 6.125
I. o0 0.637 o0
IV

THEOREM 5.—If I, , stands for the integral

L= (TEEORD, Betn>il, o)

then under the conditions of Theorem 1

3 GMd+I S S 3 GMa'-I-I
30'+3—V gy /Ia,u/30__|_3__y R’ y (21)

where £ is defined by the relation

$mpks = M . (22)
Proof: Since
. M(r) v/3 )
il 23)

we have from equation (20) that
R
Lo = G(3m)5 f p/3(r) M50 M (7). (24)

Since we have assumed that p(r) decreases outward, it is clear that
the minimum value of equation (24) is obtained by replacing p(r)
by its minimum p (the mean density for the whole configuration)
and taking it out of the integral sign. In the same way the maximum
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value of equation (24) is obtained by replacing 5(r) by its maximum
value p, and taking it out of the integral sign. One thus finds that

3 S\v/3 A Go+3—2)/3
30_ + 3 —_y G(%"rp) M 3 ~ IU,V
. (25)
[ S 4 v/3 . (3o+3—»)/
S3>cr-l-3—uG(s‘mD“) e MBI,
which is easily seen to be equivalent to equation (21).
\Y
THEOREM 6.—If f’p, ¢ 1S the mean pressure defined by
_ R
MPR®Pp, = f Pd(M?*(r)r)),  (p, ¢>0), (26)
then under the conditions of Theorem 1
5 5 3 1 GM:?
Pp’q/47rsp+q+2R4' (27)
Proof: Integrating equation (26) by parts, we have
_ R
MPRWP,, = — f M>(r)ridP . (28)
By equation (8) we have
R
= I GM? (r)dM (r)
M?PRP,, = Z;,f 7i— ’ (29)
I
= 4‘71_ Ipis,4yq- (30)
Hence, by Theorem 5 we easily find that
505 3 I GM?
PP:4/41‘_3P_|_q+2R47 (31)

which proves the theorem.
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VI

THEOREM 7.—In a wholly gaseous configuration in which the mean
density inside 1, the temperature, and the ratio of the radiation pressure
to the total pressure decrease outward, we have

HGM
L (32)

where T, is the central temperature, B* has the same meaning as in
Theorem 2 and u, H, and k are, respectively, the mean molecular weight
(assumed constant in the whole configuration), the mass of the proton,
and the Boltzmann constant.

Proof: Let P denote the mean pressure defined by

R
R3P =f Pd(r3) . (33)
By equation (31)
_ 2 CM? _
P2 Ei_ﬂ- R = SEMVGRMAS (34)

In a wholly gaseous configuration

k —1
P—Eﬁ oT . (35)

Hence

Il

5 “% FD) . (36)

Since (1 — B) is assumed to decrease outward, 8 must increase
outward, and hence

= ko
P<E6c TcP) ) (37)

where 5 is now the mean density defined in the usual way, since the
means we are now taking are weighted according to the volume ele-
ment; compare equation (33). Hence

7. > § 4L Glgmryms, (38)

5L
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or

, w4
Sk

s

T, > 8. . (39)

But by Theorem 2
B. 2 B*, (40)

where B* satisfies the quartic equation (3). Hence, combining equa-
tions (39) and (40), we have

uH

TC > JK —k- B* ’ (41)

|2

which proves the theorem.

The inequality equation (41) is not a “best possible” one, but it
has the advantage of not neglecting the radiation pressure and is, in
fact, the first of the kind to be established.

We notice that the mean temperature T, defined by

'R
MT = f TdM(r) ,

satisfies the same inequality as 7. For

R R
MT = f TdM(r) = EEH_ f BPp~*dM (7) .

R
=%f BPdv

where dv is the volume element. But since 3 is assumed to increase
outward,

R
MT>760£ Pd‘l):—%TﬁcQ,

where Q is the negative potential energy of the configuration. But
by Theorem 3,

GM*
Q=II>'8 R.

o
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Hence
o, HH GM pH GM
k k

T2y ROV R P

VII

Corollary to Theorem 7.—In a wholly gaseous configuration in
which the mean density inside v and the ratio of the radiation pressure
to the total pressure decreases outward, we have

6_4/—3)3/261/2 E 431_301/21
M < <2'5 (z»)4/3) <;) [(Er) « Bt ] Gre 4

Proof: Equation (35) can also be written

[/ &k \431— B]~
P = _(;ﬁ) ¢ g pi/3 (43)
so that
= [ k 4 31— 371/3
F= L<ﬁ¥> el BAOE (44)

or, since (1 — ) decreases outward,

B

Combining equations (45) and (34), we have

[<fﬁ>4 : %J/ (7 > L) sGosMs,  (46)

which, after some minor transformation, goes over into equa-
tion (42).
It may be noticed that in equation (42) we cannot replace
(0¥%)/(p)** by unity, since
(p473) > (p)*/3. (47)

Equation (42) is not a “best possible” inequality, but it is much
“sharper’”” than the inequality established previously.3

YERKES OBSERVATORY
April 12, 1937

3 Equation (19") (Joc. cit.).

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1937ApJ....85..372C

