THE PRESSURE IN THE INTERIOR OF A STAR

S. CHANDRASEKHAR

ABSTRACT

In this paper certain integral theorems on the equilibrium of a star are proved.

T

In a recent paper the author proved the following theorems:

THEOREM 1.—In any equilibrium configuration in which the mean density inside r decreases outward, we have the inequality

$$\frac{1}{2}G(\frac{4}{3}\pi)^{1/3}\bar{\rho}^{4/3}(r)M^{2/3}(r) \leqslant P_c - P \leqslant \frac{1}{2}G(\frac{4}{3}\pi)^{1/3}\rho_c^{4/3}M^{2/3}(r) , \quad (1)$$

where $\bar{\rho}$ (r) denotes the mean density inside r, ρ_c the central density, P_c the central pressure, and M(r) the mass inclosed inside r.

THEOREM 2.—If $(I - \beta_c)$ is the ratio of the radiation pressure to the total pressure at the center of a wholly gaseous configuration, then under the conditions of Theorem 1

$$1 - \beta_c \leqslant 1 - \beta^*, \qquad (2)$$

where $(1-\beta^*)$ satisfies the quartic equation

$$M = \left(\frac{6}{\pi}\right)^{1/2} \left[\left(\frac{k}{\mu H}\right)^4 \frac{3}{a} \frac{1 - \beta^*}{\beta^{*4}} \right]^{1/2} \frac{1}{G^{3/2}}.$$
 (3)

Theorem 3.—If I_{ν} is the integral defined by

$$I_{\nu} = \int_{0}^{R} \frac{GM(r)dM(r)}{r^{\nu}}, \qquad (\nu < 6),$$
 (4)

where R denotes the radius of the configuration, then

$$\frac{3}{6-\nu} G(\frac{4}{3}\pi\bar{\rho})^{\nu/3} M^{(6-\nu)/3} \leqslant I_{\nu} \leqslant \frac{3}{6-\nu} G(\frac{4}{3}\pi\rho_c)^{\nu/3} M^{(6-\nu)/3}.$$
 (5)

¹ M.N., 96, 644, 1936. See also E. A. Milne, *ibid.*, 179.

II

In this paper we shall prove certain additional theorems on the equilibrium of a star.

Theorem 4.—Under the conditions of Theorem 1 we have

$$\frac{P_c}{\rho_c^{\nu/3}} \leqslant \frac{1}{6-\nu} \left(\frac{4}{3}\pi\right)^{(\nu-3)/3} G R^{\nu-4} M^{(6-\nu)/3} , \tag{6}$$

provided

$$6 > \nu \geqslant 4$$
, (7)

where (6) is a strict inequality for $\nu > 4$.

Proof: We have equation 7 (loc. cit.)

$$dP = -\frac{G}{4\pi} \frac{M(r)dM(r)}{r^4} \,. \tag{8}$$

Introducing equation (8) in equation (4), we have

$$I_{\nu} = -4\pi \int_{0}^{R} \frac{dP}{r^{\nu-4}}.$$
 (9)

Since $\nu \geqslant 4$, we clearly have

$$I_{\nu} \geqslant -\frac{4\pi}{R^{\nu-4}} \int_{0}^{R} dP = \frac{4\pi}{R^{\nu-4}} P_{c} .$$
 (10)

In equation (10) we have the equality sign only for the case $\nu = 4$. For $\nu > 4$ we have a strict inequality.

Combining equation (10) with the inequality of Theorem 3, we have

$$\frac{4\pi}{R^{\nu-4}}P_c \leqslant I_{\nu} \leqslant \frac{3}{6-\nu}G(\frac{4}{3}\pi\rho_c)^{\nu/3}M^{(6-\nu)/3} \tag{11}$$

or

$$\frac{P_c}{\rho_c^{\nu/3}} \leqslant \frac{1}{6-\nu} \left(\frac{4}{3}\pi\right)^{(\nu-3)/3} G R^{\nu-4} M^{(6-\nu)/3} . \tag{12}$$

Again, equation (12) is a strict inequality for $\nu > 4$. This proves the theorem.

III

Comments on Theorem 4.—When $\nu=4$, equation (12) reduces to an inequality from which Theorem 2 would immediately follow. If we write

$$\nu = 3\left(1 + \frac{1}{n}\right),\tag{13}$$

then we can re-write equation (12) as

$$\frac{P_c}{\rho_c^{(n+1)/n}} \leqslant S_n G R^{(3-n)/n} M^{(n-1)/n}, \qquad (1 < n \leqslant 3), \qquad (14)$$

where S_n stands for the numerical coefficient

$$S_n = (\frac{4}{3}\pi)^{1/n} \frac{n}{3(n-1)}. \tag{15}$$

Equations (14) and (15) bring out the very general "critical" nature of n = 1 and n = 3, a circumstance only very partially disclosed in the theory of polytropes. For, if we consider a polytrope of index n, then of course

$$\frac{P}{\rho^{(n+1)/n}} = \text{Constant} = \frac{P_c}{\rho_c^{(n+1)/n}}.$$
 (16)

For the polytropic case (16) we have

$$\frac{P_c}{\rho_c^{(n+1)/n}} = T_n G R^{(3-n)/n} M^{(n-1)/n}, \qquad (17)$$

where

$$T_n = \frac{1}{(n+1)} \left(\frac{4\pi}{\omega_n^{n-1}} \right)^{1/n}, \qquad (18)$$

$$\omega_n = -\left(\xi^{\frac{n+1}{n-1}} \frac{d\theta_n}{d\xi}\right)_{\xi=\xi_I}.$$
 (19)

The symbols ξ and θ stand for the Emden variables, θ_n is any Emden solution of index n, and the quantity in brackets in equation (19) has to be taken at the first zero $\xi = \xi_{\rm r}$ of the Emden solution.²

² An Emden solution of index n is a function which satisfies Emden's equation of index n and is finite at the origin. Equation (19) can be evaluated at the boundary of any Emden solution because it is homology invariant.

Table I gives the values of S_n and T_n for different values of n.

TA	DI	\mathbf{F}	1
$I\Lambda$.DL	ıL.	1

n	S_n	T_n	S_n/T_n
3.0	0.806	0.364	2.214
	0.985	.351	2.803
	1.364	.365	3.741
	2.599	.424	6.125
	∞	0.637	∞

IV

Theorem 5.—If $I_{\sigma, \nu}$ stands for the integral

$$I_{\sigma,\nu} = \int_{0}^{R} \frac{GM^{\sigma}(r)dM(r)}{r^{\nu}}, \qquad [3(\sigma+1)>\nu], \qquad (20)$$

then under the conditions of Theorem 1

$$\frac{3}{3\sigma + 3 - \nu} \frac{GM^{\sigma + 1}}{\xi^{\nu}} \geqslant I_{\sigma, \nu} \geqslant \frac{3}{3\sigma + 3 - \nu} \frac{GM^{\sigma + 1}}{R^{\nu}}, \qquad (21)$$

where ξ is defined by the relation

$$\frac{4}{3}\pi\rho_c\xi^3 = M. \tag{22}$$

Proof: Since

$$r^{\nu} = \left[\frac{M(r)}{\frac{4}{3}\pi\bar{\rho}(r)}\right]^{\nu/3},\tag{23}$$

we have from equation (20) that

$$I_{\sigma,\nu} = G(\frac{4}{3}\pi)^{\nu/3} \int_{0}^{R} \bar{\rho}^{\nu/3}(r) M^{(3\sigma-\nu)/3} dM(r) . \qquad (24)$$

Since we have assumed that $\bar{\rho}(r)$ decreases outward, it is clear that the minimum value of equation (24) is obtained by replacing $\bar{\rho}(r)$ by its minimum $\bar{\rho}$ (the mean density for the whole configuration) and taking it out of the integral sign. In the same way the maximum

value of equation (24) is obtained by replacing $\bar{\rho}(r)$ by its maximum value ρ_c and taking it out of the integral sign. One thus finds that

$$\frac{3}{3\sigma + 3 - \nu} G(\frac{4}{3}\pi\tilde{\rho})^{\nu/3} M^{(3\sigma + 3 - \nu)/3} \leqslant I_{\sigma,\nu}
\leqslant \frac{3}{3\sigma + 3 - \nu} G(\frac{4}{3}\pi\rho_c)^{\nu/3} \cdot M^{(3\sigma + 3 - \nu)/3},$$
(25)

which is easily seen to be equivalent to equation (21).

V

Theorem 6.—If $\bar{P}_{p,q}$ is the mean pressure defined by

$$M^{p}R^{q}\bar{P}_{p,q} = \int_{0}^{R} Pd(M^{p}(r)r^{q}), \qquad (p, q > 0),$$
 (26)

then under the conditions of Theorem 1

$$|\bar{P}_{p,q}| \geqslant \frac{3}{4\pi} \frac{1}{3p+q+2} \frac{GM^2}{R^4}.$$
 (27)

Proof: Integrating equation (26) by parts, we have

$$M^{p}R^{q}\bar{P}_{p,q} = -\int_{0}^{R} M^{p}(r)r^{q}dP$$
 (28)

By equation (8) we have

$$M^{p}R^{q}\bar{P}_{p,q} = \frac{1}{4\pi} \int_{0}^{R} \frac{GM^{p+1}(r)dM(r)}{r^{4-q}},$$
 (29)

$$= \frac{I}{4\pi} I_{p+1, 4-q} . \tag{30}$$

Hence, by Theorem 5 we easily find that

$$\bar{P}_{p,q} \geqslant \frac{3}{4\pi} \frac{1}{3p+q+2} \frac{GM^2}{R^4},$$
 (31)

which proves the theorem.

VI

THEOREM 7.—In a wholly gaseous configuration in which the mean density inside r, the temperature, and the ratio of the radiation pressure to the total pressure decrease outward, we have

$$T_c > \frac{1}{5} \frac{\mu H}{k} \frac{GM}{R} \beta^*, \qquad (32)$$

where T_c is the central temperature, β^* has the same meaning as in Theorem 2 and μ , H, and k are, respectively, the mean molecular weight (assumed constant in the whole configuration), the mass of the proton, and the Boltzmann constant.

Proof: Let \bar{P} denote the mean pressure defined by

$$R^{3}\bar{P} = \int_{0}^{R} Pd(r^{3}). \qquad (33)$$

By equation (31)

$$\bar{P} \geqslant \frac{3}{20\pi} \frac{GM^2}{R^4} = \frac{1}{5} (\frac{4}{3}\pi)^{1/3} G\bar{\rho}^{4/3} M^{2/3} \,.$$
 (34)

In a wholly gaseous configuration

$$P = \frac{k}{\mu H} \beta^{-1} \rho T . \tag{35}$$

Hence

$$\bar{P} = \frac{k}{\mu H} \overline{(\beta^{-1} \rho T)} . \tag{36}$$

Since $(1 - \beta)$ is assumed to decrease outward, β must increase outward, and hence

$$\bar{P} < \frac{k}{\mu H} \beta_c^{-1} T_c \bar{\rho} , \qquad (37)$$

where $\bar{\rho}$ is now the mean density defined in the usual way, since the means we are now taking are weighted according to the volume element; compare equation (33). Hence

$$T_c > \frac{1}{5} \frac{\mu H}{k} G(\frac{4}{3}\pi\bar{\rho})^{1/3} M^{2/3} \beta_c ,$$
 (38)

or

$$T_c > \frac{1}{5} \frac{\mu H}{k} \frac{GM}{R} \beta_c . \tag{39}$$

But by Theorem 2

$$\beta_c \geqslant \beta^*$$
, (40)

where β^* satisfies the quartic equation (3). Hence, combining equations (39) and (40), we have

$$T_c > \frac{1}{5} \frac{\mu H}{k} \frac{GM}{R} \beta^*, \qquad (41)$$

which proves the theorem.

The inequality equation (41) is not a "best possible" one, but it has the advantage of not neglecting the radiation pressure and is, in fact, the first of the kind to be established.

We notice that the *mean* temperature \bar{T} , defined by

$$M\overline{T} = \int_0^R T dM(r) ,$$

satisfies the same inequality as T_c . For

$$M\overline{T} = \int_{0}^{R} T dM(r) = \frac{\mu H}{k} \int_{0}^{R} \beta P \rho^{-1} dM(r) .$$

$$= \frac{\mu H}{k} \int_{0}^{R} \beta P dv ,$$

where dv is the volume element. But since β is assumed to increase outward,

$$M\overline{T}\geqslant rac{\mu H}{k}\;eta_c\int_{f o}^R P dv = rac{1}{3}\;rac{\mu H}{k}\;eta_c\Omega$$
 ,

where Ω is the negative potential energy of the configuration. But by Theorem 3,

$$\Omega = I_{\rm I} \geqslant \frac{3}{5} \frac{GM^2}{R} \ . \label{eq:omega_sigma}$$

Hence

$$\overline{T} \geqslant \frac{1}{5} \frac{\mu H}{k} \frac{GM}{R} \beta_c \geqslant \frac{1}{5} \frac{\mu H}{k} \frac{GM}{R} \beta^*$$
.

VII

Corollary to Theorem 7.—In a wholly gaseous configuration in which the mean density inside r and the ratio of the radiation pressure to the total pressure decreases outward, we have

$$M < \left(2.5 \frac{\overline{(\rho^{4/3})}}{(\bar{\rho})^{4/3}}\right)^{3/2} \left(\frac{6}{\pi}\right)^{1/2} \left[\left(\frac{k}{\mu H}\right)^4 \frac{3}{a} \frac{1 - \beta_c}{\beta_c^4}\right]^{1/2} \frac{1}{G^{3/2}}.$$
 (42)

Proof: Equation (35) can also be written

$$P = \left[\left(\frac{k}{\mu H} \right)^4 \frac{3}{a} \frac{1 - \beta}{\beta^4} \right]^{1/3} \rho^{4/3} , \qquad (43)$$

so that

$$\bar{P} = \left[\left(\frac{k}{\mu H} \right)^4 \frac{3}{a} \frac{1 - \beta}{\beta^4} \right]^{1/3} \rho^{4/3} , \qquad (44)$$

or, since $(1 - \beta)$ decreases outward,

$$\bar{P} < \left[\left(\frac{k}{\mu H} \right)^4 \frac{3}{a} \frac{\mathbf{I} - \beta_c}{\beta_c^4} \right]^{1/3} \overline{(\rho^{4/3})} . \tag{45}$$

Combining equations (45) and (34), we have

$$\left[\left(\frac{k}{\mu H} \right)^4 \frac{3}{a} \frac{1 - \beta_c}{\beta_c^4} \right]^{1/3} \overline{(\rho^{4/3})} > \frac{1}{5} \left(\frac{4}{3} \pi \right)^{1/3} G \bar{\rho}^{4/3} M^{2/3} , \tag{46}$$

which, after some minor transformation, goes over into equation (42).

It may be noticed that in equation (42) we cannot replace $\overline{(\rho^{4/3})}/(\bar{\rho})^{4/3}$ by unity, since

$$\overline{(\rho^{4/3})} > (\bar{\rho})^{4/3}$$
 (47)

Equation (42) is not a "best possible" inequality, but it is much "sharper" than the inequality established previously.

YERKES OBSERVATORY April 12, 1937

³ Equation (19') (loc. cit.).