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Superconducting transition temperature for semimetals like bismuth

S SRINIVASAN, P BHATTACHARYYA and SUDHANSHU S JHA
Tata Institute of Fundamental Research, Bombay 400 005

MS received 9 April 1979

Abstract. The superconducting transition temperature 7, for semimetals like bis-
muth has been calculated as a function of the density n. of the electron and hole
charge carriers. A simplified two-band model for describing the longitudinal di-
electric function for such a system has been used in our model calculation. We find
that the attractive interaction responsible for the instability of the normal ground state
comes not only from the exchange of lattice phonons, but also from the electron-
hole sound mode, provided the ratio of the averaged hole to electron mass, my/ Me7#1,
We have compared our theoretical values of Te(n:) with experimental results for bis-
muth under hydrostatic pressure, and find reasonable agreement if my/m, is assumed
10 have a value which is only slightly larger than that at atmospheric pressures. A
linear variation of the negative band gap as a function of pressure has been assumed
for the sake of this comparison.

Keywords. Superconductivity; transition temperature; semi-metals; electron-hole
sound mechanism. :

1. Imtroduction

In a recent paper (Bhattacharyya and Jha 1978, hereafter referred to as I) the possi-
bility of an excitonic insulator transforming under pressure into a superconductor
rather than into a semimetal has been considered. There it was found that even on
neglecting the usual lattice-phonon induced electronic attraction, a large transition
temperature 7, (~100°K) could be obtained provided the ratio of the hole mass to
the electron mass m,/m,, or its inverse, is much greater than one, and the effective
“carrier * density n, > 10' cm™3, The mechanism leading to such large transition
temperatures can be roughly understood in analogy with the ionic-phonon
mechanism. .

Imagine a metal being made up of an equal number of ions and conduction elec-
trons. If these two fluids do not interact with each other, there are collective excita-
tions at the electronic and ionic plasma frequencies w,. and w,;, respectively. If
now, the electron-ion interaction is switched on, w,. is only slightly perturbed, but
w,; 18 strongly affected. The ionic plasma frequency is renormalised by the screen-
ing of the conduction electrons, and becomes an acoustic mode. (longitudinal lattice
phonons) with a linear dispersion for long wavelengths. Note that nowhere in this
argument do we demand the ions to be localised, because of their heavy mass, at
lattice sites. Of course, the localisation at lattice sites leads to additional acoustic
modes which are transverse. Clearly, a similar situation appears in an interacting
electron-hole plasma if my7#m,, and one gets an additional sound-like longitudinal
collective mode in such systems. This can be called the electron-hole sound (EHS)
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mode. There is, however, one important difference here: both the holes and the

electrons may degenerate nonlocalised charge carriers. If m, > m,, then the
density of states at the Fermi-surface (for one spin) N, (0) > N, (0), and the total
superconducting effective BCS coupling constant g is determined by g, the hole
coupling constant. Similarly, for m, > m,, 8ee> the electron coupling constant is
-dominant. This, after appropriate renormalisation, leads to an effective g which is
of the same order as in an ordinary metal. However, the range w,, of the attractive
BCS interaction is set by the frequency of the EHS mode at g ~ 2k, which is about
wy = (4mn.e?lm,)}, and is, therefore, much larger than w,, the Debye frequency.
Hence it is possible for the transition temperature kpT, ~ fiw, exp (—1/g) to be
much larger than that expected on the basis of the lattice phonon mechanism. It
was further shown that this EHS exchange mechanism by itself, cannot lead to super-
conducting transitions if m,/m, (or me/my, when m, > m,) < 5; when m,/m, =1,
the new mode of course does not exist. The present work addresses itself to the
question whether a similar mechanism is already partially operative in semimetals
and, in particular, whether it is possible to explain the pressure dependence of T,
in such systems.

In the conventional picture within the jellium model, the attractive lattice phonon
coupling constant A,, is equal to the repulsive Coulomb coupling constant u. It
decreases with increasing electron density »n; from a maximum value of 0-5 in the very
low density region. If dn/dP>0, we should then normally expect dT,/dP<0, in
contrast with the experimental behaviour where T, first increases with pressure, e.g.
in bismuth and its alloys (IVina and Itskevich 1970, II’ina 1976), and then decreases
at high pressures (see figure 1). This, we believe, is a direct indication of the inade-
quacy of the lattice-phonon jellium model and it has led us to ask whether a resolu-
tion of this discrepancy may be found in the model that was proposed in I or it is due
to other band-structure effects neglected in the jellium model. In fact, we find that
we can reproduce the behaviour of T, mentioned earlier, within a model similar to
I, but extended to include the polarisation of the lattice, i.e. with the inclusion of
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both lattice sound and EHS exchange mechanisms. We have made here, a more
careful study of bismuth, simply because there are more experimental data on T, (P)
available for this material than for the other semimetals.

The plan of the paper is as follows: in § 2, we extend the method of Ginzburg and
Kirzhnits (1972) for calculating T, for a single band system to the problem at hand,
involving two bands and three different interaction kernels due to the ionic-sound,
the electron-hole sound and the direct Coulomb repulsion, with asymmetric fre-
quency cut-offs. In § 3, we describe our model dielectric function for a semimetal,
and show how to obtain the respective superconducting interaction kernels. Finally,
in § 4, we give the results of our calculations, particularly for Bi and similar semi-
metals, and discuss their significance.

2. Formulation of the superconducting interaction

For a single band of carriers the superconducting transition temperature 7, is deter-
mined from the nontrivial solution of the linearised integral equation (Ginzburg and
Kirzhnits 1972).

N rd ntanh (B, &x/2) _ = !
et [ o p kK, o)
h W k)= " | 1-2 ’
where ( ) ' k—K/ iz [ fw' -+ (l fkl ‘l—l fk, l)/ﬁ] (2)

0

and p (q, w) is the spectral representation function of the effective electron-electron
interaction Veg (q, w). The function W (k, k') can be thought of as the effective
superconducting interaction corresponding to the usual interaction causing the
transition in which the Cooper pair k' 4and — k' }changes to k4and — k J, respec-
tively, with momentum transfer q=% k—7% k' and energy transfer # w = €k — &xr,
£k being the energy measured from the Fermi energy Ep. For a homogeneous
isotropic system, the spectral representation function p (q, w) is given by (Kirzhnits
et al 1973) ‘ '

1 g 1
P@o)=—- T mye=—1metqw 3)
-1 4ar g2 T

where € (q, ) is the longitudinal dielectric response function of the system. If one
carries out an angular average over 0, the angle between k and k', or equivalently
over g = (k? 4 k' —2kk’ cos )%, and changes the variables from k and k' to ¢ and
¢, one obtains

2= | g;i tanh (8, £/2) K (¢, &) © (£), @
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where the kernel K(¢, ¢') is given by

(e, ¢y — e VD k(f)fk'(fl)@[l +2 7 o m G “")]. ®)
R K 29 mJ o' +([E[F[EN)
| — k(7 | 0

Here, N(€) = d®k/(2n)3 d¢ is the density of states for one type of spin and_ k(f.) =
[2m (§+ ER)}/s. If the dielectric function et (g, w) is split into contributions

arising from the direct electron-electron Coulomb interaction and various indirect
exchange interactions, as

Q@) =) & (g w), 6)

i

the corresponding kernels can also be rewritten as

K& =S K& ¢). M

The determination of T, essentially reduces to solving the generalised gap equation
(4) in terms of the kernels K; (¢, €). Ttcan be shown that K; (¢, &) is a smooth real
function of its arguments and falls off separately in each argument. If one splits
the bare Coulomb interaction term, i.e. the first term 1 within the square brackets
in equation (5), in a manner consistent with the screening of long wavelength inter-
actions due to each mode, including the Coulomb plasma mode labelled by ¢, one
expects K. to be repulsive for small ¢ and ¢’ whereas the other remaining kernels will
be attractive in this region. A good estimate of T, in such a case is usually obtained
by replacing each kernel K (¢, &) by suitable square-wells. Explicitly, one assumes

K6 €)=K 0,0, for—Hauy <¢¢ <ha, ®
= 0, otherwise

where the upper frequency cut-off w;p is the frequency of the corresponding mode

for g ~2 kg, and the lower cut-off w;; is.the minimum of w;p and Ep. For the
Coulomb kernel, W3R = W, the electron plasma frequency. Using equation (5)

and the usual dispersion relations, the strength of the individual coupling constants
can be rewritten more simply as

2k

F
N(0) 4umet _

K (0,0) = = dg— (g, 0). ®
ZkF'“! q 7

For‘ a three-square-well model involving two attractive exchange mechanisms with
coupling constants A = — &, (0, 0) and X = — K, (0, 0), respectively, and the
direct repulsive Coulomb coupling constant y = K; (0,0) = K, (0, 0), solution of
equation (4) leads to the transition temperature T, given by o

kp T. =114 4 w,, exp (—Lgeg) kB T. < % wy,, (10)
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A
= A = '
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2m

Here, the effective range Wim = (w;r w,p)¥, and we have assumed Wi < Wy < gy

Note that the above expression is valid only in the weak coupling limit. To take
care of strong coupling effects, one can approximately change

by A :
g b = e (13)
4,0 BT s I+ %]

in the above expression for T..

For carriers in two different bands, as in the case of semi-metals, a slight extension
of the above method is necessary (Geilikman and Kresin 1974). Note that now we
have two different Fermi energies EFe and Epy, and hence different possible ranges
‘”}m# (n==eorh). In sucha case, we have to first calculate 8c. and g,, using the -

corresponding expressions (1 1) to (13). Except for the density of states factor
Ny (0) in ’fhi ::io)upling constant ,\:; = — V:: Ny (0) for each modet, if the average
interaction V v is assumed to be the same for different carriers (see I, for the two

band case one finds
kpT.—114 % (wlme)[Ne(O)]/[Ne(O)-I—N;.(O)] (wlmh)[Nh(O)]/[Ne(O)+Nh(0)]
X exp [_1/(gee+ghh)] 14

Here, for p=e, b,

e = A A0 [ [1 =00 10 onmptnm)] (1s)
X2 = D+ A® | [1 — A% In (wa,,,,‘/w,,,,,‘)], (16)
Dimp = (wiL/.L wiR}L)i’ 17
DiRu = @i (2ka)’ @y, = Min (wiRu’ EF#/h). (18)

In the next section, we discuss the application of this procedure to a simplified model
of the dielectric function in simple semimetals.

e ) . w, ,
tThe explicit expression for ’\lm 1s given in equation (35).
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3. Interaction kernels in semimetals

The longitudinal dielectric function for a semimetal can be approximately written as

E(qs w)= €core (q’ w) + ‘47Ta‘e'(q’ w) + 477“1((15 w)s (19)

where ecore (¢, @) corresponds to the polarisability of the core electrons and a{q, w)
is.the polarisability of the valence electrons in partially filled bands. The third term
a, (g, @) is the ionic polarisability. .In the frequency region of interest, €core Can
be assumed to be independent of frequency and replaced by a constant.

ccore (@ @) = ¢, = constant. (20)

The calculation of a,(q, w), in general, can be quite subtle (Cohen 1969). In semi-
metals, where one has degenerate electrons and holes, it is written, within the random
phase approximation, as the sum of intra-band and inter-band contributions. The
intra-band terms can be parametrised, as in the jellium model, by the plasma fre-
quencies wp, (p=e or #), and the screening wave vectors g, which give the correct
static compressibility. These are constructed to be correct in both static and high-
frequency limits. In other words, we can assume

drra o (0, @) = yilwz + _yszwg, 2y,
where Ay = b, = 4mn, e*m,,
4y = b, = 4mny, étmy,
= o g = (olg) ¢ | (22)
Vo = agq* = (‘”in"lfh) q%.
The screening wavevector g, is given by
2, = (KIK), iy, = (I, T | 23)

where (K/K}) " is the ratio of the actual compressibility to the free compressibility
of the corresponding interacting liquid. For small r, u defined by

To = O[O (m e /n%kp,), | 24
i.e. for large density, one has

(K;IK), ~ (1—ar, J), @ = (@4[9nP3, @y
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in the Hartree-Fock approximation. Its behaviour at low densities, i.e. for large Tsu

is not very well known (see e.g., Shastry et al 1978), but is expected to vanish (Wigner
1938) at some large r, " Instead of using an elaborate interpolation scheme, approxi-

mately, we assume:

(K/[K), = 1(1+arg,/n) (26)

in the density region of interest to us. The interband terms are also not so straight-
forward, but in the frequency range of interest to us, if we ignore the small excitonic
effects, we can again take it to be a constant A;/(E}/4%) (see I).. This can be combined
with the core contribution (20), the total being redefined as another constant e,
For our purpose, the ionic polarisability 47a; (q, w) can be replaced by its high-
frequency value given by

dmay (Q @) = — Ay, e

where A, = 4nn; Z o €*[m; is the square of the ionic plasma frequency.

Combining all the contributions, we take the model expression for the longitudinal
dielectric function as
+ A A A= e (28)

Yo—w?

4,

1w

2

€ (q’ ‘U)Z"-'o [1 +
y

The zeros of the above function give the different longitudinal modes of the system.

It would become clear later that for large ¢, the low-frequency ionic-sound mode

frequency is approximately equal to Zf . This should correspond approximately to

the Debye frequency w ,, so that we can identify 4,/ by
Agfeg = d; =~ 0, (29)

and use the corresponding experimental values. Since we are interested in separating
out contribution to ¢ (q, w) from different longitudinal modes, we can invert (28)
in the form

L@ w) = o [+ 52 F @/ —Q: @), (30)

where (,(q) are the frequencies of the three longitudinal modes obtained by solving
the cubic equation

Q2(y, — Q) (3, — Q) + 4,02 (v, — Q)
+ 4y, Q2 — QY — 4, (5 — Q) (3, — QH=0, (31)

and the oscillator strengths f; (q) given by

Fi@ = Q2 Q2 — ) Q2 — ) [7(Q2 — Q). (32)
J#i |
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It is easy to see that the following sum rules are valid:

2?=1 Q7@ = Il + Iz + A‘; +yit Ve - (333)
;;1}; @ = 21 + Zz + 24, (33b)
020 =1, | (339

where f; (0)/Q2(0) is to be understood as the limiting value of f: (9)/Q%(q) as g—0.
To take care of screening of the long wavelength part of the interaction, one is there-
fore allowed to rewrite equation (30) in the final form

= 0 -
@)= z?=1 €1 (¢, w), &t (q, w) = €1 [f’ © /i @ ] .

QO -0

(34)

jfhis separation uniquely ensures that each €1 (q, 0) goes to zero as q =0, and the
integration of the type (9) is well behaved at the lower limit. The above expression
can be used directly in equations similar to (9) to calculate the kernels K; (0, 0) once

Q7 (g) and ﬁ (@) are known. 1In the two-band model for electrons and holes, for

each mode the coupling constants Agi and the kernels K (0, 0) for u=e, h, of
course have to be rewritten as H

2k

2
O _ i) Ipry Fe -
M = — K (0,0) = — | @< @o, (39
ka 0

where ‘;1 is given by (34),
In general, equation (31) has complicated analytic expressions for its roots, except
1m some limiting cases. In the small ¢g-limit, we find
1 ~ -~ ~ ~
8@ =3 |1t - Actnds) L by 2iond )
At4,+-4,) 2 4
_ 4oy, ]%
At Al

~

 AytAytd,

(36a)

I oy Aavi =
Q3 (q) = 5 [)’1‘?‘3*’:*— M{;&i—yyi f] 41 [( Vi, — Y1t rads )2
Atdebds 20T A,
44,y
~ HMow, ]%

At (365)

2 q) = 4.7 L7 P TN T o~ o~
Y AT A A Oy ) (4, Ay A), (360)
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2

2, 2 2
where we recall that y1=~a1q2=(wpe / qse)q2 and y,=ayq?= w, h/qsh)qz. Here, Q,

corresponds to the lattice-phonon mode, Q, to the EHS mode and Q. to the
Coulomb plasma mode. In this limit, we also find

fi@) — ayq%, fy(@) —> a,g* and £, (q) —> a5 = const. 37
q—0 q—>0 q->0

Similarly, for large g-values, when 24 <21, zi;, one has
Qf @ =45 Q3@ = 45 Q2 (@ = y+4y, (38)

if my, > m,; otherwise the expressions for modes 2 and 3 get interchanged. For arbit-
rary values of g, we have solved equation (31) numerically to obtain  2(q). This also

allows us to obtain ﬁ (9), and hence e;l (q, w) and Agz , for each mode, by using equa-

tions (32), (34) and (35), and numerical integratioﬂ methods. We have calculated
these for various sets of parameters n,, = n, =n, (which is a function of pressure),
Mg My, wp, €tc. on a computer. Further, we can take the upper cut-off frequencies

Wiy % A), wyp, = Min (42, 4} and wyp, = Q, (k).

For the purpose of illustration, the dispersion relations obtained for the three modes,
i.e. the frequency as the function of the wave vector, have been plotted in figure 2,
with parameters n, = 2:75X 10Y cm=3, m,/m = 0-045, m,/m = 0-141, € = 1-0 and
0 p=( wp/kg)=120°K. (Here the average massm = (mlmzms)i where m,’s are the

0-4

Coulomb plasma

me/m =0-045

2
0 mh/m = 0141
o2~ =1
ne = 2:75x10 cm3
g, = 120°K

4 -
Frequencies Q/ 5x 10'sec*!)
]

p
1
i
|
i
i
i
|
4
|
i
i
i
i
1
b
|
|
:
I

0.04 I~ ' Electrothole sound
Tonic sound
. /
‘o 1 1 l
o] 10 2.0 30 40

Wavevector (g/kg)

Figure 2. Dispersion relations for (i) the ionic sound, (ii) the electron-hole sound
and (jii) the Coulomb plasma modes in a bismuth-like semimetal.
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effective mass values evaluated at the Fermi surface). These parameters correspond
to the case of bismuth at the atmospheric pressure (Dresselhaus 1971). The two lower
modes, i.e. the jonic sound mode Q, and the electron-hole sound mode £2,, are sound-
like with w? proportional to ¢* for small g-values. The Coulomb plasma mode ),
however, tends to a constant (4;+4,+4,)} as q—0.

In general, we find that the interaction kernels due to the ionic sound mode and the
electron-hole sound mode are attractive for low frequencies. The Coulomb pla.sma
mode, however, is repulsive for low frequencies corresponding to the repulsive direct

. f)
Coulomb interaction in the jellium model. Now that the coupling constants '\Em
and the cut-off frequencies are known, the procedure explained in § 2 can be carried out

to obtain g,, and g,, and the corresponding superconducting transition temperature

T, for any given set of parameters. This will be discussed in detail in the next
section.

4. Results and discussions

In the last two sections, we have described how we can calculate the coupling const-
ants X

;L fo; each of the three modes in our two-band model for the semimetal, and

- consequently how to determine the corresponding 7., using equations (14) to (19). Fro

bismuth at atmospheric pressure, the carrier density is n.=n,=n, ~2-75x 1017 cm~3,
the average electron mass is m, ~ 0-045 times the bare electron mass m, the average
my/m, =~ 3-2 and the Debye temperature 8 p=120°K. With ¢y =~ 1, this set of para-
meters leads to a T, in our model, which is less than 10-2 °K. This is consistent
with the experiment where no transition has been observed at low pressures. In
fact, in this case, since the mass ratio my[m, is less than 5, as already noted in I, there
is no superconducting transition if the attractive ionic sound mode 1 is completely
ignored in our -calculations (i.e. when Ay~ 0). However, because of the fact that
the contribution due to EHS-mode is a sensitive function of m
this ratio, if we include both the ionic-sound and the EHS co
an observable T, at higher densities, even when my/m,
the coupling constants and the transition tem
decreasing functions of He,
initial increase with n, befo

/My, and increase with
ntributions, one expects
is less than 5. In such a model,
perature 7, are not monotonically
as in the lattice phonon jellium model; but there is an

re these start decreasing. Since, on application of pres-

sure, n. is expected to generally increase in semimetals, we expect that inclusion of the
EHS mode may allow us to explain the observed variation of T, of the type shown in
figure 1.

On application of pressure, bismuth is known to undergo polymorphic transfor-
mations, as established by Bridgman (1952) by measuring the volume compressibility

and by Bundy (1958) from electrical resistance measurements. The values of the trans-
formation pressures were, PI-II =~ 253 kbar, P

11111 = 27°0 kbar, Py 1y, o448 kbar,
Pry.y 2650 kbar and Py y; o895 kbar. In the transformations LTV and IV-V.
the volume-change AV/V,

was small, approximately 0-5 %. While Bi I
conducting, Bi II (Brandt and Ginzburg 1965),

Itskevich 1970) and Bi VI (Wittig 1966) have b
ducting transitions. A detailed and more

is not super-
Bi I, Bi IV and Bi V (I'ina and
een observed to undergo supercon-
precise experimental study of the
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pressure-dependence of T in bismuth in the 30-80 kbar pressure range, i.e. III-IV-V
phases, has been made by II'ina (1976) who has also studied the Bi-Sb alloy systems.
But there is no detailed study of the values for n,, m,, m,/m, and w p and of their

pressure dependences. However, it is fair to assume that, here w p 1s a slowly
varying function of pressure P, the negative band gap

E, ~ constant (P), (39)
ie. ne o BP3/2 or (n.[10'8 cm™3) = (P/P,)%? : (40)

and the mass ratio m,/m, is only slightly different from = 3-2, the value at low-pressure.
In fact, since in our case the most sensitive parameters are my/m, and n,, in that order,
we have tried to fit the experimental values for T, in bismuth, as shown in figure 1,
by assuming 8p still to be 120°K, and using only two free parameters P, and m,/m,.
We find that we get the best fit for our theoretical values of 7. with the corresponding
experimental values in bismuth, if we choose P~ 10-55 kbar and m,/m, ~ 4-8, over
the whole range of pressures between 30 kbar and 80 kbar for which the experimental
observations are available. We point out here that equations (39) and (40) are only
approximately valid. A more reasonable form to choose would be E, — E,, o P,
where E,, is the extrapolated value of E, at low pressures. We have checked that a
very good fit is obtained with E,y < E, in the region of interest, thus validating our
choice of the form given above. Note that we have neglected the damping of the EHS-
mode, possibly mainly due to the interband collisions, in our analysis. This will
definitely change the quantitative results of our calculations, but the basic qualitative
results should remain valid. ’
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Figure 3. Theoretically calculated values of the superconducting transition tempera-
ture T, as a function of the carrier density 7, for bismuth under pressure. The circles
correspond to the experimental values for bismuth, obtained from figure 1 (see text).
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The theoretical values of T, in our case, as a function of n, and the corresponding
experimental values obtained from figure 1 and equation (40) are plotted in figure 3.
There is a close correspondence between these two results. It should be noted that
the value used for m,/m, is not very different from its value in the low pressure phase.

With the application of pressure, in the new phase there is always the possibility of
compression and rearrangement of different valleys occupied by the carriers, and hence .

. 1/3 . . .
a change in the value of the average mass m,, = (1, M mg)“ . In this connection, it

is interesting to note that for bismuth, in the phase transformations Bi III - Bi IV —
Bi V, the volume changes are small compared to the change in the Bi I - Bi IlI trans-
formation. This may, in a way, justify our taking 7, and m,/m, same in the 30—80
kbar region. Also, it should be emphasised that the final value of P, used to fit
the data is of reasonable order in magnitude.

Our calculations and analysis can be extended to the case of arsenic and antimony

also. However, the experimental data on the pressure dependence of T, for these
" materials are not available in detail. It will be very hard, therefore, to carry out
detailed analysis as in the case of bismuth. In figure4, we, however, present the results
of our calculations and the possible density-dependence of T, in these materials.
The parameters m,/m, are chosen to approximately fit the maximum observed values
of T, in arsenic (Berkman and Brandt 1969) and antimony (Wittig 1969) under pres-
sure. It is clear from our results that T, in arsenic is very small because there the
mass ratio m,/m, is closer to 1 as compared to the other two materials.

Before concluding, it should be emphasised that although we have demonstrated
here very explicitly that the inclusion of EHS-exchange mechanism is crucial to explain
the pressure-dependence of T, in a semimetal like bismuth, it is not clear that our ex- -
planation is unique. For example, unless complete band-structure calculations for
interacting electron- and hole-fluids are performed for these semimetals, one is never
sure whether the picture is complete. Nevertheless, within our simplified model,

o
&
|

Sb - As
my/m 0-100 0200
‘me/my, 4-25 3675
g,°) 210 280

ny
[8}]
|

Transition temperature Te (K)
I

o
[8)]
i

8
10° - 10° 102° o2 o2

Carrier density n, (em3)

Figure 4. Theoretically calculated values of the superconducting transition tempe-

ture T, as a i i ; ; ¢
o I;t asa 3{unctlon of n,, the carrier density, with parameters relevant to arsenic
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we-have shown that the ratio of the average masses m,/m, is an extremely sensitive
parameter in determining the superconducting fransition in semimetals. This fact is
expected to retain its validity even in more elaborate calculations of T,.

A real test of the model proposed here can, of course, only be made if the electron
and hole masses m, and m,,, the Debye temperature 8p and the carrier concentration
n. are known as functions of pressure. It should be borne in mind that given this
experimental information, we have a unique way to determine T, within the forma-
lism. Future experiments in this regard should, therefore, be extremely interesting.
If indeed the role of the EHS exchange mechanism is established, then it would
be worthwhile to look for a semimetal with m,/m,> 1 and n, ~102° cm~3 which would
be expected to have a high superconducting transition temperature.

We would like to conclude with a brief comparison of our model for m,/m, > 1
with that of Abrikosov (1978). In our case, since the holes are delocalised, the total
coupling constant is dominated by that of the holes. However, if m,/m, is increased
still further, T, will become comparable with the Fermi temperature of the holes.
They will then form a lattice and the total coupling constant will be determined
essentially by that of the electrons which, as our calculations indicate, is small. Thus,
in the Abrikosov limit, T, will be small whereas in the regime considered by us, it
can be quite large (~100°K) for suitable values of the carrier concentration n, and
the effective masses.
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