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FACIAL CHARACTERIZATIONS

OF COMPLEX LINDENSTRAUSS SPACES

BY

A. J. ELLIS, T. S. S. R. K. RAO, A. K. ROY AND U. UTTERSRUD

Abstract. We characterize complex Banach spaces A whose Banach dual spaces

are £'(/*) spaces in terms of L-ideals generated by certain extremal subsets of the

closed unit ball K of A*. Our treatment covers the case of spaces A containing

constant functions and also spaces not containing constants. Separable spaces are

characterized in terms of w*-compact sets of extreme points of K, whereas the

nonseparable spaces necessitate usage of the w'-closed faces of K. Our results

represent natural extensions of known characterizations of Choquet simplexes. We

obtain also a characterization of complex Lindenstrauss spaces in terms of

boundary annihilating measures, and this leads to a characterization of the closed

subalgebras of C^X) which are complex Lindenstrauss spaces.

1. Introduction. Let S be a compact convex subset of a locally convex Hausdorff

space and let A(S) denote the Banach space of all real-valued continuous affine

functions on S for the supremum norm. It is well known (see Alfsen [1]) that S may

be identified with the state-space {<p G A(S)*: <p > 0, <p(l) = 1} of A(S) and that

the unit ball of A(S)* may be identified with co(5 u - S). S is called a (Choquet)

simplex if A(S)* is a vector lattice for the natural dual partial ordering. The set of

extreme points of S will be denoted by dS.

If F is a face of S then the complementary set F' consists of the union of all

faces of S which are disjoint from F; each x in S may be decomposed x = Xy +

(1 - X)z with ©< X < 1, y G F, z £ F'. If F' is itself a face of S and if the

constant A is uniquely determined by x, then F is called a parallel face of S, and if,

in addition, y and z are uniquely determined by x (0 < X < 1) we say that F is a

split face of S.

Ellis [9] showed that S is a simplex if and only if every closed face of S is split.

This result may be rephrased to state that S is a simplex if and only if lin„ F (the

real-linear hull of F) is an L-ideal in A(S)* whenever F is a closed face of S (see

Alfsen and Effros [2, p. 161]). (A closed linear subspace L of a Banach space V is

called an L-ideal if there exists a projection P from V onto L such that for each

x e V, \\x\\ = \\Px\\ + ||x — Px\\.) For this result it is only necessary to assume the

condition for each peak face F of S (see §3). Earlier, Rogalski [21, Theoreme 37]

had shown that if S is metrizable then S is a simplex if and only if co E is a split

face of 5 (equivalently linR co E is an L-ideal in A(S)*) wherever E is a ^-com-

pact subset of 35. Ellis and Roy [10, Theorem 1] have shown that Rogalski's result

does not extend to the general nonmetrizable case.
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The compact convex set S is a simplex if and only if A(S)* is isometrically

isomorphic to a real L'(/t) space, i.e. if and only if A(S) is a real Lindenstrauss

space (see, for example, Semadeni [22]). In this paper we study the analogues of the

results just mentioned to complex Banach spaces, that is, we characterize complex

Lindenstrauss spaces (complex Banach spaces whose duals are isometrically isomor-

phic to complex L'(ju) spaces) in terms of L-ideals generated by certain extremal

subsets of the dual unit ball.

In the first part of §3 we consider the most natural complex analogue of A(S)

spaces, namely the closed linear subspaces A of C^X) containing constants and

separating points of X, where A' is a compact Hausdorff space. In this situation the

state-space S = (<p G A*: <p(l) = 1 = ||<p||} plays an important and natural role.

We show that A is a complex Lindenstrauss space if and only if liiif. F (the

complex linear hull of F) is an L-ideal in A * whenever F is a closed (peak) face of

S. This generalizes the result of Ellis [9]. At the end of §2 we adapt the example of

Ellis and Roy [10] to show that there exists a nonseparable space A which is not a

complex Lindenstrauss space but for which lin^- co TE is a (w*-closed) L-ideal in

A* whenever £ is a w*-compact subset of the closed unit ball K of A*. The

methods used for these results are generally adaptations of the methods for A(S)

spaces.

The situation for complex Banach spaces A whose unit balls possess no extreme

points is more complicated. In this case we use the machinery of complex Choquet

theory (see Phelps [20]) and rely heavily on the work of Effros [8] and Lima's

characterization [17, Theorem 5.8]; the Bishop-Phelps theorem [3] also plays a

crucial role here, as it does in the real situation (see Ellis [9]). In the first part of §2

we show that for separable complex Banach spaces the result of Rogalski men-

tioned above has a natural analogue: A is a complex Lindenstrauss space if and

only if line co TE is an L-ideal in A * (where T denotes the unit circle) whenever E

is a w*-compact subset of dK. In §3 the main result (Theorem 3.3) of the paper

shows that, in general, A is a complex Lindenstrauss space if and only if hr^ F is

an L-ideal in A* whenever F is a w*-closed face of K. The proof of this result

depends on the corresponding result for spaces A containing the constant func-

tions. We conclude §3 by giving a characterization of complex Lindenstrauss

spaces in terms of norm-closed faces of the dual ball, and also by applying our

previous results to characterize real Lindenstrauss spaces.

In §4 we extend a measure-theoretic characterization of complex Lindenstrauss

spaces, due to Hirsberg and Lazar [14], to the case without constants. This enables

us to characterize the closed subalgebras of C^X) which are complex Lin-

denstrauss spaces.

If X is any compact Hausdorff space then by a measure on X we will always

mean a regular Borel measure on X. If A is a subspace of CC(X) we will write A ±

for the set of measures ft on X such that // dp = 0 for all/in A,

The third author wishes to thank the U. K. Science Research Council for
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2. Separable spaces. In order to prove the characterization of separable complex

Lindenstrauss spaces which is the analogue of Rogalski's characterization of

metrizable simplexes, we need to establish some properties of complex Lin-

denstrauss spaces which are valid in the nonseparable case also. We first recall

some notation of complex Choquet theory (see Phelps [20]).

Let A be a complex Banach space and let K, with the w*-topology, denote the

closed unit ball of A*. If g belongs to CC(AT) (the complex-valued continuous

functions on K) we define a /-homogeneous function hom g in CC(K) by

(horn g)(L) = [ ig(tL) dt,   LEK,
jt

where T = {z EC: |z| = 1} and the integration is with respect to Haar measure on

T. For a complex Borel measure ju on K we define another complex Borel measure

hom fi, with ||hom ju|| < || (i\\, by

(hom n)(g) = jit(hom g),       g G CC(K).

For any complex Borel measure ju on K we can write dp = hd\[i\, where h is a

Borel function with modulus 1, and we define a positive Borel measure Rp on K by

(Rri(g) = f g(h(L)L) d\ n\(L),       g G CC(K).

Then we have \\Rn\\ = || ju||, hom Rp = hom ju,, and if ju. is a probability measure on

AT with resultant L G K with ||L|| = 1 we have /?(hom p) = ju. (see Phelps [20]).

Effros [8] showed that A is a complex Lindenstrauss space if and only if

hom ju, = hom jx2 wherever /x,, ju^ are maximal probability measures on K with

common resultant L G K.

Proposition 2.1. Let A be a complex Lindenstrauss space {not necessarily separa-

ble) and let K be the closed unit ball of A*. Let E be a compact subset of 3 A", let

F =co TE and let J = linc F. Then J is a w*-closed L-ideal in A* such that

J n K= F.

Proof. Clearly F is contained in J n K. In order to show that F = J n K we

must show that if x G J n K with ||x|| = 1 then x G F. But such an x can be

written x = ap for some a > 0 and p G F, and so it will be sufficient to prove that

/7/||/>|| belongs to /"whenever/? belongs to Fwith 0 < ||/?|| < 1.

Let fibea maximal measure on K, supported by TE, with resultant r( p) = p,

and let up = /?(hom ju). Recourse to the definitions shows that hom /a and up are

also supported by TE. Choose a maximal probability measure v on K with

r(f) = P/\\P\\, and let q G dK. Then if

e = \\p\\v + {\ - \\P\\){\£q +\t_q),

0 is maximal with r(8) = p and so Effros' characterization of complex Lin-

denstrauss spaces shows that hom 0 = hom/i. However hom# = ||/»||hom f be-

cause   (hom eq)(g) = (hom g)(q) = -(hom g)(-q) = -(hom e_q)(g)   for   g   in
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C^K). Therefore we have

up = R(hom 9) = R{\\p\\\\om v) = ||/>||/?(hom v) = \\p\\v,

so that v is supported by TE. Hence />/||/>|| belongs to F and, consequently,

F = J n K.
The Krein-Smulian theorem now shows that J is a w*-closed linear subspace of

A*. To show that J is an L-ideal we need to show that J n co{J') = 0, where J' is

the complementary cone of J (see Alfsen and Effros [2, p. 110]). Suppose that

0 =f= x = a/-, + (1 - a)/"2,        x G 7, 0 ^ r, G /', 0 < a < 1.

Since r,, r2 belong to J' we have

face(ry/||ry||) n J = 0,

and so >)/||/)|| belongs to J' for / = 1, 2. Let /» = x/||x|| and put R = a||r,|| +

(1 — a)||/-2||. Then we have

y3-1(«|k1||(r1/||/-1||) + (l-a)||r2||(/-2/||/-2||))

= x/R = \\x\\/Rp + (1 - \\x\\/R)0.

Choose a probability measure ft on K, supported by TE, with r(ju) = p, and choose

maximal probability measures ty on K, supported by J' with r(ju.) = ')/||')||- (For

the latter choice see Alfsen and Effros [2, p. 113, Lemma 4.3].) Using Effros'

characterization of complex Lindenstrauss spaces we obtain

a||r,||hom ju., + (1 — a)||r2||hom jUj = ||x||hom/j,

and since hom ^ is supported by 77' = J' and hom fi is supported by J, we must

have hom ju = 0. But then r(hom ft) = r( ju) = x = 0, giving the required contradic-

tion.

Theorem 2.2. L^? A be a separable complex Banach space and let K be the closed

unit ball of A*. Then A is a complex Lindenstrauss space if and only if J =

liiL^ co TE is an L-ideal in A* whenever E is a compact subset of dK.

Proof. The necessity of the condition is shown by Proposition 2.1, so we assume

the condition concerning E to prove sufficiency.

If we can show that whenever x G K, \\x\\ = 1, such that Px = x or Px = 0 for

all L-projections P on A* then x belongs to dK, we will have verified all the

conditions of Lima [17, Theorem 5.8(ii)] and it will follow that A is a complex

Lindenstrauss space. Fix such an x and choose a maximal probability measure ft

on K with r( ft) = x. We will show that ft is supported by a single point, and thus x

belongs to dK.

Whenever E is a w*-compact subset of 3A" we will show that J n K =co TE.

Since J is norm-closed and is generated by a w* -compact convex set it is w*-closed

(see Dunford and Schwartz [6, V.5.9]), and so if J n K properly contains co TE

there is an extreme point y of J n K not belonging to TE. Because J is an L-ideal

y belongs to 3A", and TE is contained in JJ, the complementary L-ideal to lincfy}.

Let p G co TE and let 17 be a probability measure on TE with r(rj) = p. If e is the

L-projection with range liricly} then the function q ~* v ° e(q) (q G K, v G A) is
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w*-Borel and satisfies the barycentric calculus (see Alfsen and Effros [2, p. 113]).

Therefore

v ° e(p) = j v ° e(tz) dt](tz) = 0

for all v in A and, consequently,/? belongs to J'y. But then.y G 7 is contained in J'y,

which gives a contradiction.

If E is a compact subset of 3A" let PE denote the L-projection associated with 7.

The condition on x implies that either x G 7 or x G J', where 7' is the L-ideal

complementary to 7. Write ju, = /x| TE and fi2 = ft|(3A" \ TE) (3A" is a Borel set

since A is separable). If f^ ^ 0 let yj G A" be the resultant of fi,/||ft,||, and let

X, = \\p-j\\y/, otherwise put Xj = 0. Then we have x = x, + x2 and, since ||Xy|| <

|| fiy||, we have 1 = ||x|| = ||x,|| + ||x2|| and, moreover, x, G co TE so that x, G 7.

If x G /', then x = (I - PE)x = (I - PE)x2, and, since ||(7 - PE)x2\\ < \\x2\\,

we must have x, = 0, that is, [i(TE) = 0.

On the other hand, suppose that x belongs to 7. Then x = PEx = x, + PEx2

implies that ||P£x2|| = ||x2||, so that x2 belongs to 7 also. If x2 =£ 0 then, since ft is

supported by 3A, we must have \i{E') =fc 0 for some compact subset E' of 3A \ TE.

Uy denotes the resultant of n\E'/n(E'), and if u = n(E')y, we can write x = x, +

u + v for some v in A, where 1 = ||x,|| + ||u|| + ||u||. This implies that u belongs

to 7. Since 7 n K = co TE there exists a maximal probability measure v on A,

supported by TE, with r(j») = u. Then if / = n\E' the measure v — v' is a

boundary affine dependence on A and, since lii^ co TE' is a w*-closed L-ideal,

(p — v')\TE' annihilates A0(K) (see Alfsen and Effros [2, p. 115, Theorem 4.5]).

Consequently v' and, hence, v belong to AQ(K)±, and so « = r{y) = 0. This

contradiction shows that x2 = 0 and that fi(3A" \ TE) = 0.

Suppose now that (supp ft) n 3K contains points zx,z2 with 7z, n Tz2 = 0. We

can find disjoint open neighbourhoods of Tzl and 7z2, and, hence, we can find a

compact subset E of 3AT with ft( TE) > 0 and ft(3A" \ TE) > 0. The previous

reasoning shows that these inequalities holding simultaneously is impossible. There-

fore ft is supported by Tz for some z G 3A". However, since x = /-(ft) and ||x|| = 1

it is evident that ft is supported by a singleton, as required.

The proof of Theorem 2.2 depends heavily on the metrizability of 3A^ or at least

on the fact that maximal measures on K are supported by 3K. Ellis and Roy [10,

Theorem 1] have shown that Rogalski's characterization of standard simplexes [21,

Theoreme 37] does not extend to the general nonstandard case. We now adapt this

construction to show that the separability condition may not be dropped from

Theorem 2.2.

Let 5 be a compact convex set and let ^4C(^) denote the Banach space of all

continuous complex-valued affine functions on S, with the supremum norm.

Theorem 2.3. There exists a complex Banach space A with dual unit ball K which

has the following properties:

(i) 7 = line co TE is an L-ideal in A * whenever E is a compact subset of 3A";

(ii) A is not a complex Lindenstrauss space.
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Proof. Let S be the compact convex set which is constructed in Ellis and Roy

[10, Theorem 1] (denoted there by K). Then S is not a simplex, the compact subsets

of dS are the finite sets E and co E is a split face of S. Let A = A^S).

The space A is selfadjoint with state-space S, and since 5 is not a simplex it

follows that A is not a complex Lindenstrauss space (see Hirsberg and Lazar [14]).

The map (p ~»<p/(p(\) is a w*-continuous mapping from 3A" onto 35", and hence if

E is a compact subset of 3A' then line E = 7 is finite dimensional, say 7 =

linc {x„ . . . , x„} where x, G 35 for 1 < j < n. Since F = co{x„ . . . , xn) is a split

face of 5, and since A is selfadjoint, co(F u - iF) is split in Z = co(5' u - iS)

and therefore 7 is an L-ideal (see Hirsberg [13, Corollary 2.7]).

Theorem 2.3 also gives an example of a non-Lindenstrauss space A with the

property that whenever E is a compact subset of 3A" every continuous linear

functional on lin^- E has a norm-preserving extension in A (compare the example in

Alfsen [1, Proposition II.3.19]).

3. General spaces. We saw, in Theorem 2.3, that the characterization of separable

complex Lindenstrauss spaces given in Theorem 2.2 is not valid in the general

nonseparable situation. We now seek a characterization of complex Lindenstrauss

spaces, valid in the separable and nonseparable cases, which is analogous to the

facial characterization of simplexes given by Ellis [9]. Our present characterization

will be in terms of faces of the dual unit ball K.

A face F of a compact convex set S is called a (w*-closed) peak face for A(S) if

F = /-,(0) for some nonnegative function / in A(S). Briem [5] generalized the

result of Ellis mentioned above by showing that 5 is a simplex if and only if every

peak face of 5 is parallel; a simple proof of Briem's result can be obtained by a

slight modification of the proof of Ellis and Roy [10, Theorem 2]. This result will

be used in what follows.

Firstly we consider the situation for complex Banach subspaces of CJ^X)

containing constants, where X is a compact Hausdorff space. The required char-

acterization in this case follows closely the characterization of real Lindenstrauss

spaces of the type A(S), and is much more straightforward than the general case.

Theorem 3.1. Let A be a closed linear subspace of CC(X) containing constants and

separating the points of X, where X is a compact Hausdorff space. Let S be the

state-space of A and let K be the unit ball of A*. Then A is a complex Lindenstrauss

space if J = lii^ F is an L-ideal in A* such that 7 n K =coTF whenever F is a

peak face of S for A(S).

Proof. To prove that A is a complex Lindenstrauss space it will be sufficient,

using the result of Hirsberg and Lazar [14, Theorem 2], to show that the set

Z = co(5' u - iS) is a simplex. By Briem's characterization of simplexes it will be

sufficient to show that each A(Z)-peak face of Z is parallel.

Let H = co(/r u - iG) be an ^(Z)-peak face of Z, so that F and G are

A(S)-peak faces of 5. We first show that J (~) S = F, where 7 = line F. If p

belongs to 7 n S then, by hypothesis,

p=w*-\im  J |   Xi°YkaWl
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where 0 < a£"> < 1, Z£., \£a) = 1, 4a) e T,y^ G F. In particular we have

p{\) = 1 = lim   2   Ai*>4o)
"    *=i

■

and it follows that

t> = lim   2   4"Wa)eF
"    *-i

as required. Similarly we obtain (lii^ G) n (— '5') = -iG.

Since 7 is an L-ideal and J n S = F, a result of Hirsberg [13] shows that

7 n Z = co(F u — iF) is a split face of Z. Now if ft belongs to A(Z)-1 n M(dZ)

(where M(3Z) denotes the real boundary measures on Z), then /x|co(F u — iF)

belongs to A(co(F u — iF)), and because F is a parallel face of co(F u — iF), it

follows that ft(F) = 0 (see Hirsberg [12]). Similarly we can show that ft( — iG) = 0

and, hence, ft(/7) = 0. Therefore H is a parallel face of Z, so that Z is a simplex.

The converse of Theorem 3.1 is also true. This will follow from a more general

result (Theorem 3.3) below. Variations on the hypotheses of Theorem 3.1 may be

given, and these are discussed in the following corollary. In particular it will follow

that if A is assumed to be selfadjoint in Theorem 3.1 then the hypothesis

7 n K = co TF may be dropped.

Corollary 3.2. The hypotheses on F in Theorem 3.1 may be replaced by either of

the following two conditions:

(i) F is a split face of co(F u — iF) and 7 is an L-ideal whenever F is an

A(S)-peak face of S;

(ii) 7 is an L-ideal such that 7 n A" =co TF whenever F is a peak face of S for

re A, i.e. F = /"'(0) n S for some f Gre/1,/ > 0.

Proof, (i). A straightforward verification shows that J n S = F and the proof

proceeds as before.

(ii). As in the theorem we can prove that 7 n S = F and 7 n ( — iS) = -iF, and

so co(F u — iF) is a split face of Z. Now, using the result of Briem [4, Theorem

3], it follows that A is selfadjoint and S is a simplex. Consequently A is a complex

Lindenstrauss space.

We now turn to the general case in which A is a closed linear subspace of C^X)

separating points of X, but not in general containing the constants. Again, let A"

denote the unit ball of A* with the w*-topology.

Let <p denote the topological embedding of X in K, where <p(x)(/) = /(x) for

each x in A1 and / in A. A complex Borel measure ft on A' will be called a boundary

measure for A, denoted ft G M(dA), if | ft| ° <p_I is a maximal measure on A". A

closed subset E of X of the form <p~\TF), where F is a closed face of K, will be

called an M-set for A if ft G A -1 n M(dA) implies ft|F G A x. Note that if 1 G A

and if F is a closed face of the state-space S of A, then the set E is an M-set for A

in the usual sense (see Hirsberg [13]).
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Theorem 3.3. Let A be a closed linear subspace of CC(X) separating the points of

X, and let K be the unit ball of A*. Then the following statements are equivalent.

(i) A is a complex Lindenstrauss space.

(ii) Whenever F is a closed face of K the set E = <p ~'(TF) is an M-set for A.

(iii) 7 = lir^ F is an L-ideal in A * whenever F is a w*-closed face of K.

Proof, (i) => (ii). If E satisfies the conditions of (ii) and if ft G A """ n M(dA) with

|| /x|| = 1, we must show that ft|F G A. The measure v = ft ° <j>-1 is a boundary

measure on A" with r(y) = 0 and, consequently (see Effros [8, Lemma 4.2]), Rv is a

maximal probability measure on K with r(Rv) = 0. Since A is a complex Lin-

denstrauss space we have hom(Rv) = hom(e0) = 0, and therefore hom(Rv)\ T<p(E)

= 0. Since Tq>(E) is /-invariant, it follows that hom{Rv\Tcp(E)} = 0 and, hence,

r(Rp\ Ttp(E)) = 0 so that fT«E)fd(Rv) = 0 for all/in A.

Choose functions {ga} in CR(A"), 0 < ga < 1, such that {ga} is pointwise

decreasing to Xt^ey We have, for all fin A,

0= [       fd(Ry) =lim  [ fgad(Ri>)
JT<f(E) a     JK

= lim   f f(h(x)<p(x))ga(h(x)<P(*)) d\ m|W, (*)
a     Jx

where djx = hd\ fi| is the polar decomposition for ft. Now if x G E we have

h(x)tp(x) G T<p(E), so that ga(h(x)tp(x)) -> 1. If x is not in E then h(x)(p(x) is not

in T(p(E), and so ga(h(x)<p(x)) —»0. Therefore (*) gives

0 = fj(h(x)<p(x)) d\v\(x) = fjdp,   Vf<EA.

Consequently E is an M-set for A.

(ii) => (iii). Let F be a closed face of K, and let E = tp~\TF). We define a linear

mapping e: A * —»A * by

e(p)(a) — \  a dfi,       a El A,

where p G A* and ft G M(dA) represents /?. The fact that E is an M-set implies

that e is well defined. If p G F then p = r(X) for some maximal measure A on A"

supported by F, and so X ° <p G A/(3/l) represents p and is supported by E.

Consequently

e(/?)(a) = J  ad(X° <p) = p{a),       a G A,

so that e(p) = p and hence the range of e contains 7 = line F. We will show that e

is an L-projection on A * with range equal to 7.

If 0 ¥^p G v4* we can find, by Hustad's theorem (see Phelps [20, Theorem 2.2]),

a measure ft G M(dA) with || ft|| = 1 representing/?/||/?||. Therefore

e(p/\\p\\)(a) = [ adu,       a G A,
JE
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and so

r(R(ti\E)) = e(p^/\\p\\)E'rlc: TF.

Hence the range of e is contained in R+co TF. However since F is a M>*-compact

convex set it is easy to see that G = («x: 0 < a < 1, x G F} is w*-compact and

convex and that TF is contained in G — G + i(G — G). Consequently co TF is

contained in linc F, and therefore 7 is the range of e.

If/? belongs to A let ft G M(dA) represent/? with || ft|| = ||/?||. Then, for a in A,

p(a) = J   a dp = I   a dp + I      a dp.
Jx JE JX\E

= e(p)(a) + (p- e(p))(a) = f a dp + (/? - e(p))(a),
JE

so that

\\e(p)\\ + \\P ~ e(p)\\ < || ft|£|| + || p\X \ £|| = ||/?||.

It follows that e is an L-projection.

(iii) => (i). If F is a w*-closed face of A, and if 7 = lii^ F, then 7 n A" = co TF.

In fact if 7 n A properly contains co TF then there is an extreme point x of 7 n A"

not belonging to TF. Since 7 is an L-ideal, x belongs to 3K so that Jx = lin^x} is

an L-ideal disjoint from F. But then F, and consequently 7, is contained in the

complementary L-ideal 7^, giving a contradiction. Now let c0 G A, \\v0\\ = 1, be

such that F = (x G K: re v0(x) = 1} is nonempty. By hypothesis 7 = linc F is a

w*-closed L-ideal in A* and so, if I = J±, I is an M-ideal in A such that

7 = (A/1)*, where A/1 has the quotient norm. We have

||t>0 + 7|| = sup{|u0(x)|: x G 7 n A"} = 1,

and since 7 n A" = co TF it follows that TF contains all extreme points of the

closed unit ball of 7, giving

\\v + I\\ = sup{|o(x)|: x G 7 n A"} = sup{|u(x)|: x G F)

for v + I G A/1. Consequently A/1 can be naturally embedded as a closed linear

subspace of AC(F), F being the state space of A/1 and v0 + I mapping into the

constant function 1.

If G is a w*-closed face of F then G is a w*-closed face of A" and so, by

hypothesis, lin^. G is a w*-closed L-ideal in A*.

Evidently lin,; G is a w*-closed L-ideal in 7.

Therefore A/1 is a complex Lindenstrauss space, by Theorem 3.1.

As in the proof of Theorem 2.2, to prove that A is a complex Lindenstrauss space

it suffices to show that if p G K, with ||/?|| = 1, has the property that ep = p or 0

whenever e is an L-projection on A * then p is an extreme point of K. Suppose that

\\p\\ = 1 and ep = p or 0 for all L-projections e on A*. By the Bishop-Phelps

theorem [3], given e > 0, we can find a point p0 with ||/? — p0\\ < e such that p0

belongs to a w*-closed A -peak face F of K of the kind considered earlier in this

proof. If e' denotes the L-projection of A * onto the L-ideal 7 — Xxn^ F we have

e'p = p or 0, and because ||e'/? — /?0|| = ||e'(/> — /?0)|| < e, we must have e'p = p so
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that p belongs to 7. If e is any L-projection on 7 then e ° e' is an L-projection on

A*, so that e ° e'(p) = /? or 0. Consequently ep = /? or 0 and, because 7 is an

L-space, Lima's theorem [17, Theorem 5.8] shows that /? belongs to

3(A" n 7) = 3(co TF). Therefore t0p G 3F, for some /0 in T, so that p is an

extreme point of A as required.

Combining Corollary 3.2 and the implication (i) => (iii) of Theorem 3.3 we obtain

the following characterization of complex Lindenstrauss spaces containing the

constants.

Corollary 3.4. Let A be a closed linear subspace of CC(X) containing constants

and separating the points of X, and let S, K denote, respectively, the state-space of A

and the unit ball of A*. Then A is a complex Lindenstrauss space if and only if

J = liiif- F is an L-ideal in A* such that 7 n K =co TF whenever F is a peak face

of S for re A.

The equivalence (i) <=> (iii) of Theorem 3.3 leads to the following characterization

of complex Lindenstrauss spaces in terms of the norm-closed faces of the dual unit

ball.

Corollary 3.5. Let A be a complex Banach space, and let K be the closed unit

ball of A*. Then A is a complex Lindenstrauss space if and only if 1^ F is an

L-ideal in A* whenever F is a norm-closed face of K.

Proof. Suppose that A has the property stated concerning norm-closed faces of

K. Then if F is a w*-closed face of K, linc F is a norm-closed L-ideal in A* and,

hence, a w*-closed L-ideal in A*. Therefore Theorem 3.3 shows that A is a complex

Lindenstrauss space.

Conversely, if A is a complex Lindenstrauss space then, using standard argu-

ments, we may assume that A * is isometrically isomorphic to a space L^( ft) such

that A ** is isometrically isomorphic to L£?( p). Let F be a proper norm-closed face

of K. Then (see Alfsen and Effros [2, p. 104]) F is contained in a maximal proper

(norm-closed) face G of K. As observed by Olsen [19] (see also Nielsen and Olsen

[18]) G must have the form

G= {#:/>0, ffdp=l},

where \p G L^(ft) and \\p\ = 1 a.e. (ft). [To see this separate G from the open unit

ball of A* by means of some tj G L^(p), so that G C {/: / ft] dp = 1, / \f\dp =

1}. If

H = {Y G L^(ft): ||Y|| < 1, f yfdp = 1 V/ G g),

then H is a w*-compact face of the unit ball of L™(p) and hence contains an

extreme point u\, with |ip0| - 1. If we put \p = i^0 then G C {fp:f > 0, f f dp = 1},

and the maximality of G implies that equality holds.] Without loss of generality we

may assume that \p = L so that Fis a face of the simplex G, where

G= {/eLi(M):/>0, J/rfM-l}.
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Now linR F is an L-ideal in L^(p) (see Alfsen and Effros [2, p. 161]) and, by

consideration of the fact that (linR F)x is an Af-summand in L£(p), it is easy to

show that linR F has the form {fxE: I e ^rCm)} for some ft-measurable set E.

Hence line F has the form {/x^: / G L^p)}. It now follows easily that linc F is

an L-ideal in L^( ft).

Several authors have studied the facial structure of the dual unit ball A" of a

complex Lindenstrauss space. Olsen [19] showed that if E is a w*-compact subset

of 3A" such that E n tE = 0 for t G T \ {1}, then co E is a face of K Nielsen and

Olsen [18] showed that if F is a w*-closed (norm-closed) face of K then li^ F is a

w*-closed (norm-closed) L-ideal.

The facial structure of the dual unit ball of real Lindenstrauss spaces has been

studied by several authors, for example Alfsen and Effros [2], Effros [7], Lau [15]

and Lazar and Lindenstrauss [16]. Uttersrud [23] has given a characterization of

real Lindenstrauss spaces in terms of decomposability of L-ideals in the dual space.

Using the results of the authors just mentioned, and making the obvious

alterations in the proofs of Theorems 2.2 and 3.3, we can obtain the following

facial characterizations of real Lindenstrauss spaces.

Theorem 3.6. Let A be a real Banach space and let K be the unit ball of A*. The

following statements hold.

(i) If A is separable then A is a real Lindenstrauss space if and only if J =

linR co E is an L-ideal in A* whenever E is a w*-compact subset of 3A".

(ii) A is a real Lindenstrauss space if and only if 7 = linR F is an L-ideal in A*

whenever F is a w*-closed face of K.

If 5 is the set referred to in the proof of Theorem 2.3 then the space A = A(S)

shows that the separability condition may not be removed from Theorem 3.6(i).

4. Some further results and examples. When A is a closed linear subspace of

CC(A"), containing constants and separating points of X, Fuhr and Phelps [11,

Theorem 4.4] and Hirsberg and Lazar [14, Theorem 2] showed that A is a complex

Lindenstrauss space if and only if A± n M(dA) = {0}. We give the analogue of

this result in the case when A does not contain the constant functions.

We will require the following notation used by Phelps [20]. If A is a closed linear

subspace of CC(X) separating the points of X, we denote by A the closed linear

subspace of CC(X) consisting of the functions g in C^X) such that sg(x) = tg(y)

wherever s, t G I, x, y G X and sf(x) = tf(y) for all fin A. If X and ft are complex

measures on X we write X « ft if X( g) = ft( g) for all gin A. We retain the notation

«p from the previous section.

There exists (see Phelps [20]) a Borel measurable map s: F<p(x) —> T X X such

that s(L) = (tL, xL) and L = tLq>{xL). Given a maximal probability measure ft on A"

we define a complex boundary measure Hp where, for g G CC(X),

f gdHp= f        tLg(xL) dp(L).
J JT<f(X)

If p is the resultant of ft then Hp represents £>.
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Theorem 4.1. Let A be a closed linear subspace of C^X), separating the points of

X. Then the following statements are equivalent:

(i) A is a complex Lindenstrauss space;

(ii) ft G A x n M(dA) implies p « 0.

Proof. (i)=>(ii). Let ft belong to AL n M(dA) with || ju|| = 1. If v = ft ° <p_1

then Rv is a maximal probability measure on K with r(.Rj') = 0, where K is the

closed unit ball of A * with the wMopology. Since A is a complex Lindenstrauss

space, hom Rv = 0 (Effros [8]), and so hom j» = hom Rv = 0. Therefore we have

ft ?» 0 (see Phelps [20, Proposition 3.5]).

(ii) => (i). It will be sufficient to prove that if ft is a maximal probability measure

on K with r( p) = 0 then hom ft = 0 (see Effros [8], in particular the proof of

Theorem 4.3). If we write X = Hp then X belongs to A x n M(dA), and so X « 0.

Therefore hom(Hp ° <p_1) = 0 so that (Hp ° <p~')(g) = 0 for all /-homogeneous

continuous functions g on K. For such functions g we have

0 = (Hp o (p "')(g) = Hp( g o v) = f        /Lg(<p(xL)) </fi

= f        g('£.<p(*J) dp= f g dp.
T<p(X) J

Consequently hom ft = 0 as required.

The following result generalizes the result of Hirsberg and Lazar [14, Corollary

3.5].

Corollary 4.2. Let A be a closed subalgebra of CC(A'), separating the points of X.

Then A is a complex Lindenstrauss space if and only if either A = CC(A") or

A = {/ G QLY): f(x0) = 0} for some x0 G X.

Proof. We need only prove the necessity of the conclusion. Let v be a measure

on X with v G A x. Then we can write v — alvl — a2v2 + i(a3v3 — a^v^, where

aj > 0 and Vj are probability measures on X. We can find probability boundary

measures ju, on X such that ft, — Vj G A x, j = 1, 2, 3, 4, and so ft = a, ju, — a^

+ /(a3ft3 - a4ft4) belongs to A x n M(dA). But then, by Theorem 4.1(h), /tssO

and this implies that ft = 0 (see Phelps [20, Proposition 3.4]). But then a, ft, — a2ju2

= 0 so that re v G A x. Consequently A is selfadjoint and the conclusion follows

from the Stone-Weierstrass theorem.

That the second possibility may occur in the above corollary is seen by consider-

ing the complex sequence space c0.

In Theorem 3.1 the condition that linc F is an L-ideal cannot be replaced by the

condition that iii^ F is a w*-closed L'-space; for example let S be a square in R2

and let A = AC(S). In the same theorem it is not sufficient to assume the

conditions concerning F for A -peak faces of S only; in fact if A is the disc algebra

then the A -peak faces of S are generated by the closed subsets of the unit circle

with linear Lebesgue measure zero, and the complex-linear spans of such faces F

are w*-closed L-ideals7 satisfying/ n A" =co TF.
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The condition 7 n K =co TF is not generally true for w*-closed faces F of the

dual ball of a complex Banach space A, even if 7 is a w*-closed L-ideal in A*. For

example let A = C2 and let the norm in A * be given by

\\{x,y)\\ =max{|x|, \y\, |x + y\).

Then if F = {(x,y): 0 < x,y, x + y = 1}, F is a closed face of K such that

7 = li^ F = A*; however it can easily be checked that co TF is properly con-

tained in K-for example (1, — 1) G K \ co TF.

Finally, the condition in Theorem 3.3(h) that <p~\TF) is an M-set whenever F is

a w*-closed face of K may not be replaced by the condition that <p~\F) is an

M-set. For example, let A be the complex G-space {/ G Cc[0, 1]: /(0) = if(l)}.

Then F = <p(0) is a w*-closed face of K such that {0} = tp ~ '(F) is not an M-set,

whereas <p~\TF) = (0, 1} is an M-set for A.
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