ON THEOREMS OF BEURLING AND HARDY FOR CERTAIN STEP TWO
NILPOTENT GROUPS

SANJAY PARUI AND SUNDARAM THANGAVELU

ABSTRACTIn this paper we prove Hardy$ theorem and a version of Cowling-Price theorem for all

sep two nilpotent Lie gro ups using  urlings theorem on E uclidean space urling}
theoreim proved for all step two nilpotent Lie gro ups
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is a Gaussian on R” has a Gaussian decay as a function of (£,n). This observation allows us to restate
Hardy’s theorem for H™ as follows :

If |£(2,1)] < Caa(z,t) and [FOA, (&m)éx, o) < et U for il \ € R\ {0} then
f=0aefora<bd.

We also have the following version of Beurling’s theorem :

[ [ 156+ in GO € myon, el =19 de dn di dy e < o0
Hn Cr
for all A € R\ {0} implies f = 0.
The following version of Cowling-Price theorem is also proved : if

flaa) "t € LP(H™),1 < p < 00 and f(\)e!IW € S,

for all A € R\ {0}, 1 < ¢ < oo where S, denotes the set of Schatten g-class operators and H(A) =
—A + A%|z|? is the scaled Hermite operator, then f = 0 whenever a < b. These results are proved in
section 2. Analogous results are proved for all step two stratified groups, general step two groups in
section 4, 5 respectively.

For various formulations of Hardy’s theorem on nilpotent Lie groups we refer to Ray [15] , Astengo et
al [1] and Kaniuth-Kumar [13]. As we have mentioned earlier a source for other references on Hardy’s
theorem is the monograph [19]. In a private conversation Prof. M. Cowling has indicated to the second
author another proof of Hardy’s theorem for step two stratified groups [5]

2. HEISENBERG GROUP REVISITED

In this section we give a new proof of Hardy’s theorem for the Fourier transform on H™ using
Beurling’s theorem. The proof given in [17] uses Gelfand pairs associated to H™ and properties of the
metaplectic representations. In view of this the earlier proof is not suitable for generalizing to other
nilpotent Lie groups. Here we give a proof which works for non-isotropic Heisenberg groups also. Let
7y be the Schrédinger representations of H™ with parameter X. Explicitly m(2,t) : L?(R?) — L*(R")
is the unitary operator given by

Az, 1)9(€) = eMeNEEHEEV (¢ 1)
where ¢ € L2(R?), £ € R* and z = z + iy. We define 7y (z) = mx(z,0) so that m\(z,t) = e*x,(2). For
f € LY(C") its Weyl transform W) (f) is the bounded operator on L2(R") given by

Wi(f)¢ = /f(Z)W,\(z)¢ dz .
Ccr

It is clear that ||[Wx(f)|| < ||f|l1 and for f € L' N L?(C*), Wx(f) is Hilbert-Schmidt and we have the
Plancherel theorem

WA s = 2m)" A" / F de
Ccn

Thus W), is an isometric isomorphism between L?(C") and S,. For f € L'(H™) set

oo

) = / M f(21) db

—0o0

to be the inverse Fourier transform of f in the t-variable. Then from the definition of f(}) it follows
that f(X) = Wa(f>). For A = 1 we define W (z) = m (2).



THEOREMS OF BEURLING ON NILPOTENT LIE GROUPS 3

For 4 € N let ®, be the normalized Hermite functions on R™. For pu,v € N the special Hermite
functions @, are defined by

P (2) = (27r)7% (W(2)2y, @)

These functions form an orthonormal basis for L2(C") and they are expressible in terms of Laguerre
functions. For our purposes we only require the formula

(2.1) ®,0(2) = (2m) (%) (%)ueilzlg.

We refer to [21] for these and more on special Hermite functions.
Given d = (di,d2, -+ ,dn),d; > 0 the non-isotropic Heisenberg group H7 is just C* x R equipped
with the group law

1 n
(zat)(wa 3) = (Z +w,t+s+ 2 Zdj%(zju_)j))'
j=1
For each A € R\ {0} there exists an irreducible unitary representation 7 realized on L?(R™) given by

(S d;(2€5+haiv;))

(2, 1)$(6) = eMe = P& +y)

These are all the infinite dimensional irreducible unitary representations of H} up to unitary equivalence.
The group Fourier transform of f € L'(H7) is defined by

- / Flzt)yma(z, ) de dt.

The sublaplacian £ for this group is
n
==Y (X;(@* +Y;(d)*)
7j=1

where 5 5 5 5
1 1

X;(d) = = + ~djy; 2, Vi(d) = — — ~d;z; =

i) = g, Tativigy Vi) = 5,0~ 3k,

Let gq,q be the heat kernel corresponding to this sublaplacian. Then it can be proved as in the case of
H™ that it satisfies the estimate

A 2
|ga,a(z,1)] < Ce™a(F7HID

for some C, A > 0. Also the explicit expression for q;} 4 is given by

—1d;X(coth djAa)|z;|?
Qad =Cn H (smhd )\a) ¢ .

Using the explicit formula for representations we can calculate that
- 0 2 1242
o =3 (- 5 + 26 ) = HH(Aa)

7T>\(Qa,d) — e aH(|Ald)

Given r = (r1,72,- -+ ,7), r; > 0 we define U(r) : L>(R") — L*(R™) by

=[] rio(/rib, Vrsta -+ VT atn).

J=1
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Then U(r) is a unitary operator on L?(R") and

H(ANU(Ad)®, = (Z(I/\I(Qw + 1)dj)> U(|Ald)®,

j=1
For & = (¢',&") where &',£" € R™ we define
F8) = m(€ +ig", 00 f (VA€ +i€",0)"
and call it the Fourier-Weyl transform of f on H}. It can be easily checked that

. i Y dj(z5€] —y;E;) A )
o= [ = 1@, )ma (@ + iy, 0)de dy
RZ’IL
where we have written z = z + iy and f*(z,y) stands for f}(z).

With this preparation we have the following version of Beurling’s theorem for Hj.

Theorem 2.1. Let f € L*(H?Y) be such that for every A € R\ {0}

o NS s o) s .
//If(wﬂy,t)II(f(A,(f,& Dor,dalle = de dy d d€' de" < oo,

R2n H?

where ¢x(z) = U(|\|d)Po(z). Then f =0 a.e.

Proof. Let gx(x,y) = fM(z,y){(mx(x +iy,0)px, dr). Then f()\, (&', ¢£")) is the Fourier transform of g, at
IA(=dr &y, —dn&y, di&y, -+ 5 dn&y)-

/ gr(@,y)| [Gr (€, €M)= ¢ ¢ dx dy de’ de”

RZnR2'n
N 3 dj (i€l —usE})
< / / @+ i, OGO €€ bl = dz dy dt de' de”
R2n H?
< o0

by our hypothesis. Now applying Beurling’s theorem on R2" to the function gy we get gx = 0 a.e. Since
n
(ma(z +iy,0)dx, da) = [] e~ 1Y (=443 is non vanishing everywhere, f» = 0 a.e. for all A and hence

j=1
f=0a.e. O

Applying Beurling’s theorem on R?" we can also prove the following version of Cowling-Price theorem.

Theorem 2.2. Let f be a function on H} such that f(geq) ' € LP(HY) and f( yetHAd) ¢ s |
1<p,q<o0. Then f =0 a.e whenever a < b.

Proof. Define g(2,t) = (qa,a)~'(2,t)f(2,t). From the hypothesis g € LP(H?}) and using the estimate
|Ga,d(2,t)| < Ce_*”z‘ +1tD) it is easy to see that f* can be extended as a holomorphic function in the
strip [SA| < £ 4 of the complex plane.

For p = o0,

A

PE < 9o / a2, 1) dt

2|

—oo
L
llg(z, oo ™32

IN
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For1<p<2,
PO S [ a0l
< | [ lawazor at) | [ loGo a

Now applying Hausdorff-Young inequality to the first integral

e < (J/kddwﬂpdk [ Iateope ae
oo ., P P 0 ?
< / H (Slnhd )\a) e —2(djAcothdjAa)|z;|? d\ / |g(z,t)|” dt
oo I=1 oo
<

Ce—2I” /|g(z,t)|p dt

1% =¥ 4+ 12¥ for some 0 < v < 1. Since ||ga,a(z,")|l1 < e dal*’
and ||gq,q(z, )2 < e’ﬁ|z‘2, applying Holder’s inequality with the pair of conjugate exponents %p, and
ﬁ, we get

When 2 < p < o0, 1 < p' < 2 write

/ |qa,d(z,t)|p’ dt = / |qa’d(z’t)|l/p'|qa(z,t)|(lfy)p/ dt

[I§

IN

190,a(2, ) 177 l1ga.a(2;
which gives ||gq,q(-, )| < e~ 327" Therefore fAeszl?l” € LP(C") for 1 < p < co. Since every member

of 8, is a bounded operator there exits C' > 0 such that || f(\)e?#(XD |y < C for all ¢ € L2(R™). As

H(ANU(|Ad)@a = | |A| Z 2a; + 1)d; | U(|A|d)®,
for all o € N*, we have
(22) IFU(Nd@all2 < C | T et +D

j=1

for all @ € N™.
For & = (¢,&") e R* xR™ and r = (ry,- -+ ,7,) € R” let us denote the point (r1&], - - r,&},) by r€ and
(r&, - rp&lh, ", - yrn&y) by (r€,rE") and write r(§' + i€") for the point r&' + iré" € C*. Using
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the fact that {U(|]A|d)®, : a € N*} form an orthonormal basis for L?(R") we compute

mA(E +i€",0)* U (|A|d) 8o
= D (m(& +i€",0*U(A\d) o, U(|A|d) ®a)U (|A|d) 8o

a

= D AU(Nd) mA(€' +€",0)*U(IAld)Bo, Da)U(|AId) B0

(¢4

Z< (—V/INd(E' +i€")) o, Bo)U (|Nd) @,

2 Bao(V/INA(E +i€")U(Ad) e
Using (2.2) and the above expression for (£ +i&",0)*U(J\|d)®o we have

[(F (A, (€, U(IAId) o, U (|A|d) Do)
[(ma (€' +3€",0)F(\)ma(€' +1i€",0)*U(|A\|d)@o, U(|A\|d) Bo)|

< i m(s’ﬂ's" 0" U(AD)oll
S CX BanV/E +i€")] LTI
< CXlualV/IAE + i) e AGE )

Applying the Cauchy-Schwarz inequality and using formula for ®, ¢ in the above estimate , we have for
a<b <b

[(F (€,€)U(1AId)®o, U(IA|d) ®o)|

O8NS Gay+1)dy) b N(S G +1)ay)

< CZ|(I>a0 §—|—Z€”)| =1 e
n 3
—2/ AI(3 (20,41)d;)
= (Zmo e +igpe o )
1
o~ 1 1 @i 2 2 2
< C H Z (_' e~ 2V'[AI(2a;+1)d; (§|/\|dj(§f+§}'2)) e-%mdj(g; el ))
j=1a;—0 \%*
1
. 1 2 err? =1 5 a;\ °
< C 1\l (6] +¢) 1 02y —4t' |\|d;
< oJf | P SN + €
j=1 =0
< CHe—%lkldj(l—e““’"*'df)(£;2+£;-’2)‘

Let g)\(may) = f)‘(.Z',y)<7TA(H}' + iya0)¢)\7 ¢/\)
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Then

/ gx(@,9)] [Gr (€', €M)= ¢ +v ¢ e dy de' de”
R2n R2'n

A2 ds (12585 |+ |ui&5 )
i=

IA

/ P 9] 1FO, €67 ba, da)e dz dy de' d"

R2n R2n

c |f (z,y)| edatal®+Hv) e~ sl (=) -2alA1d(E".6))1*

IA

R2n R2n

ﬁe—uwdj(%(1—e—‘“’"*'df)—au\dj)(s;zﬂ;')dx dy de' de"

=1

Since freda(7I*+1¥*) ¢ LP(R?") the above integral will be finite if a|A|d; < 1 (1 - e*4bl|’\‘df). Therefore
applying Beurling’s theorem to the function g) we conclude gy = 0 and hence f* = 0 whenever a|\|d; <

: (1 - 6*4”"’\“11'). Since a < b’ < b we can choose § > 0 such that a < be 2" Adi < ¥ for all j with

0 <|A| < 4. Now

1— 4 INd;

o2V N4 (ezb’mdj _ efzb'|,\|dj)

\%

4bI|A|dj672b"X|dj
> 4a|\|d;
for all j and A with 0 < |A| < §. Since f* can be extended to a holomorphic function in a strip of the

complex plane we conclude f* = 0 for all A\ whenever a < b and hence f = 0. O

If fF(N)*f(\) < Ce 2PH(Nd) we have the estimate

IF VT (Ad)@all2 < € T et Gt

j=1

for all & € N* and hence (f(), (€,&"))U(|A|d)®o, U(|\|d)®o) can be estimated as before. Thus the
following version of Hardy’s theorem for H} is true.

Theorem 2.3. If |f(z,t)| < Cqa(2,1), fFN)*F(N) < Ce=2?HIND for some a,b > 0 then f = 0 whenever
a<b.

Remark 2.4. If dj =1 for all j then H} = H™ and hence all the results mentioned in section 1 for
H™ are proved.

3. PRELIMINARIES ON STEP TWO NILPOTENT LIE GROUPS

Let G be a step two nilpotent Lie group so that its Lie algebra g has the decomposition g = v € 3,
where 3 is the centre of g and v is any subspace of g complementary to 3. We choose an inner product
on g such that v and 3 are orthogonal. Fix an orthonormal basis {e1,es-- ,em,T1, - ,T)} so that
v = R span{ei,es--- ,en} and 3 = R span{Ty,---,T;}. Since g is nilpotent the exponential map is
surjective. We can identify G with v @ 3 and write (X + T') for exp(X + T) and denote it by (X,T)
where X € v and T € 3. The product law on G is given by the Baker-Campbell-Hausdorff formula :

(X, T)(X',T') = (X + X', T+ T' + J[X, X')

forall X, X' €evand T,T' € ;.
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For each A € 3* real dual of 3 consider the bilinear form B) on v defined by
BA(X,Y) = A([X,Y]) for all X,Y €.

Let vty = {X : By(X,Y) = 0,V Y € v} and m), denote the orthogonal complement of t) in v. Let
A={Xe€;3*: dimm, is maximum}. If ry = {0} for each A € A the Lie algebra is called an MW algebra
after Moore and Wolf and the corresponding Lie group is called an MW group. For any orthonormal
basis {X; : 1 < j < m} of v define

2
-2 X;
=1
and call it the sublaplacian of G.

3.1. Step two groups without MW- condition. In this case ry # {0} for each A\ € A and
Bj|m, is nondegenerate and hence dim mjy is even say 2n. Then there exists an orthonormal basis
{X1(AN),Y1(N),--- , Xn(N),Yn(A), Z1(A),--- Z(A\)} of v and positive numbers d;(A) > 0 such that

(i) t = R span {Z1(N), - , Z- (W)},

>
N—

JY;(N)]) = 64,5d;(A),1 <4,j <nand

(i) MIX
X0, X;(0]) = 0, A([¥i(0), ¥ (W) = 0 for 1 < i,j <,

A(Xi

/'.\
>~
N—r

(iii) R span {X1(A)---, X, (A),Z1(N),---,Z.(X),T1,--- , T} = by is a polarization for A.
We call the basis {X1(A), -+, Xn(A),Y1(A), -+ , Yo (A), Z1(A), -+, Z,(A), T1,- -+ , T} } almost symplectic
basis. Let &, = R span{X;(A)---,X,(A)} and gy = R span {Y1(A),---,Yn(A)}. Then we have the
decomposition g = &x P nr P ta P 3. We denote the element exp(X +Y +Z +T) of G by (X,Y, Z,T)
for X € &\,Y €, Z € ry\,T € 3. Further we can write

(X,Y,2,T) Zw] +Zy3 —}—Zz] +ZtT

and denote it by (x,y, 2, t) suppressing the dependence of A which will be understood from the context.
Since A|[hx, ha] = 0 for p € v; we define character oy,, of Hy = exp(hy) by

oxu(X, Z,T) = e O+HXTD) for all (X, Z,T) € Hy.

Now proceeding as [1] the irreducible unitary representations my, of G realized on L?*(n,) can be
described as follows :

(mau(X,Y, Z,T)g) (¥') = eMNTH VXY 2D ein2) (v 4 v7)
for all ¢ € L2(ny). Using the almost symplectic basis we have the following description :

k [ n
@35 Njti+i 30 pizi+i > di(N)(2i€i+5255)
(Tr}\,N("E:y: Z, t)d)) (5) =e =t =t =t ¢(£ + y)

for all ¢ € L2(n,).
Define the Fourier transform of f € L'(G) by

)\N ////fa:y, 2, ) u(2,y,2,t) de dy dz dt

3 T M €
for all A € A and p € r}. We let

k
i > Ajt;
Py, 2) = / ¢ =7 fley,2,0) di,

3
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E Ajtj+i E Bjzj
(@, y) Z//e i=t i f(z,y,2,t) dt dz.

T 3

for all A € A and p € r3.
For suitable functions f and g on v the A-twisted convolution is defined by

fxxgv /f v—1') M0 gy

An easy calculation shows that
(f *9*(w) = £ xx ¢*(v)
for f,g € L'(G). For XA € A we define Pf(\) = ﬁ d;(\) called the Pfaffian of \. f(\,p) is a Hilbert-
j=1

Schmidt operator for f € L' (] L?(G) and its Hilbert-Schmidt norm is given by

PEO) 1F O\ )2 = (21)" / / P, y)|? de dy.
m €

Polarizing this identity

a0 et ) [ (Fomaow’) du= [ [ [ Pe0.25@05) do dy dz.

T tx Mx €

For each A € A, € r} and g € L' (\ L?*({x @ nx D ra) define the operator W ,(g) by

Wk,u(g) = ///g(x,y,z)wx,u(m,y,z,O) dx dy dz.

Tx Mx €x

With this notation for all g,h € L?(£, @ nx @ ra) we have

(27r)_"_TPf()\)/tr (Wx,u(@)Wx,,(R)*)dp = /// z,y,2)h(z,y, 2) dz dy dz.

r} LONE/PRF
If g is a Schwartz function then it has been shown in [1] tr (|Wy ,(g)|) can be estimated in terms of
Schwartz semi norms of g. In fact (1 + [u)* tr ([Wi,.(9)]) < Cr(N)!lgl|l« for some I,k > 0 where

r(A) = 3 (d;(A)? +d;(N)72) and || - ||« is suitable sum of Schwartz semi norms.

Also we have the following inversion formula :

Pa,2) = @0 PO [t (mae0 2,00 d

*
X

With respect to almost symplectic basis the sublaplacian takes the normal form

L:—i(X( +Y7 (M 222
j=1

Using the explicit form of the representations we can calculate that

CWEDS ( 5”52 - d“‘(A)sf) + |l = Hiu,d(\)

j=1
where d(A) = (d1 (), -+ ,dn())). Also we have

H(p, d(X)U(d(N)@a = (Iul2 + 2(2041 + 1)dj()\)> U(d(N) %

for all & € N”.
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3.2. Step two groups with MW- condition. In this case ry = {0} and the irreducible unitary
representations are parameterized by A € A and given by

k n
i3 Ajtjti Zl di(N)(@;i€5+5259;5)
=

(ma(,y,t)9)(§) =€ =

for all ¢ € L?(ny). Define the Fourier transform of f € L'(G) by

o€ +y)

fov=[ [ [ 1e.0m 0.0 do dy ai

3 Mx €a

for all A € A. Also define

i3 At
Pa,y) = /6 =t f(z,y,t) dz dy dt
3
for all A € A.
For each A € A and g € L' [ L?(&\ @ m») define

Wi (9) =//g(w,y)m(w,y,0) dx dy

M €

and call the Weyl transform of g. Then W (g) is kernel operator with kernel

/ i3 > d; (M) (& +y;i)z;
e =1

K)\(E:y) = g(:l:,y—f) dz.

€x

Moreover if g € L*(£&x @ na) then W{(g) is a Hilbert-Schmidt operator and we have the Plancherel
theorem

PE (\) [W4(9) 13 = (2m)" / / 9@ y)P? dz dy.
nx €x

Polarising this identity we obtain

PEQY) tr (W3(0) Wi(W) = (20" [ [ g(a,)h(a,) do dy.
LANESN
If g is from Schwartz class function then K is so and it has been shown in [1] tr(|WWy (¢g)|) can be estimated
in terms of sums of Schwartz semi norms of K. Also it is easy to see that ||Ky||« < r(A)¥|g||ss for
some k > 0 where || - |+, || - ||« are suitable sum of Schwartz semi norms. The inversion formula takes
the form:

Pa,y.2) = 2m) P tr (ma(2,9,0)" (V)
The sublaplacian takes the normal form
L==3 (XN +Yi()?)

j=1

with respect to almost symplectic basis and

n 2
m(0) = Do~ + OVE) = HAW)

=1
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4. STEP TWO STRATIFIED GROUPS

Two step Lie algebra g = v @ 3 is called stratified if it is generated by v and the corresponding group
is called stratified group. If the group G is stratified then there exists a smooth function p,(v,t) on
G x (0,00) such that f *p,(v,t) solves the heat equation associated with the sublaplacian £ with initial
condition f, see Folland-Stein [9]. This p, is called the heat kernel associated with £. In this section
we will prove Hardy’s and Cowling-Price theorems for all step two stratified groups.

4.1. Step two stratified group without MW- condition. Using the inversion formula stated in
section 3.1 it can be proved as in the case of Heisenberg group that

Pa( N p) = e eH(1,d(N)

and

_ _r 1,2 i d()\) 14, . 2 2
A = (47)"" 5 — iz lz I I J 33 (X) cothad; (N) (3 +y3)
Pa(@:y,2) = (4m) " (4ma)”2e (sinhadj()\)> ¢ )

Now we want to study the behavior of d;(A) as A — 0. We show that d;(A) = 0 as A = 0. Note
that B, = rB, for r € (0,00) and w € S*~1. Then it follows that X;(rw) = X;(w),Y;(rw) =
Yj(w), Z;(rw) = Zj(w) and dj(rw) = rd;(w) for all j. The entries of the matrix (Bx(e;,€;)), ; are
continuous functions in A and +id;(\) being eigenvalues of the matrix, d; are also continuous in .
Using the fact that d;(rw) = rd;(w) we conclude d;(X) = 0 as A — 0 . p)(v) is a continuous function
in A for each v € v and is given by

j, BB

palv) = (4 (47ra)

™"~
ﬁ e~ 43 (N) cothad; (A) ((v.X; (X)) +{v,¥;(N)?)
e smh ad

Write A = rw for 7 € (0,00) and w € S*~! and compute lim,_,o pi“(v) remembering the fact that
X, (rw) = X;(w),Y;(rw) =Yj(w), Z;j(rw) = Zj(w) and d;(rw) = rd;(w) for all j. We get

0 . —i(i(vﬁzj(w))%i(v,Xj(w))2+i(v,Yj(w))2>
Po(v) = (4m) "(4ma)"Za "e =t i=1 i=1

2n 47
- — (X (ve)?)
= (4m) "(4ma)"2a" e s
(4.1) = (4n)"(4ra)"ia e~V
Writing v = (z(A),y(A), 2(N)) €D Dra=v
P (2(V),y(V), 2(V) = (4m) " (dma)~Fa e da(FHIOIEHEE),

With this preparation we have following versions of Hardy and Cowling-Price theorems.

Theorem 4.1. Let G be a step two stratified group without MW condition. Let f be a function on G
such that |f(v,t)| < Cpa(v,t) and F(\, p)*f\, @) < Ce 2PHWAN) for every p € r}, and X € A. Then
f =0 whenever a < b.

Proof. Let f*(z,y,2,t) = f(—z,—y, —2,—t) and consider the function

z//fA x5 £ (2,9, 2) do dy

Ex M
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where *3 means convolution is taken in third variable. Since |f*(z,y,2)| < C p%(=z,y,2) we have the
following estimate on h :

|ha(z)| < Ce—wal?l®,
Also
FOum)* F (A ) < Cem2H )
for every p € r} and X € A gives the estimate
Il < € e 30 emsertnai)
j=1a;eN

« 2
< Cy e 2blul”,

Therefore

() / / Py de dy

Ex M
(2m) " PEA) I FO )
< Cy 6—2’7\#\2_

Now applying Hardy’s theorem on r) we conclude that hy = 0 and hence f (A, u) =0 for all 4 € ry and
A € A whenever a < b. Therefore f = 0 for a < b. O

Theorem 4.2. Let G be a step two stratified group without MW condition. Let f be a function on G
such that f(p,)* € LP(G), 1 < p < 0o and fO\ )G\ p) L €8,, 1< q < oo for every p € ry and
A€ A . Then f =0 whenever a < b.

Proof. Using the explicit formula for p}(v) it can be proved as in the case of H? that eas|?” fA € LP(v).
Let g(v,t) = e‘o‘mzh(v), where @ > 0 and h is a smooth function with supp h C {v : |v| < d}.
Choose a' such that a < o’ < b. Then for all v € b with |v] > \/Z—,i\/__“\'ﬁ and v' € supp h we have
[v—2'| > |v| = |v'| > |[v] =8 > |v]\/%. Since g* € L?(v) for all p we get by Holder’s inequality a constant
C > 0 such that

C

\Y

[P @ = o)llg o) o

v

o
e [1£0 = )] 19 W)
o

for all v with |v| > _9Va'_ From the continuity of the function (f % g)* it follows that

Va'—a °
(F gl @) = |1 % g(v)]
< / (0 = ") |9 @)
< Ce

for all v € v. Hypothesis on f(A, p) implies that f(), u)e?#(#dA) is a bounded operator. Since

H(p, dN)U (d(N) o = |ul® + (205 + 1)d;(N)

=1
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for all a € N, it follows that for some constant C' > 0

17O WU A Ball2 < Ce 7 T[ e tG2+Dd )
j=1

for all & € N, which shows that ||f(), u)||2s < Ce~2bl#1*. Therefore

I+ g mllas < GO )llopll £ )]s
< Qe bHP,

From the proof of the previous theorem we conclude that fxg = 0 as a < o’ < b. Let g(v,t) =
+12
(27r)*§h(v)e*% where h is a compactly supported smooth function and [ h(v) dv = 1. Let ge(v,t) =

o]
e~ @nth+r)g(2 L) for € > 0. Then {gc}e>o form an approximate identity. Since f x gc(v,t) = 0 for all

€ > 0 whenever a < b it follows that f = 0 for a < b.
O

4.2. Step two stratified groups with MW- condition. If G is stratified from the work of Jerison
and Sénchez-Calle [12] it is known that p,(v,t) < Ce % !@H” for some A > 0, where | - | denotes a
homogeneous norm on G. If G satisfies MW- condition then

Bu(A) = eI

and

n 1 d J
d()\) e 4% '
A — 47T n ]7 dj()\)COthCL J(A)(J ‘)-

Now we are ready to prove the following versions of Hardy’s theorem and Cowling-Price theorem.

Theorem 4.3. Let G be a step two stratified group with MW- condition and f be a function on G
such that f(ps)~ € LP(G), 1 < p < o0 and fF(N)(B(N)~! € Sgy 1 < g < oo for every A € A. Then
f =0 whenever a < b.

Proof. Since any two homogeneous norms are equivalent, using the estimate of p, in terms of the
homogeneous norm obtained from natural dilation, it can be shown that f* can be extended as a
holomorphic function of A in a strip of C* and also using the explicit expression of p) we can conclude
that fA(z,y)eds (e +v*) € LP(¢, @ ny). As before from the hypothesis on f()) we get

IFNUEN)Ball2 < C (ﬁ eb(20‘j+1)d;‘(z\)>

j=1
for all a € N,
Let us compute my(¢',&",0)*U(d(A))®o.

mA(£',€",0)"U(d(N)) ®o(2)
D (M€, €",0)* U (d(N) o, U(d(N) Ba)U (d(N)) @a (@)

a

= Y (UMW) m(€,€",0)*U(d(N) @0, Ba)U (d(N)®a ()

[e%

= ) (W(=VAN)(€ +i") o, Pa)U(d(N) @0 (z)

> @ao (VAN(E +i€") UdXN) 2o (o).
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Using the estimate on || f(A\)U(d()))®4]|2 we will get the estimate

F(O, (6,6 br, )] < € T[ e b =50 ™)

j=1
for a < b' < b as in the case of H}. Proceeding as in the proof of theorem 2.2 we conclude that f» =0

whenever ad;(\) < % (1 — e““’ldf(")) for all 1 < j < n. We claim that there exits § > 0 such that

above inequality is true for all A € A with 0 < |A| < § consequently we can conclude that f =0 a.e. As
a < b <band d;(\) = 0 we can choose § > 0 such that ad;(\) < % (1 - e“”’ldi(’\)) for all j and for all
A with 0 < |A| < 4.

In the above proof we have used the estimate ||f(A\)U(dA)®4|2 < C [ e~ 262ei+Ddi(N) which
j=1

is also true if we assume that f(A)*f()\) < C e~20H(dN)  Therefore we have the following Hardy’s
theorem.

Theorem 4.4. Let G be a stratified step two group satisfying MW -condition and f be a function on
G satisfying |f(v,1)| < Cpa(v,t), fFN)*F(N) < Cha(N) for some a,b > 0. Then f =0 whenever a < b.

5. GENERAL STEP TWO NILPOTENT LIE GROUPS

In this section we prove an analogue of Beurling’s theorem for all step two groups. Though the heat
kernel may not exist for general step two nilpotent Lie group we find an alternative condition on f and
prove Hardy’s and Cowling-Price theorems. We also prove equality case of a version of Hardy’s theorem
left open in Astengo et al [1].

5.1. Step two groups without MW condition. For £ = (¢',&") € &, @ nr we define
F(O1),6) = mau(€,€",0,0) f(\, mymx (€', €",0,0)*

and call this the Fourier-Weyl transform of f on G. Then a simple calculation shows that

Z d: /\)(mjf” JE )
F(Oum), (€,€M) / / ¢ 7= T P (2, ) (,9,0,0) da dy.

M €x
With this preparation we have the following version of Beurling’s theorem for all step two nilpotent Lie
group G without MW condition :

Theorem 5.1. Let f € L' (L*(G) such that for all A\ € A, and p € 13}

| [ [ 11w 01 (G0, eon, o) x

G nx €

‘ E dJ(/\)(wjﬁ”*yJﬁ )| , "
e =t d¢ d¢" dx dy dz dt < oo,

where ¢x(x) = U(d(N))®o(x). Then f =0 a.e.

Proof. Applying Beurling’s thoerem on R?" to the function gy ,(z,y) = fY*(z,y)(mx, . (2,y,0,0)Px, Pr)
as in the case of H} we will get fA* =0 for all u € 7} and A € A and hence f = 0 a.e. O

Heat kernel may not exit for general step two groups. For A € A if A = rw for r € (0,00) and
w € S*1 write v = (z(w),y(w), 2(w)) € v. For suitable function g on R* its Radon transform R, g is a

Rog(s) = / o(t) dt,
{t:<t,w>=s}

function on R and is defined by
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where dt denotes Lebesgue measure on the hyperplane {t :< ¢t,w >=r}. If we use the fact that
o0
R,g(r) = (2m)7 ! / e_m/ els<wt>g(t) dt ds
Rk
—0oQ

then from the first condition of theorem 4.1 we obtain
1 2 .
IRy, f((2(w), y(w), 2(w)), 8)| < Ce™al# g, 4y (2(w) + iy(w), s) -

If we replace the first condition of the theorem 4.1 by above condition then for each w € S*~!

f(a(w), y(w), 2(w)) = / e Ry, f((2(w),y(w), 2(w)), 5) ds
—0o0
extends to a holomorphic function of 7 € C in the strip |J(r)| < 2 for some A > 0. Also we have the
estimate
|7 (@), y(@), 2()] < Co™ 3 (= 26D
for all » € (0,00) and w € S*~!. Now following the proof of theorem 4.1 we have following theorems for
all step two groups.

Theorem 5.2. Let G be a step two group without MW condition. Let f be a function on G such that
|Ruf(2(w),y(w), 2(w),7)| < Cem 1 gy ) (2(w) +iy(w),r) and O, p)*F(A p) < Cem AN
for every p € ry, and A € A. Then f = 0 whenever a < b.

Also we have the following version of Cowling-Price theorem:

Theorem 5.3. Let G be a step two group without MW condition. Let f be
a function on G such that the function g defined by g(z(w),yw),zw),r) =
R f(z(w),y(w), z(w), r)eda 2 (qa,d(w))fl (z(w) +iy(w),r) is in LP(b X R), 1 < p < oo and
f(/\,u)ebH(“’d(’\)) €8y, 1<g< o0 for every pery, and A € A. Then f =0 whenever a < b.

Proof. Observe that using the estimate on R,, f(z(w), y(w), 2(w), s) it can be shown f™(z(w),y(w), 2(w))
can be extended as a holomorphic function of 7 € C in the strip [S(r)| < 2 for all w € S¥7! as in the
case of H?. Also it is easy to see that for each r € (0,00) and w € S*¥~1 eaal '’ fro () € LP(v) as in the
case of H}. Now the rest of the proof will be same as theoem 4.2.

O

For all step two nilpotent Lie groups not satisfying MW-condition the following version of Hardy’s
theorem has been proved in [1] .(See also Ray [15] and Kaniuth-Kumar [13].)

Theorem 5.4. Let f € L'(G) satisfy the following two conditions :
(i) [y, 2,01+ |(2,y,2)]) *dz dy dz < Ce 2P, te;
v

(i) [ IFOmllep( + ) 7F dp < Cr(\)e A, X e A
73
where r(A) = Y (dj(M\)? + dj(A)72) for some integers I,k > 0 and a,3 > 0. Then f = 0 whenever
i=1
af > %.

The equality case has been left open in Astengo et al [1] for which we have the following result.

Theorem 5.5. Let f € L'(G) satisfy the following conditions :
() S1f @, 2,01+ (2,9, 2)?)"Fdw dy dz < Ce=7, t ey
b
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(i) f| FOC o+ )~ du < Cr(\)e 27, X e A

where r(\) =

'MS

(dj(N)? +d;j(A)~2) for some integers I,k >0 and o, 8 > 0. then f =0 for a8 > § and

Jj=1
g2
f(@,y,2,t) = f(z,y,2,0) e foraf=1

Proof. Let g be a Schwartz function on b and h(z,y, z,t) = f(z,y,2,t)(1 + |(z,y, 2)|?) ~*. Consider the
function

F(z,y,2,t) = ) * g(w,y, 2)

///huth (x —u,y —v,z —w) du dv dw.

Tx M €x

Taking the Fourier transform in the ¢ variable

AMu,v,w B
FMNz,y, 2 /// lf|uvw|2)kg(a:—u,y—v,z—w)dudvdw
Tx Mx €x
= (@2n) PRy / tr (FO, mWa (Rlyyry) ) i
"

where hi,  (u,0,w) = g(z —u,y —v,z —w)(1 + |(u,v,w)|?)~F. Note that Ay y.z) is from Schwartz

class and hence

PN a,y,2)] < (@m0 [PE() |/‘tr FO ) Wau (Bl y0)") |

A) op !
< CPIOY) %u 1)t ((Wh (Bl )

< O(z,y,2) r(W)F e PN

for some positive integer k' using the second hypothesis of the theorem and estimate on (1 +
|p|)*tr (‘W/\,uhzz,y,z) ) as mentioned in subsection 3.1. Let D = {w € S* ! : d;(w) # 0 for all j}.
Note that we have d;(\) > 0 for all j whenever A € A. Also d;(rw) = rdj(w). If v denotes the surface
measure on S¥~! then v(S*~1\ D) = 0 as A is a set of full measure on R¥. For each w € D consider the

Radon transform R, F(z,y,z,s)of the function F(z,y,2,t) in the last variable t. So we can conclude
that

|RF (2,9, 2,8)| < C(z,y,2)C" (w)(s>™ + s~2™)e 5" for sufficiently large positive integer m . Also
we have |R,F(z,y,z2,s)| < Ce=2%" as |F(z,y,2,t)| < Ce—olt’ using the first hypothesis of the theo-
rem. Now applying Hardy’s theorem to the function R, F(x,y, z,-) we conclude that for all w € D,
P (z,y,2) = C’(:l:,y,z)C"(w)e_ﬂs2 whenever af = § and F*(z,y,2) = 0 for o > 1. Since
FX is a continuous function of A we conclude that FA(z,y,z) = C(z,y,2)e P’ for ap + and
FA(z,y,2) = 0 whenever af > } for all A € 3*. Finally we get F(z,y,2,t) = h(-,-,-,t) * §(z,y,2) =
C'(m,y,z)e’o‘m2 for af = % and F(z,y,2,t) = h(-,-,-,t) * g(z,y,2) = 0 for af > 1. Choosing g
from approximate identity {gm }m where each g, is coming from Schwartz class on v we conclude that
h(-y+ ) * Gm(z,y,2) = 0 for af > i and h(-,-,-,t) * gm(z,y,2) = Cm(:zr,y,z)e‘o“t|2 for aff = i
But h(-,-,-,t) * gm(z,y,2) converges to h(z,y,z,t) as m — 0. Hence Cy(z,y,2) = C(z,y,z) as
m — 0. Therefore f(z,y,2,t) = C(z,y,2)(1 + |(z,y,2)]2)ke " = f(z,y,2,0)e 2 for af = 1
and f(z,y,2,t) = 0 whenever aff > 1.

|
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5.2. Step two groups with MW- condition. For (¢',£") € &, @ nx we define

FOL (€M) = ma(€,€,0) f(\)mA (€', €",0)*

and call the Fourier-Weyl transform of f on G.
In the course of proof of the theorem 5.1 we have proved following Beurling’s theorem for all step two
groups with MW- condition.

Theorem 5.6. Let G be a step two group satisfying MW- condition, let f € L' (L*(G) be such that
for every A € A

‘ E d; ()‘)(wJEH_yJE )l , "
[ [ V.ol os € emen onle = &' de"ds dy di < oo

G R2n

where ¢y = U(d(N))®o. Then f =0 a.e.
Proof. Consider the function gx(z,y) = fA (=, y)(mr(z,y,0)px, #) and proceed as in the case of H}. O
For the case of step two groups with MW- condition theorem 5.2 and theorem 5.3 will be as follows:

Theorem 5.7. Let G be a step two group with MW- condition. Let f be a function on G such that
|Ro f (@(w),y(@),7)| < Cg,aqw) (&) + iy(w),7) and fFA)* f(A) < Ce2HEN) for every A € A. Then
f =0 whenever a < b.

Proof. As before it can be shown that f™(z(w),y(w)) can be extended as a holomorphic function of r
in the strip |S(r)| < % for some A > 0, for each w € S¥71 and |R,, f(z(w), y(w),7)| < C g, d(w) (@(w) +
iy(w),r). The rest will follow from the proof of theorem 4.4. O

Theorem 5.8. Let G be a step two group with MW- condition. Let f be a function on G such that the

function g defined by g(x(),y(),7) = Ru f(@),y(@),7) (Gnater) " (@) +iy(w),r) is in LP(o X R),
1<p<ooand f(A)etHEN) € S, 1< q< oo for every A € A. Then f =0 whenever a < b.

Proof. As above it can be shown that f™(z(w),y(w)) can be extended as a holomorphic function of r
in the strip |S(r)| < 2 for some A > 0 and eal” fro(.) € LP(v) for all r € (0, 00), which is true for all
w € S*¥~1. Then the rest of the proof will follow from the proof of theorem 4.3. O

We state below the theorem 5.5 for the case of step two groups with MW-condition.

Theorem 5.9. Let G be as in theorem 5.6 and f € L*(G) satisfy the following conditions :
i) [1f(@y )1+ |(2,9)?)*dz dy < Ce=oltF, te;
b
(i) [IF (A Mllop < Cr( Yle A" X e A
where r(\) = E (d;j(N)? + dj(N)72) for some integers I,k >0 and o, > 0. then f =0 for a8 > § and

Jj=1

f(@,y,t) = f(z,y,0)e " foraf =1

Proof. Let g be a Schwartz function on & @ nx and h(z,y,t) = f(z,y,t)(1 + |(z,y)|?) ~*. Consider the
function

F(z,y,t) = t) * g(=,y)

//huvt gz —u,y —v,t)dz dy.

M €x
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Taking the Fourier transform in the ¢ variable

FMNz,y) = // 1+| )| )kg( —u,y —v)du dv

€

(2m) " Pf (Ntx (FOOW (b))

where h;, ,(u,v) = g(z —u,y —v)(1 + |(u,v)|?)~*. Now arguing as in theorem 5.5 we have the desired

res
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