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Abstract. Let Y be a smooth projective curve degenerating to a reducible curve X with two
components meeting transversally at one point. We show that the moduli space of vector
bundles of rank two and odd determinant on Ydegeneratestoa modauli space on X which has
nice properties, in particular, it has normal crossings. We also show that a nice degeneration
exists when we fix the determinant. We give some conjectures concerning the degeneration of
moduli space of vector bundles on Ywith fixed determinant and arbitrary rank.
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1. Introduction

Let Y be a smooth projective curve specializing to a projective curve X with nodes as the
only singularities. One knows that the theory of moduli spaces of vector bundles on
a smooth projective curve extends in a nice manner to the case of X, using torsion free
sheaves; further these moduli spaces have good specialization properties, namely the
moduli space M(Y) on Y(fixing certain invariants) specializes to a corresponding space
M(X) on X (see [11,8,7,13]). Now M(X) is closely related to a corresponding moduli
space M( X) on the normalization X of X, though working out this relationship is
a non-trivial exercise. These facts serve as a tool for an indepth study of the moduli space
M(Y), based on induction on the genus of Y, for the genus of any irreducible component
of X is strictly less than that of Y. For example, the work of Narasimhan and Ramadas
concerning the Verlinde formulae is motivated by these considerations (see [7h.

The work of Gieseker proving a conjecture of Newstead and Ramanan on the
vanishing of certain Chern classes of the moduli space M(Y) of rank two and odd
degree, is also motivated by similar considerations (see [4]). However, Gieseker does
not use torsion free sheaves. He takes X to be irreducible with only one node and gives
a specialization M'(X) of M(Y), where M'(X) is a scheme intrinsically attached to
X with its singularities as normal crossings. Further the total space which gives this
specialization is regular, if the total space which gives the specialization of Yto X is
regular. Gieseker obtains M'(X) by using only vector bundles on some curves semi-
stably equivalent to X.

The aim of this work is to show that if we take X to be reducible with only one node p,
the moduli spaces using torsion free sheaves give all the good properties given by
Gieseker. To be more precise, a suitable moduli space M(X) of rank two torsion free
sheaves on X has only two smooth projective irreducible components M, M, which
intersect transversally on a (smooth)irreducible variety N.One can describe M, M, by
a certain moduli problem of vector bundles of rank two on the normalization X of X,
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which is the disjoint union of the irreducible components X,,X, of X. The variety
N turns out to be a product of certain parabolic moduli spaces on X, X, respectively.
Further, the moduli space M(Y) of vector bundles on Y of rank two and odd degree
specializes to M(X) such that the total space which gives this specialization is regular if
the total space which gives the specialization of Yto X is regular (see § 4). The crucial
point which leads to the above nice properties is that if M(X) is chosen as the moduli
space of semi-stable, rank two, torsion free sheaves for a generic polarization on X,
then if VeM(X), V cannot be of the form (my ,@my ) locally at the node p of
X (my ,= maximal ideal of the stalk Oy, of the structure sheaf of X at p), i.e. either
(a) V is locally free at p, or (b) V'is of the form my, , @ Oy, locally at p. By deformation
arguments as in [3], it is not difficult to see that the functor defining M(X) at Vof the
form as in (b), is formally smooth over the local ring Oy ,, which leads to the required
normal crossing. ’

That torsion free sheaves of the form m, ,@my , locally at p, may not appear in
a well-chosen M(X), could be seen intuitively as follows. The moduli problem
corresponding to M(X) can be translated as one on vector bundles on the normaliza-
tion X of X. A vector bundle ¥ of rank two on X gives rise to a pair V=(V, V), where
V, is a rank two vector bundle on X, i=1,2. Then the moduli problem on X is the
moduli problem of vector bundles V = (¥, V;) to gether with a homomorphism A4 of
the fibre of V, into that of V, at p, i.e. the moduli problem of triples(V, V5, A) (see § 2).
An element of G,, x G,, gives a canonical automorphism of V(scalar multiplication on
each component). Thus a triple (V, V5, 4) is isomorphic to (V, V5, A), A a non-zero
scalar. Thus the moduli problem of triples (V, V5, A), A # 0,isequivalent to the moduli
problem of triples (¥, V,, A') where A’ is an element of the projective space associated
to the vector space of homomorphisms of this fibre of V; into that of V, at p. Now this
defines a functor which is proper over the moduli functor of vector bundles on X.Hence
one could expect a proper scheme to solve this moduli problem by using GIT
techniques. Now the triples of the form (V4, V,0), correspond precisely to torsion free
sheaves, which are of the form m, , @ my locally at p, and the foregoing argument
shows that we could expect to avoid them.

The notion of a triple is an improvement on the considerationsin [11] trying to relate
the moduli problem of torsion free sheaves on X (with a fixed Hilbert polynomial) to
one on the normalization X of X. The crucial point is that this can be translated as
a moduli problem of vector bundles on X with a fixed Hilbert pol ynomial (this does not
figure in [11] and is inspired by the GPB’s of Usha Bhosle [2]).

It seems likely that the degeneration M(X) of M(Y) that we give, could also be used
to prove the above mentioned conjecture of Newstead and Ramanan on the vanishing
of certain Chern classes of M(Y) (moduli space of rank two and odd degree) as well as
the Verlinde formulae (for the rank two case). To do this, one has to generalize our
moduli space M(X) by taking parabolic structures at a finite number of smooth points

n X (as is done in the work of Narasimhan and Ramadas, cited above) to have
correct induction machinery.

Consider now the general case of a smooth projective curve Y specializing to X with
nly nodes. Let & be a line bundle on Y of degree d specializing to a torsion free sheaf
.of rank one and degree d on X. Let M( Y, n, d) denote the moduli of semi-stable vector
undles Vof rank nnand degree d and M(Y,n, &) denote the subvariety of M(Y,n,d)
ach that detV = A V=. Then the question how M(Y,n, %) specializes when

7 specializes to X, has not been properly investigated. In particular, one could ask
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whether M(Y, n, &) specializes to an intrinsically defined subscheme of a moduli space
M(X,n,d) to which M(Y,n,d) specializes, which we could then denote by M(X,n,L).
The difficulty in this problem is that, in general, there does not seem to be a well-defined
morphism det: M(X, n,d)—M(X,1,d).

Aninteresting corollary of our method is that in our case (X reducible with one node)
we get a well-defined morphism det: M (X,2,d)—M(X,1,d), which shows that
M(Y,2, &) specializes to a nice subscheme M(X,2,L)of M(X,2,d) (see §7).

Take now X to be irreducible with only one node. Then isomorphism classes of
torsion free sheaves of rank one with a fixed degree d,isa compactification M(X, 1,d) of
the generalized Jacobian J 4 X) of isomorphism classes of line bundles on X of degree d.
Let M(X,n,d) be the moduli space of semi-stable torsion-free sheaves of rank n and
degree d and M(X, n,d)° the open subscheme consisting of vector bundles. Then we
have a morphism

det:M(X,n,d)°—>Jd(X),
Vi AV.

This does not seem to extend to a morphism of M(X, n, d) into M(X, 1,d). However, we
give a precise conjecture which gives the specialization of M(Y,n, £)as an intrinsically
defined subscheme M(X, n, L) of M(X,n,d). In case L is a line bundle, M(X,n, L) is just
the closure of the fibre (det) ™ }(L) in M(X,n,d).

After we submitted the manuscript to the Journal, Balaji pointed out the paper of
Huashi Xia [14]. Some of the results in our paper are also contained in [14] but the
methods are different.

2. Triples associated to a torsion free sheaf on a reducible nodal curve

Let X be the nodal curve which is a union of two smooth curves X, of genus g,
and X, of genus g, meeting at one point. Let p be the node of X.

Locally at the node p of X we have the following: If m, ,is the maximal ideal of the
local ring 0y, then there exists X;,X;EMy, such that X,={x,=0} and
X, ={x, =0}

PROPOSITION 2.1

Let F be a coherent Oy-module. Then & has depth 1 (i.e. depth 1 at every X € X )ifand
only if & is pure of dimension 1 i.e. for all Oy-submodules 4 & &, @ 0, dimension of
Supp (%)= 1.

Proof. Since depth is a local property and proposition is clear at the smooth points of
X, we need to prove the proposition at the node p of X. Hence we assume & isa finitely
generated ¢, -module. Suppose Z is not pure. Then there exists a subsheaf T #,
(T #0) such that T is supported at p. This implies m}, , T = 0. Take r minimal; so that
thereexistsate T, t # 0 such that a-t # Oforsome ae my b.Seth=ateT Thenx-b=0
for every xemy , This implies that the depth of & is zero, which contradicts the
assumption that the depth of & is one. This proves the only if part of the proposition.
To prove the if part of the proposition, assume that # is not of depth one. i.e. for all
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aemy ,a#0,m; F >F (multiplication by a) is not injéctive. Then consider
Ann(a)= {feFla =0},

where a is such that its restriction to every X is not zero (ie. a is a part of an
My, sequence). Then the dimension of the support of Ann(a) is zero and Ann(a)c &,
and Ann(a) # 0. This shows that & is not pure.

DEFINITION 2.1

A depth 1 sheaf # on X is called a torsion free sheaf. We say that # is of rank (r,7,) on
X if F restricted to X, is of rank r,,i=1,2. We say & is of rankrifr, =r,=r.

Note. One of the r, (not both) could be zero for a torison free sheaf.

Notations. Let & be a torsion free sheaf on X. Let #, be the restriction of # to X, and
Z, be the restriction of # to X,. Note that locally at p we have # = F /x,.% and
F,=F |x,.F.Let F, = & /(torsion) and &, = %,/(torsion).

PROPOSITION 2.2

Let & be a torsion free sheaf of rank (r,s) on X. The canonical homomorphisms
FoF . ®F,
and
F-F @F,
are injective. Besides if we set
0-F >F, ®F ,~»T-0,
0-F >F,@F,—»T-0,
the supports of Tand Tare at p and in fact
my T=my T= 0.
Proof. The injectivity assertions are immediate, for the canonical homomorphisms
F-F OF,
and
F->~F DF,

are isomorphisms outside p. Hence the kernels of these homomorphisms are supported
at p and & being pure, the kernels reduce to zero.

To prove the remaining assertions, note that they are really local at the mode p of

X and hence we assume that  is a finitely generated ¢, -module. Note that we have
the following exact sequence of ¢, -modules

0-x,F >F > F, -0,
0-x,F -F »F,-0.
“onsider the canonical homomorphism x,% — %/, given by composite

X, FGF >F,~F)
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This is an isomorphism outside p and since x, & (being a subsheaf of &) is pure, it
follows that x,% — &7, is injective. Besides, we see that x,% maps onto x,%, and
hence x,% identifies with x, 5" (this is immediate, for # maps onto & , and hence
maps onto #5). Similarly x, & — #, is injective and x, & identifies with x, % ;. By the
same argument we see that the canonical homomorphisms

X F -F  x,F~>F,
are injective and hence we get the following natural isomorphisms
X F =, F 1,3, F 2,7 5.

(In particular it follows that x, annihilates the torsion of &, and since x, annihilates

Z ,, it follows that m, , annihilates the torsion of Z,)
Now to show that, say

my , T=0,
we have only to show that
(F,@F,)=F(i=12)

Take say x,, then x,% ; =0 by definition and hence x,% ; = 0. Besides we have seen
X, F 'y = x,F thus

XANF ®F ).
Similarly
X (F DF)=F.
(The injectivity of say
F-F DF,

also follows in an explicit way, wince the kernel of this map is x,% nx &, which is
annihilated by m, ,, and since & is pure, this kernel is zero.) This proves the
proposition. ‘

Notations. Let (p), Z (p), F »(p) etc. denote the fibres at p ie, F(p)=F|my ,F etc.

Remark 2.1. Set
N = Ker(F (p) ® F(p)~ T)-
Then the canonical pfojections
N-Z,(p) and N—F(p)
are surjective. |
Proof. Since # +F ; and F — F, are surjective, we see that the canonical homomor-

phisms #(p)— #,(p) and #(p) > F ,(p) are surjective.
Note that the sequence

F(p)-»F.(p)® F(p)—~T—0

is exact and hence N = image of the canonical homomorphism (F(p)— F.1(p) ® F (D))
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Therefore the surjections
F(p)— F4(p) and F(p)—>F3(p)
pass through N and hence
N—Z,(p) and N—F(p)
are surjective.
Remark 2.2. From the above remafk it follows that & can be identified with the
subsheaf of #, @ #', consisting of all f=(fi,f,) such that the evaluation of fatp

is in N. More generally if &, is a vector bundle on X, for i=1,2 and M is a linear
subspace of %;(p) @ ¥,(p) then the subsheaf

Y={g= (g1.92)19:€%;,i=12 and g(p)= (gl(p),gz(p))eM}

of 4, ®Y, is a torsion free ¢ x-submodule.

Remark 23. Let K =Ker{canonical homomorphism N— % (p)}. Then we see
K c F(p). Let iiF, —> F, be the Hecke modification with Ker(i,) = K (see below for
the definition of a Hecke modification.) Set N' =Image (N) under the canonical
homomorphism ‘

3"—1(P)@=9‘7l2(?) 2’50—1(17)(’99’“2(17)-
Then we see that

a) the canonical homomorphism of N* onto #,(p) is surjective and since
dim(N') = dim(%,(p)), the map N* - (p) is in fact an isomorphism.
b) N=0 (N

From the following commutative diagram of 0y modules

FsF OF,

ol

FsF DF,
we see that

F ={f=(fi.f,) e F1 D F,| evaluation of f at pisin N'}.
Now giving N* is equivalent to defining a homomorphism

A:F,(p)— Fo(p)

and hence we can also define & as

F={f=(f./)eF @ FIAfi(P)) =f(D)}.

Remark 2.4. Let V be a vector bundle on a smooth curve Y and K be a subspace of ¥,

‘p be a point of Y). Then there are two canonical constructions called Hecke
nodifications defined as follows:

I w2 V,Im(W,) = K, where W is a vector bundle and ¢ is a homomorphism of vector
bundles, which is an isomorphism outside p.

¥



Moduli spaces of vector bundles 107

(IT) vaw, Ker(¢,) = K, where Wis a vector bundle and ¢ is a homomorphism of
vector bundles, which is an isomorphism outside p.

W and ¢ in (I) are defined as follows:
Let T=V,/Kandj:V—T be the canonical ¢y-module homomorphism.
Then W= Ker(j) and ¢ be the natural homomorphism.

To define Wand ¢ of (I) we proceed as follows:
Let V, x V¥ k(= k(p)) be the canonical dual pairing and K* denote the orthogonal
of K under the dual pairing. Let V* be the dual of V. Define W* and ¢* as in (I) such
that

w* Ly Im(W*) = K-
Let ¢ be the dual of ¢* and W be the dual of W*. Then W% V is a homomorphism of
vector bundles and ¢, is the dual of ¢j. Also

Ker(¢) = (Im(@*))" = (K*)* =K.
Thus we get the Wand ¢ of (II) with the required properties.

Note. a) If K =0 in the above remark, then in both the constructions we have W= V.
b) If K=V, in the above remark, then in case (I) we get W=V ® Oy(— p) and in case
(I0) we get W=V ® Oy(p).

DEFINITION 2.2

Let &, (resp. &,) be a locally free sheaf on X, (resp. on X,). Let A:F (p)— F,(p) be
a linear map: Then we call (¥, %,, 4 ) a triple, where A denotes that A is a homomor-
phism from #,(p) to #,(p).

Remark 2.5. As we have seen above every torsion free sheaf of ¢ -modules & gives rise
to a triple.

Note that we could have similarly defined a canonical Hecke modification #, = %
and a homomorphism B:.#,(p) — F(p) (here #, F; are asin the notations after the
proof of the Proposition 2.1) so that

F = {f= (f1,f2)69—'1@9’—'213(f2(p)) =f1(P)}-

We write this triple as(F |, # 5, E). Thus to # we can associate canonically two triples.
We denote the triple (%, #,, A ) o1 (F |, F,, B) by # and often by abuse of notation
F also denotes the Oy-module defined by the triples.
Note that given a triple & = (%, %,,4), the other triple associated to the Oy-
moduleé & can be obtained directly as follows: Consider the diagram
AR )
14
F1(p) & Fp)

where &, L | (resp. g;zi #") is the canonical Hecke modification such that
Ker(i,) = Ker(4) (resp. Im(j,) = Im(A)). Then there is a canonically defined homomor-
phism

B:7'(p)—~ 7 1(p)-
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To see this, for xe F,(p) let f € #,(p) be such that A(f) =j,(x). Now if we set B(x)
=i,(f) then it is clearly well defined.

Remark 2.6. The above construction of the triple associated to a torsion free Oy-
module & gives the local structure of & at p, namely locally at p

~ b
'9_‘:? - (OaX’PG-) @Xx-p @ (93{2-#

(see [11], Huitiéme Partie; Proposition 3).) In particular, if # is a torsion free sheaf of
rank r then

F,~ @gf,p&)ml,’(’p, a+b=r.

Proof. Let (#, #,,A) be the triple associated to &. We can choose a basis of the free
Oy ,module F, = (resp. 2 basis of the free 0Oy <module F,)) e,....€,

(resp. fy....,f,,) such that A(e)=f; (1<i<s) and A(e;)=0, (s<i<ry). Then by
setting a=s,b=r, —s and ¢ =r, —s we get the desired result.

Remark 2.7. Let & be a torsion free Oy-module. Let & |, & ,, %, 7, be as in the
notation before Proposition 2.2 and K = #,(p) be as in Remark 2.3. Let T} , = torsion

of #,. Then T, , maps isomorphically onto the subspace K under the canonical map
Tl, r - 'g'-,z(p)

Proof. To prove this note that (see Remark 2.6)

F,~0% ,® (93(1,[,@ 0y,, and &, = @gftg B (/M)

Now if N is as in Remark 2.1, we clearly see that N maps onto &;(p) with kernel
K which is isomorphic to T , as required.

Remark 2.8. Given a directed arrow, say —, the association to a torsion free ¢ y-module

F the canonical triple (#,, %, A),is functorial (note that triples form a categoryin an
obvious way).

If # % % is given, and & and ¥ are represented by triples (¥, #,, 4) and(%,,%,, B)
respectively, it then give rise to in a canonical way an ¢ Xl-module (resp. Oy -
module) map ¢,:F, =%, (resp. ¢,:F, —%,), and a commutative diagram

7o) 228 9, )

LA B

628K
Fo(p) — %, (0) -

Proof. This follows because in the construction of the triple from a torsion free
0 -module &, the constructions &#;,i= 1,2 and 4 are all functorial.

Lemma 2.3. Let C be the category of triples (%1, ,9"2,2). Then the functor
Frr(Fp, FA)

from the category of torsion free Oy -modules to C is an equivalence.
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Proof. The inverse of

—

,7}-—)(971’,9‘72,,4)
is given by

(Fp Py A) - F = {f=(fr.f,) € FL @ T, Afi(P) =£2(P)}-
Now the lemma follows from the Remark 2.8 above. '

Remark 2.9. 1f C is the category of triples (#,, %,, 4) then again the functor

——

F—(F,F,A)
is an equivalence of categories.

2.1 Subtriple

DEFINITION 2.3

Let (%, _,%72,2) be a triple as before. A triple (¥ 1,542,§) is said to be a subtriple of
(F,7,,A){ 9 S F, (tesp. 9, & &,) is an inclusion of O -modules (resp. Oy -
modules) and the following diagram

i, ®k(p}
4.(p) — Fi(p)

|B LA

i, ®@k(p)
%,(p) — (D)

is commutative.

Note.If % 5 & isan 0~ submodule of #, thenthereisa ¥, 4 5 ¥’ Z suchthat # /%'
is torsion free and %'/ is torsion. One has only to take the inverse image in & of the
torsion subsheaf of #/4. Note if 4 & is such that /% is torsion free, then if
(F., F,p A)(resp.(9,,%,, B))is the triple associated to & (resp. ¢), then for%,c F,it
need not be true that &,/4, is torsion free. For example, let & be a vector bundle on
X and let #'(=x,. %) be the subsheaf of # vanishing on X. Then F = (F1, %2, A)
where #;,= F |y and F' = (9, 0, 0), where 4 = &' considered as a sheaf (vector bundle)
on X,. Now & /& is torsion free; however for ¥ %, %,/% is not torsion free.

Remark 2.10.1f(F,, #,, A)isatriple and & isthe corresponding depth one ¢y-module,

—

then is a 1-1 correspondence between subtriples of (#3, %5, A)and 0,-submodules of
F. ‘

Proof. This follows from Lemma 2.3.
2.2 Euler characterstic of a triple
DEFINITION 2.4

Given a triple (%4, ., A) we define its Euler characteristic by
Fpd)

xx((F 1, ) = xx(F1) + x5 F2) — k(Z,),
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where y,(Z; ) is the usual Euler characteristics of the sheaf of ¢y - module Z, (z =1,2)

and rk(%,) is the rank of the ¢,,- module &,. Similarly, given a trlple (F,,F>, A), we
define its Euler characteristic by

Ll F > Fos A)) = 0 (F1) + Al Fr) — TK(F).
Remark 2.11. If & is the ¢y-module associated to a triple (%, %, A) (resp.
(F1,#,, B)) then

1:l(F1, Z2 A)) = 1 F) = 1l (7, 72, B))

Proof. Given a triple (#, %, A) we get an exact sequence
0-F->F,0%,-T,-0

where & is the ¢, -module associated to the triple (¥#, #,, A)(see Lemma 2.3)and T,
is a torsion sheaf supported at the node p of X. In fact T, is a vector space over the
residue field k(p) at p and its dimension is equal to the rank of #,. Thus we see that

1x(Fr Fay A)) = 1x(F).
Similarly,

—

1T F 'y, B) = 1x(F).
Remark 2.12. Xf (#,,%,,4) and (¥,,%,,B) are two triples such that y, (%)=
1l 1 16, F2) = X (92) and rank (#,) = rank (%,), then

1x((F 1, g/-;bz)) = 1x((¢, g,,Tg))
A similar result holds for triples of type (%#,, % 71)
2.3 Stability of triples

Fix a polarization (a,,a,) on X with g, > 0 rational and a, + a, =1, i.e. we take an
ample line bundle L on X such thatif L;= L|,, then

deg(Ly) _a,
deg(L,) a,
DEFINITION 2.5

Let(#,,%,,4) be a triple. Then we define

—

” -~ F, F, A
#((?‘1,9’.’2,,4))=H(X,aha5)((yw1,9',’A )= Xx(i~ 1T A)) .
- a,tk(F,) + a,rk(F,)

DEFINITION 2.6

Let(#,,7,, A)bea triple. We say that the triple (%1, %, A)is stable (resp. semi-stable)
if for every proper subtriple (4,,%,, B)
.u'((gls gZ: ))<#((fla*/23A))

(resp. ).

\*ﬁ

T,
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Note. In the definition of semi-stability (resp. stability) 4, are only subsheaves of #;
and we cannot suppose that (unlike the case of a smooth projective curve) it suffices to
take %, as subbundles of Z (see the note before Remark (2.10)).

Let g be the genus of X and g;(i=1,2) be the genus of X,(i=12). Note that
g =g, + g, Letdbeanintegerand let §((a;,a,),(2,2), x =d + 2(1 — g)) denote the set of
all isomorphism classes of semi-stable Uy -modules which are torsion free of type (2,2)
and Euler characteristic y =d + 2(1 —g) (here type (2,2) means the ¢, -module when
restricted to each component has rank 2) (see [11], ch. (VILII)).

Remark 2.13. Let # be an 00y -module such that
[F1eS((ay,a,).(2,2), x =d +2(1 —g))

Let (fl,fz,A) be the triple which corresponds to & (see Lemma 2.3). Then
(#,, %, A) is semi-stable. Conversely, if (7 1,972,14) is a semi-stable triple such that
k&, = 2 =r1k#, and Euler characteristic d + 2(1 —g), then if & is the corresponding
torsion free sheaf, we have [#]1eS((a,,a,),(2,2),x =d + 2(1 —g)). Moreover, & is
stable iff the corresponding triple (¥, %5, A) is stable.

Proof. This follows from Remark 2.10, Remark 2.11 and Lemma 2.3.

3. Euler characteristic of the components of a semi-stable triple

Notations are as in the previous section. Let (9*1,,9*'2,2) be a triple. Recall that by
definition

1 (F i, Fay A)) = 13 (F1) + 4 F5) — TK(F).
Now if :
[F]eS((ar,a,), (2, 2),x =d +2(1—g))

and (%, %, A) the triple which corresponds to &, then
| 1= 1x(F1, Fp A) = 4x(F) =d + 21 = g))
is fixed. We show below that if
[F1eS((a,,a,),(2,2),d +2(1 —g))

and (fl,fz,A) is the triple which corresponds to &, then the following inequalities
hold; a, 3 < xx. (%) < ay y + 2 and a, 3 < 1x,(F,) < a7y + 2. This has some interest-
ing consequences.

Let

[#1eS(ay, a,),(2,2),d+2(1—g))
and let (#,, %,, A) be the triple which corresponds to #
Case 1. 4 is invertible. _
Since the canonical map (#; ® Uy,(— P)(p)—F,(p) is zero, (F, ® Ox,(—p),0, 0) is

a subtriple of (# =%'Z,A) Hence by the definition of semi-stability of the triple
(F, F,, A) (see Remark 2.13), we get

(F)—2 _x
2a, 2
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Thus
Xxl(g'_ﬂ <ay+2. (1)
Similarly, since (0, ﬁz,’ﬁ) is a subtriple of (¥, #,, A), we get

1l F)=2 1
2a, 2
Thus
In(F)Sa+2 (2)
On the other hand ‘
y= 12 FD) + 1 FD) 2
Using this in (2) we get

%= Xx(F1) S asx- ;

Since a, + a, = 1, the last equation together with (1) gives
a, ) S ax (F) S a0+ 2.

Similarly we see that

A < xx(F) Sax + 2.

Case 2. rk(Z) =1.

Let #' - Z, be the Hecke modification such that Im(#"(p )) = Ker (A) (see Remark

24). Then clearly (.0, 0)is a subtriple of (%, #,, A). Again by the semi-stability of
(F#., %, A), we get

XX1(gll g_X_
2a, 2
But 1,(#1) = 1x(#1) — 1, hence
Il Fi) <ax+ 1 3)
Again, since (0, fz,ﬁ) is a subtriple of (9"1,./'2,.4) we get
XX2('/2) - 2 < ‘x_.
2a, 2
Thus
IxdF)<a+2 (4)
Since
1= xx{F1) + sz(go"z) -2,
by (4) we get

) Xxl(g'—ﬂ L ayX-
Also, since @, + a, = 1, the last equation together with (3) gives

a xS xx (F)<a+ 1

e
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Similarly

Ay + 1< g (F) < ax+ 2.
Case 3. rk(4)=0.

In this case note that 4 = 0. Then clearly (#;,0, 0) is a subtriple of (F), %>, 0). Again
by the semi-stability of (¥, #,, 0) we get

XX}(’gi;l)
2a,

< %
Hence

X (F1) < agx (5)
Again, since (0, #,, '0) is a subtriple of (#,, %,, 0), we get

P ) —
XXz(‘/IZ) 2 < X

2a, 2
Thus
X F2) S a + 2. 6
Now, as above, from (5) and (6) we get
X F1)=a
and
A F2) = axx + 2.

Thus we have proved the following:

Theorem 3.1. (a) Let y #0 and let (a,,a,) be a polarization (i.e. a;>0 rational and
a, + a, = 1). Assume that a,x is not an integer. Let (d,, d,) be the unique tuple satisfying
the inequalities ‘

a-y<d;<a;yx+1, ayp+l<d,<ay x+2

and d, +d, =y +2. If [F1eS((ay,ay), (2,2), x=d+2(1—g)) and (Fy, Fy, A) is the
triple which corresponds to %, then rank(A)=1 and we must have either
WF)=dy, ((F)=d, or x(Fy)=d, +1, ((F) =d, — L. .

Maoreover, if rank (A) = 1, then we must have y(F,) = d, and y(F,) = d,. (b)Let y =0
and let (a,, a,) be any polarization (i.e. a,> 0 rational and a, + a, =1). 1 [f

[#1eS((as,a,), (2,2), x=0)
and (#,, F,,4) is the triple which cérresponds to &, then
@) x(#,)=0and y(#,)=2,or
@) x(F,)=1and x(F,)=1, or
(i) x(&F,) =2and y(#,)=0.

Moreover, if tk(A)=1 (resp. tk(4) =0), then either y(#,)=0 aﬁd WF)=2 or
X(F) =1 and x(F,) = 1 (resp. x(F,) =2 and y(F2)=0).
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COROLLARY 3.1
With the notations of Theorem 3.1 (a), if

[#]eS((ay,a,), (22), x=d+2(1—g))
then either F is locally free or a torsion free Ox -module with F,~ 0, ,Omy .
Remark 3.1. Let % (seS) bea family of (a,, a,) semi-stable torsion free sheaves on X of
rank two and Euler characteristic y # 0 (with a,y isnotan integer), parametrized by an
irreducible variety S. Then by Theorem 3.1 we can choose a direction of the arrow such

that x, (%, ,) (resp. %x.(%,.,)) is independent of seS,where %, (resp. %, ,) is the bundle
on X, (resp. X,) in the triple associated to %,.

4. Properties of the moduli space of rank two torsion free sheaves on X and its
deformations

4.1 Infinitesimal deformations of rank two torsion free sheaves of type Oy @ my ,on X

Let %, be a torsion free Oy-module. Assume that F,® 0y ,~ 0y ,®my , and
Fo®0y =0y ®Oy forallxeX —p, where m, , is the maximal ideal at the node p.

Let C be the category of Artin local k algebras. Let F: C—(Sets) be the functor
defined by

F(A) = Isomorphism class of coherent Cg,. . y-modules F
~ \flat over Spec(4) and F g umayxx = Fo '

Note that F has a versal deformation space.
Let FM:C —(Sets) be the functor defined by -

FM(4) = Isomorphism class of ¢, ,® A-modules M
~ \flat over 4 and M®A/m, =0y ,®my, |

There is a natural morphism of functors
®:F-FM

defined by
F>F @ (0, B A),
F(A)— FM(A).

PROPOSITION 4.1
The morphism ®:F — FM is formally smooth.

Proof. From Grothendieck’s criterion [10] it is enough to verify the following. If
A —-A-0

is a small extension in C, then the natural map
F(A) > F(4) X gy FM(4)

is surjective.
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Let A’ — A — 0 be a small extension in C, and & € F(4) and N e FM(4') be such that
FR(0y,®A4) =N, A

We show that there is an &' € F(4') such that #' ® A ~F and F' ® (0, ,®A") = N.
Let U, (i = 1,2) be affine open subschemes of X (U; need not be connected) with

() X=U,uU,

() peU,

(i) F |y pespeeity 20D F |y wspecqy  aTE free.

(Note that the above assumption implies p¢ U,). Then  is given by the patching data
(@))€ GLAO Y nuyx Spcc(A)) =GL, (O, ~u,y® A).

Since A’ — A is a small extension there exists
(a;;)€GL0y vy« spectay) = OL Oy, nuy® A)

such that under the natural map
G'Lz(@wl Ay @ A)— GL:Z(CO(U1 Ay ® A),

(a;;) maps to (a;;). Let (a;;) be one such element and let & be a sheaf of Oy ;. spec(ay
modules such that & is free on (U, — p) x Spec(4) and ¥ ® (0 ,®A") = N. Let F' be
the sheaf of Uy, .. -modules obtained by patching % and 07 , ... along
(U,nU,) x Spec(4’) using (aj;). Now it is clear that & 'eF(A") and maps to
(F,N)eF(A) X gy, FM(A") under the natural map

F(A) = F(A) X gyq) FM(4"). '
Since (#,N)eF(A) X myq FM(A4') was arbitrary, we get the desired surjection. Thus
®:F - FM is formally smooth.
Next consider the following functors from C to (Sets).

Sub (0 ,® A)-modules .# of Oy ,®A)?
EFM(A) = { such that (0, ,®A)*/A is flat over 4/,
and is a deformation of Oy /my

M(4) = Isomorphism classes of (€ X’p®A)-modules which are
| flat over A and are deformations of 0, ,/my , '

Then we get the following morphisms between functors:

¥Y:EFM -FM

deﬁhed by EFM(A)>.4 — [.4] e FM(A), where [.#] denotes the isomorphism class of
A, and

A:EFM —-M

defined by EFM(A)>. 4 —[(Oy,® A)*/M]eM(4) where [(Ux ,® A)?/ 4] denotes
the isomorphism class of (0, ,® A)*/A.
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We claim that ¥ and A are formally smooth (in the sense of Schlessinger [ 107). That
A is formally smooth is immediate (see [1]). To show that ¥ is formally smooth, we
need the following.

Lemma4.2. Let A— Bbealocal homomorphism of noetherian local rings. Let N and L be
B modules of finite type with L flat over A. Thena B homomorphism f: N — L is injective
with an A flat cokernel if and only if f®4k:N ® 4k — L&,k is injective, where k is the
residue field of A.

Proof. See [9], Appendix.

Lemma 43. Let A>Bbea local homomorphism of noetherian local rings. Let N be
a B module of finite type which is flat over A and satisfies Ex(1/B) (N, B) =0, where
B=B®, kand N=N®,k and k is the residue field of A. Then Homg(N, B) is A-flat

and Homy(N,B)® 4k = Homg(N, B).
Proof. See [9], corollary in the Appendix.

PROPOSITION 44.
The morphism - EFM — EM is formally smooth.

Proof. From Grothendieck’s criterion [10] it is enough to verify the following. If
A' - A —0 is small extension in C, then the natural map

EFM(A") - EFM(4) X g FM(4)

is surjective.

Let A’ — A —0 be a small extension in C, and .# ¢ EFM(4) and [#']1eFM(4') be
such that

(MR ,QA]=[A]

Now applying Lemma 4.3 to the local homomorphism A’—r((OX,p®A’) and to the
(0,® A’)-module .’ (note that the hypothesis of the lemma Ext}ox'P(mX, »Oxp) = 0, is
true in this case (see [3])), we conclude that (M'Y* =Hom, @A,(Jl 0y ,®4) is A’ flat
and hence (M'V*® o A= (H)*. A priori, we can lift the inclusion A 5 (Oy ,® A)? to
oM -->((9x,p®A’)2. Using Lemma 4.2, we conclude that ¢ is injective and
(@X,p®A’)2/Im(d)) is flat over A'. Hence .#' € EFM(4) as required. This proves the
proposition.

Remark 4.1. Let (a,,a,) be as in Theorem 3.1 and let Ox(1) be a line bundle of type
(a,,a,) on X. Let Quot be the quot scheme of rank two quotients of ¢ (DY with a fixed
Hibert polynomial. Now using the above results we conclude that if ve Quot
corresponds to a torsion free coherent sheaf of Oy module F, such that
Fo®0y , =0y ,Omy, and F, Q@ 0y, = 0y @ Oy, for all xeX — p, then there is an
integer | such that the local 1ing Oguer L U155 u,]] is isomorphic to a xpLLt1 e t1]

for some s, where 0, is the completion of the local ring Oy , with respect to its maximal
ideal.
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Theorem 4.1. Let y # 0 be an integer. Let (a,,a,) be a polarization. Assume that a,.x is
not an integer. Then the moduli space M(2,(ay,a,).%) of (a,,a,)-semi-stable rank two
torsion free sheaves on X with Euler characteristics x is a reduced, connected projective
scheme and with exactly two irreducible components. Moreover, when y is odd the moduli
space is a union of two smooth varieties intersecting transversally.

Proof. Existence of the moduli space in question as a projective scheme follows from the
very general result of ([11], septiéme partie, III, Théorém 15). By Theorem 3.1(2) we see that
a (a,, a,)-semistable rank two torsion free sheaf is either a locally free sheafor a torsion free
sheaf of type Oy, ,® My - Remaining assertions of the theorem now follows from Remark
4.1 and the general results of GIT quotients (see [6]). This proves the theorem.

For a different proof of the above theorem see Theorem 6.1.

42 Infinitesimal deformation of sheaves of type Oy, @my, on X along a smooth
deformation of X

Let R be a complete discrete valuation ring with residue field C. Let y be a regular
two dimensional scheme proper and flat over §:= Spec(R) and the closed fibre of the
characteristic morphism xS is isomorphic to X (= union of two smooth curves
meeting transversally along a point p). Let #, be a coherent sheaf ¢y -modules such
that F,® Oy , = 0y ,Omy, and F,® 0y =~ Ox . ® Oy  for all xe X —p.

We have the following functors:

1) Let F:C —(Sets) be the functor defined by

f:R—A a local homomorphism and [#] is an
F(4)=7\(f.[F]) isomorphism class of coherent Ospest A)xfx-modules
& flat over Spec(A) and F |gpeciaimyx =%,

2) Let x, € be the closed point which corresponds to p on X. Note that Rs 0, , 1- Let
FM: C —(Sets) be the functor defined by

f:R—A a local homomorphism and [M] is an
FM(A)=<(f,[M]) isomorphism class (O, ®rA) modules
M flat over A and M® gR/mp=0y ,®m,

3) Let EFM:C —(Sets) be the functor defined by

f:R—A a local homomorphism and M is a
0%, ® r4) submodule of (OXx°®RA)2

such that Oy, ® rAY/M is flat over A

and is a deformation of Oy ,/my,

EFM(4)={(f, M)

4) Let M:C —(Sets) be the functor defined by

f:R—A a local homomorphism and N is a
M(A)=1{f.N) ((QXO,x®RA) module flat over 4 .
and is a deformation of Oy ,/my,
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Now arguments similar to the one used in the case of ‘infinitesimal deformations of
rank two torsion free sheaves of type Uy@m, , on X’ shows that the natural
morphisms of functors

F - EM
EFM - FM
EFM - M

are all formally smooth.

Remark 4.2. Let(a,, a,), S and y be as above. Let 0 (1) be a relative ample line bundle
such that ¢,(1)[y is a polarization of type (a,,a,). Let Quot”/S be the quot scheme of
quotients of @ (1)¥ which are of rank two and with a fixed Hilbert polynomial P along
the fibres. Now using the above results, we conclude that if v e Quot®/S corresponds to
a torsion free coherent Oy-module &%, such that #,® Oy, P Oy, ®my, and
Fo@0y ~0, @0y forall xe X —p, then there is an integer [ such that the local
ring Ogupess,, [[41:- - -, 4] is isomorphic to &, , [[ty,...,t,]] for some s, where 0 5, I8
the completion of the local ring 0, . with respect to the maximal ideal x, of y.

Remark 4.3. From Remark 4.2, it follows that if veQuot’/S corresponds to a
torsion free coherent Uy-module %, such that (#,®0, )~0, ®m, , and
(Fo®0y,) =0y D0y forall xe X — p, then v is a smooth point of Quot”/S.

Theorem 4.2. Notations are as above. Then there exists a family
M2,0, x#0)—S

of moduli spaces of rank two torsion free sheaves along the fibers of y— S with Euler
characteristic y and semi-stable with respect to O(1). Moreover,

H(2,0, 1 #0)>S

is an integral scheme which is proper and flat over S. If y is odd M (2, @, ¥ # 0)is aregular
scheme, if y # O is even (in particular degree of the bundles under consideration is zero, i.e.,
X =2—2g) the scheme #(2, 0y, y # 0) gives a degeneration of the general fibre.

Proof. Using the results of geometric invariant theory (GIT) over an arbitrary base (see
[13]) one can construct a family '

M2,0, 150)—S

of rnoduli. spaces of rank two torsion free sheaves along the fibers  — S with Euler
characteristic y and semi-stable with respect to ¢(1), as a GIT quotient of the
appropriate Quot scheme Quot?/S. Moreover,

M2,0, 3 #0)—S

Is an integral scheme which is proper and flat over S. Then by the results proved above,
we see that (2,0, 7 #0) is a regular scheme if y is odd and if y #0 is even (in
particular degrees of the underlying bundle is zero, ie., x=2—2g) the scheme

/l (2,04 x #0) gives a degeneration of the general fibre, which ‘essentially’ has all the
nice properties of the general fiber.
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5. Direct construction of the moduli space of triples

From now on, for simplicity, we assume that the genus of X;(i= 1,2)is =22 even
though the resultsstill hold if the genus of X; (i=1,2)is >0.Lety 0 be an integer. Let
0<a, < 1 be a rational number such that a,y is not an integer. Set a, =1 —a,.

1t follows, from the existence of moduli space of rank two torsion free sheaves on
X (see Theorem 4.1) and the results of § 2 of this paper, that the moduli space of triples
exists. In this section we indicate a direct construct of the moduli space of (a;,a,)-
semistable triples (%, %,, 4) where F, (resp. &,) is a rank two vector bundle on X,
(resp. X ;) with a,y < xx (F1) <a;x + 1 (resp. ay + 1<yy (F2) <axx+ 2) and

W F s, ffzaz)) =X-

Using this we constuct (see § 6) moduli space of torsion free sheaves on X. This shows
that the moduli space of torsion free sheaves of rank two on X can be constructed
directly from the space of vector bundles with some extra data on the normalization.
We believe that this could be useful for applications (for example, as in [4,7]).

First some preliminaries.
Let

[‘aj;] GS((ala az)’ (23 2): r= d+ 2(1 - g))

and let (#,, #,, 4) be the triple which corresponds to &. By Theorem 3.1 we have the
following inequalities;

ay ) <ty (F1) <ayx+ 2,
) < Ax (F2) <o)+ 2

and = yx(F) = 1x (F1) + 1x (F2) — 2. Moreover, if & is not locally free, then we have
the following sharper inequalities;

agx <1y (F1) <agq+ 1,
ayy+ 1 <yx(F2) <ax+ 2
with y = yx(%) = 1x (F1) + Ax,(F2) — 2 and rk(A4)= 1.

Write a, = a/b with a, b relatively prime positive integers. Let &, be aline bundle on
X, of degree a and let &, be a line bundle on X, of degree b — a. Let 0x(1) be an ample
line bundle on X such that Ox(1) |y, = &£, and Ox(1) [y, = 2 ». Since a/(b —a) = a,/a,,
observe that 0(1) defines a polarization of type (a,,a,)on X.If F is a torsionfree sheaf
of Oy-modules of rank 2 and if (¥, 3/72,2) is the triple corresponding to it, then the

triple (F,® L& F,® L$", A®L®") corresponds to the Oy-module F @ Ox(n),

where 1: &,(p)— &£,(p) is the isomorphism defining 0x(1). Since the bi-degree of the
line bundle O4(1) is (a, b — a) we have

1x,(F1 ® LT = 1x (F1) + 2am,
1x (T2 ® L) = 13 (F2) + 20— aym,
HF ® Oy(m)) = ((F) + 2bm.
Thus, if
[#1eS((ay,,),(2,2), 2 #0)
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and (?1,9'2,:{7) the triple which corresponds to #, then

[F ® Ox(m)1 € S((a1, a,),(2,2), y + 2mb #0)
and the corresponding triple (#; @ £®" 7,0 72", A_W ) satisfies the following
inequalities;

AT ® Ox(m)) < ix (F1® ZE") < a ((F @ Oy(m)) + 2,

0T @ Ux(m)) < sz(grz L < a(F @ Ox(m)) + 2

and y(F @ Ox(m)) = xy (F1 @ LE") + 4y (F,@ L2™) — 2. Moreover if F is not

locally free then # ® Oy(m) is not locally free and we have the following sharper
inequalities;

A (F © Ox(m) < 24 (F1 @ LP™ < a, ) (F ® Oy(m)) + 1,

) F @ Oxy(m)+1< L F 2@ EP™) < a,x(F @ Oy(m)) + 2
with y(F @ Ox(m)) = xy (F, ® L") + 1, (Fr @ FP™) —2 and k(A ® A®™) = L.
Remark 5.1. Let y # 0 and 0 < a, < 1 be such that a,x 1s not an integer. Let (%, %, A)
bea(ay,a, =1—a,) semistable triple of rank (2, 2) with X(F, F,,A))=y and

Ca<)x(F)<ax+1,

ayx +1<yy(F,) <ayy+2.
Then #, is a semistable 0 -module and %, is a semi-stable @ x,module.
Proof. Let L, = &, be a line subbundle. Then (0,L,, 0) is a subtriple of (F,, F A).
Now by the semi-stability of the triple (%,, %,, 4), we conclude that
X
5
Then from the assumption on y(%,), we get

1x,(F) =1

L) ~1<a,

X(L2)<a2§ f1<
Thus

Ax (gz) 1
L7 2 -
x(Ly) < 5—+5

Since y(L,) is an integer, we get

7))
x(Lz)sl%i.

This proves that &, is a semi-stable @ x,-module.

Let L; = #, be a line subbundle. Then Li®0x(—p)=F ®0y(—p) hence

(L, ®0, (~p).0, 0)is a subtriple of (#, %5, 4). Now by the semistability of the triple
(#,, #,, A), we conclude that :

ALy~ 1< al-;?.

By
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Thus

(#1)

teLy<al+1<B bt (1)

Note that, if x, (#,) is even, then (1) gives
XX,(Q{T 1)
2

and hence &, is semistable. Thus from now on we assume y (#,) is odd. Then from (1)
we get

Xx,(L1) <

F. 1
(L) <HE) 2 o
Claim.
ZF.
XX,(Ll) < &‘(2—*1'2

for every line subbundle L, of &,
To prove the claim we assume the contrary and get a contradiction. Assume that
there is a line subbundle L, of &, such that

Xx (F1)
xx,(L1) > —%'L

Then for any such subbundle L, of &, we have (by (2) above)

Xxl(f'-l)_*_% (3)

Let L,-be such a line bundle. Note that (L;, #,, 4|, ) is a subtriple of the semistable
triple (#,, #,, A ), hence we get
L) +u(F2) -2
a, +2a,

Xxl(L1) =

<X
2

Since a, + a, = 1, the last inequality gives

X(L1)+X(972)"2<§+a2§-

Using (3) in this equation we get

1, F) 1 X
J%TL+§+ﬂyg—2<§+%

X
5
Hence

A (F1) + 2UF) =3 +axx

Since y = xx(F) = Ay (F1)+ 1z, (F2) — 2 we get

x+ (F)— 1<y +ax
Hence
wF)<ax+1,
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which is a contradiction to the assumption that
ayx+ 1< ((F2)

This proves the claim, and completes the proof of the remark.

Theorem 5.1. Let y # 0 and 0 < a, <1 be suchthat ay is not an integer. Let (F,, %, 4)
be a(a,a,=1—ay) semistable triple of rank (2,2) with y(#1, ¥, A)) = 1. Then & is
a semi-stable O -module and 7 is a semi-stable O, -module.

Proof. If the semi-stable triple (%, 5*’2,2 )is such that rank ( A) =1, then by Theorem
3.1 the inequality in Remark 5.1 is the only possibility, hence #; is a semi-stable
¢ -module and &, is a semi-stable ¢, -module. For the other cases one can use the
arrow in the other direction and the fact that the nature of the problem is symmetric in
X, and X,. This proves the theorem. ~

Let x and (a,,a,) as above. Let (F,F,,4) be a rank (2,2) triple such that
W(Fr, Frr A)) =1 and

ay <ty (F1)<ayx+ 1
ay+1 <y (F<ap+2.
Let
Y cF, Isa (OXI-submodule of one of the following types:
i) 4,=0,
ii) 4, is a subbundle,
ii) ,971®(9X1(—p)c€41 cZ.

Sl= gl

and

g,cF, is a 0y -submodule of one of the following types:
i) 4,=0, )

i) 4, is a subbundle,

i) #,Q0y(—p) =9, =P

Finally, let

~.|(%,9,B) is a subtriple of (#,, %5, A)
S= 12 2
{(gl’gz’B) with %, €S, and %,€S, '

Lemma$.2. Thetriple(F, %5, A)is(a,,a,)-stable (resp. semi-stable) if and only if for all
the subtriples (%,,%,, B)eS

B Fy, Fo, A
W(%1,%2, B)) <(a, k(@) + azrk(gz))x—(_(l_zg—_))
(resp. <)
Proof. Let (#,, %,, 4) be (a,, a,) stable (resp. semi-stable). Then

x(% s, {92,.}})) <(a,;7k(%,)} + azl”k(gz))26—(1'57:&’—523"7‘:2—:"1_)2

(resp. <)
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for all subtriples (%, %,, B) and hence in particular for the subtriples in S. This proves

the only if part of the lemma.
To prove the if part of the lemma, assume _that the above strict inequalities

(resp. inequalities) hold for all subtriples (¥, %,, B yeS of the triple (¥, %, A4). Let.
(%,,%,, B)¢Sbeasubtriple of (F, %>, A). Then we see that one of the following holds:

(@) (@,%, B)=(0,9,, 0)and %, is neither a subbundle of #, nor #, @0y (—p) = .
(i) rank (¢4,)=1and ¥, isa subbundle of #, but %, is neither a subbundle of #, nor
F,00,(—p) <= .
(iii) rank (%,)= 1 and %, is a not subbundle of #,.
(iv) rank (¢9,)=2and F; ® Uy (—p) is not contained in ¥;.
In the cases (i) and (ii), if we take £, = %, and £, to be the smallest 0 -subbundle of

#, containing %, and C = B, then (<, #,,C)eS. Since rank (%, ) = rank (£, ), rank
(%,) = rank (%,), clearly we get
~ - (F F A
(6090 B) <1(L1, 22T < k() + ayrk)) T2
(resp. <).

In the case (iii), take &, to be the smallest 0, -subbundle of #, generated by %,. Then
rank (#,)=1 and x(%,) <% -1 Now if rank (%,) =2, then set &, =%, and

C = Al 4, Clearly (£, £, C)eS and

(Fr, FrA))

1%, B)) <x(Z1, £5,0)) < (@17k(@)) + 315k (%)) =7
(resp. <)

as required. On the other hand if rank (%,) = 1, let &, be the smallest O -subbundle of
&, generated by %,. Then rank (&) = 1, x(%,) < (&,) and (0, Z,, 0)eS and hence

W FuFpA) 2 7)) 1

(%) — 1< (L) —1<a,

2 2 2
(resp. <).
Thus
Z. 1
LG+ 18 —1 <)+ ) —2 <) -1+ HEE -2
But, if C = 4| 4, then (£, #,,C) e S and hence
= X
UL Fo €)= (L) + U(F) —2 <5+ aas
(resp. <).
Thus |
X X
&) -1 <§ +a2§—(x(%2)— 1).

Using this in the inequality (1) we get

1 11— F,
AIAN Pt Al
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Now, since by our assumption a,y —x(%,) < — 1, we get
)4
4@+ 1)~ 1<5. )

This proves the required inequality in this case.
This proof in case (iv) is divided into following three subcases:

(a) g,=0. Consider the canonical surjection

97 1 -"3‘7 1([))
andlet &, be theinverse image of ker ( 4) under this surjection. Then (&,,0, 0)e S and
%, < @, with 1(%) < 1(<& ). Hence again we get the desired result.
(b) Rank (4,) = 1. Let &, be the 0, -subbundle of &, generated by %,. Let V denote
the image of £, It &%,(p) under the natural map %, > % ,(p) and V' be the inverse
image of ¥ under the map A. Let & be the inverse image of V' under the natural
Surjection

and set C= Al NOW, clearly (%,,%,,C)eS, and %, Zi(i=1,2). Also, since
rank (&)= rank (@) (i=1,2), we see that (%) < x(&) (i=1,2). Thus we get the
desired result. , ,

(c) Rank (%,)=21n th_ls case, since k(@) =1k(F)=2(=12)and ¥.c F,(i=1,2),
the required inequality is obvious.

This completes the proof of the lemma.

Theroem 5.3. Let 1 # 0 be an integer and 0 < a, < 1 be a rational number. Assume that
a,y is not an integer. Then there is an irreducible projective variety M(2,a,, %) which is
& course moduli space of (ay,a; =1—ay }-semistable triples (., F,, A) where Z (resp.
) is a rank two vector bundle on X | (resp. X,), A: #,(p) %,(p) is a linear map and

alx<xX1(9"1)<alx+ Lax + 1<Xx2(972) <axx+2,
X((yngzz,z):)(-

p—

Moreover, when is 0dd M(2,ay, X) is smooth.

Proof, Let T be the set of ison_norphism classes of (a,,a,)-semi-stable triples
(#,, #,,A), where F, (resp. #,) is a rank two vector bundle on X, (resp. X,),
A:F ()~ #,(p)is a linear map and

ayy <Xy, () <ar+ Loy + 1<y (F,) <azy +2,
W(F . Frd)) =1

Let i
T, = ([#]1I[(F1,F,,A)]eT forsome &F,and A:%F,(p)—F,(p)}

and -
T2={[9'-21][f(e’/'—1,?2,A)]ET for some #, and 4:%,(p)—F,(p)},

where[+]denote the i§omorphism class‘of the object. Then by Theorem 5.1, T, (resp. T5,)
consists of isomorphism cla§s§s of semistable vector bundles of rank two on X, (resp.
X ,) of fixed Buler characteristics and hence T; (resp. T,) is bounded (see [8], ch. (5.3)).
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Hence there is an integer m, such that for all m>m, and for all [#]e T, (resp.
[F,leT,), F QLD (resp. #,® £®m) is generated by global sections and the first
cohomology group H*(#, @ #2™") =0 (resp. H Y, ® £9™) =0). Similarly, we see
that given any real number 0, (resp. 6,), there is an integer m(0,) (resp. m(8,)) such that
for all m > m(8,) (resp. m = m(6,)) and for any subbundle 4, of F, (resp. %, of #,) with
[#,]eT, (tesp. [#,]€ T,), degree of ¥, (resp. 4,)=m(8,) (resp. = m(0,)), 4, Q@ L&
(resp. %, ® £®") is generated by global sections and the first cohomology group
HY (%, ® £%") =0 (resp. H(%,® L) =0).

Setd, = —2(g — 8)(resp. 0§, = — 2(g — 8)), whereg is the genus of X. Note that, since
we have assumed that the genus of X, i =1, 2is atleast 2,g > 4. Letmbe a fixed integer
which is > max {m(8, ), m(0,)}, where m(6 ) (resp. m(6,)) is as above for the given choice
of 0, (resp. 6,). Let k, (resp. k,) be the common dimension of all the vector spaces
HYZ, ® £ (resp. HO(#,® L2 with [F,]e T, (resp.[F,]€ T,)LetE, (resp.E,)
be a vector space of dimension k, (resp. k,). Let Q, (resp. Q,) be the ‘Quot’ scheme of
coherent sheaves on X, (resp. X ,), which are quotients of E; ® Oy (resp.E;®0 x,)and
whose Hilbert polynomial is that of #, & Lo (resp. F,® L") for [#,]eT, (resp.
[#,]e T,). Denote by R, (resp. R,) the open subset of Q, (resp. Q,) consisting of those
points g,€Q; (resp. ¢, € Q,) such that if

E,®0y »%,—~0 (resp. E,®0y =%, —0)

is the corresponding quotient, then H(#,)=0 (resp. H Y(#,)=0), the natural map
induces an isomorphism H%(& )= E;y (resp. H F o) = E2) and #, (resp. & ,) 18
Jocally free. It is known that (see [12]) R, (resp. R,) is a non-singular variety of
dimension k2 + 4(g, — 1) (resp. k5 + 4(g, — 1)).
Let
E, ®0q . x,~F,—0 (resp. E,®0q4, ,x,~¥,~0)

be the universal quotient sheaf on Q; x X, (resp. Q, X X ). Set F, = p,(F, | g, x »)) (rEsp.
F,=p3(Fslg,,p,))on Ry X R;. Note that F,(i = 1,2), are locally free of rank two. Thus
Hom(F ,, F,)1s a rank four vector bundle on Ry x R,. Let n be a large positive integer
(which we will choose later). Let 7y, ..., 7, (T€SP- Ty 15- - r,,) be distinct points on X,
(resp. X ,), where a and b are integers chosen at the beginning of this section. Define
a morphism

1,-Hom(F,, F,)— H,(E, @E,)"",

d’(‘]n‘lz)}_)(Fl 1 gy Xr "t ? Fl l‘h X Pyl le‘h KTy """ Fl l‘lz X Ty’ A(¢))’
where H,(E,; ®E,) is the Grassmanian of two-dimensional quotients of E, @ E, and
A(¢) is the two-dimensional quotient given by the composite of the surjections
FlquXP@FﬂqZXP

E,®E,~F F
1® 27 l‘qlxp("D 2|q2><p—' Graph((b)

Let
G =(GL(E,) x GL(E,))NSL(E; ® E,).

Note that G acts on Hom(F,, F,) and on H,(E, ® E,)™** and 1, is equivariant for this
action.

Lemma 5.4. A point
(X5 axnb+1)€H2(E1 @Ez)nb+1
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is semi-stable (resp. stable) for the action of G with respect to the linearization

(85---,€1,8) if and only if for any subvector space of the form F,@®F, with
F,cE, F,cE,and F, ®F,# E, ®E,, we have

nb
—(dimF, +dimF,)(2nbe, +2¢) + (dimE, + dimE,) (slzdlmV+£d1man )

i=1

=0 (resp. >0), where V,=Im(F,®F,—x,),i=1,...,nb+ 1.

Proof. Let D be the maximal torus

s

of SL, (=~ SLE; ®E,)), where n; = dimE, and n, = dimE,. Note that D = (GL, x GL,)

nSL, ., (= G). Thus Disalso a maximal torus of G. Note that any one-parameter subgroup
of D is of the form

ny o)
{(t"‘,...,t“"’,tbl..-,tb"z)[tEk*aairbiEZ and (Z at L b’):O}
i=1 i=1

Now since any one-parameter subgroup of GL, _ . can be conjugated to a one-parameter
subgroup of the diagonal subgroup of the form ‘

tek* a,b, eZ(Za + Zb)

i=1 i=1
and al/" >a >b /b ’

n2

(.. ot Lt

it follows that any one-parameter subgroup of G can be conjugated to a one-parameter
subgroup of the form

tek*,a,beZ, (Za + Zb)

i=1 i=1

(.t ot
ool el Ty ) and 511/“‘>au1>b1/"'>bnz

On the other hand, we clearly see that a point
(X150evs Xy, JEHHNE, D EPT1

is semi-stable (resp. stable) for the action of G with respect to the linearization (¢,, .. ., ,, &) if
and only if for every one-parameter ¢ of G

By, Xy 0) =8y Z x5 ) +epu(x,y, 5¢) 20 (resp.>0)
i=1
(see[11], Proposition (28), Premiére partie. III).
Let ¢ be a one-parameter subgroup of the form

tek* a, b ez,(i o+ Z b)=0

i=1 i=1
and a; =>--->a, b

n *

(..t L 1)

1 n2
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Then
(X5 eesXgyo ) =0 (resp.>0)

if and only if for all natural numbers p,p;,p, such that 1< p<n, +n,0<p, <ny,
O0<p,<nyandp, +p,=p,

Xy 5eres X33 Cpprpa) =0 (resp.>0),

+n,—- +n,- - -

pmEmTP | pmtmTP TP TP

C = ~ -’ -’
P.Pu P2 ’ ?

P n,—Dn;

where

puatm=e  gmtmoP TR TP
. et e e’ |1 € K* 5,
D2 n,—p;

That s, every ¢ of the above form is a positive linear combination of {Com ) @nd pislinear on
the set of all ¢ of the above form.
Note that if E, @ E, — Vis a quotient of dimension two, then

‘u(V; cP»vaPz) == 2(p1 + pz) + (nl + n2)d1m( V’)’

where V' =Im(F, @ F,— V) with F as the subspace of E; spanned by the eigenvectors of

Cp, py. p, With eigenvalue ™ +m~ P and F, as the subspace of E, spanned by the eigenvectors of

3 : (+m2—p
Cp. p,.p, With eigenvalue ¢* . Hence

nb
/'L(xlﬁ A Dxnb+1; cp,pl,pz) = 81 Z (dim(Vl) (nl + nZ) - 2p)
i=1
+ e(dim(Vm;+ N, (ny +ny) — 2p),

where V,=Im(F, & F, ~x;),i=1,...,nb + 1. From this the Lemma follows immediately.
Continuing the proof of Theorem 5.3, note that each point of Hom(F,, F,) gives rise to
a triple as follows; if ¢, ,,, € Hom(F, F2), , then it defines a homomorphism

A:gb—lmxX[(p)—)gz‘qzxXz(p)

and thus gives rise t0 a triple (F |, o # v 24 )

DEFINITION 5.1

A point ¢, , e Hom(F,, F;)1s said to be semistable (resp. stable) if the corresponding triple
(FlysxoZ | pxxprd) s semi-stable (resp. stable). :

Lemma 55. If n is sufficiently large and H,(E,@E,®** is G linearized with respect to the
polarization (g, ..., €4, €), then

(1) A point ¢, ,,eHom(Fy,F,)is semi-stable=>1(¢, 4,) i semi-stable for the G action.

(2) A point ¢, EHOmM(F, F ,) Is not semi-stable=>7,(¢, 4) 1S 1Ot semi-stable for the
G action.

€A (N stable for the G action if and only if ¢ ., is stable.

Proof. Let ¢, ,,bestable. Then to show T igay) = X1r o> X 4 )is stable for the G action,
by Lemma 54, we need to show that for any subvector space of the form K, ® K, with
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K,cE,,K,cE,and K,®K, #E, ®E,, the real number
—(dmK, + dimK,)(2nbe, + 2¢)
+ (dimE, + dimE,)(e,)  , dimV,+ edim V,, , ) >0, Q)
where V,=Im(K, & K, —x)i=1,...,nb+ 1.

Let K, ®K, with K, cE;,K,cE, and K, ®K,# E, ®E, be given. Assume that
there exists a subtriple (%;,%,, B) of (F |,y ® Z2 " F |, ., ® L8 ", A®A®~" )such
that

) = F|, x®LP"is a subbundle for i=1,2.
(1) Ho(g1 ®°gx®m) =K, Ho(g:z@gz@m) =K,.
@) H'(% ® 29" =0, H(%® ") =0.

—_—

By assumption (F1,, , 4, & |, x»4) is stable, hence we get

d
dimK, + dimK, — k%, <(a,’k¥%, + agk%)( 5 ()
On the other hand, we see that V, =r1k%, (1< i< na)and V, = rk%,(na + 1 <i < nb). Hence
the LH.S. of (%) is equal to
- —(dmK, + dimK,)(2nbe, + 2¢)
+(n; + ny)(nag, Ik, + &, (nb — na)1k%, + edimV,, , ).

Dividing this by 2nb and recailing that a, =a/b and a, =1 —a, = (b — a)/b, we get that
inequality (*) which is equivalent to the inequality

imE,; +dimE, 1)

— (dimK, + dimK,) (61 +i)

nb
n; +n, e ..
5 8,4, 1KY, + g,a,1k%, + ;BdJman +11>0.
Now set &= 2nb/(n, + n,). Then the above inequality becomes
) ) dimK, +dimK
~(dimK, +dimK,)e, — 1 2
' T )2
+ et ; e (€,a,7k%; +¢,a,7k%, + dimV,, ) > 0. (#4%)
Note that
dimK, + dimK,
(ny +n5)/2

_4E) + @G )ma+ @k, (1 - g,) +d(%) + @) mb — a) + (kD) (1 — g,)
@&)/2)+ma+(1—g,)+ @& +mb—a)+(1—g)

d%)+ (k% )(1— d&. k) —
(%) (rmb)( gl)+ ( 2)+(rm172)( g2)+(rkg1)a1+(rk%)a2

dF)+ Al —g,)+dF)+ 21 —g,) 41 ’
2mb
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where #,=F |, x®@LP"(i=1,2),d(F,)=degree (F,)(i=1,2) and d(%,)=degree
(@) (i=12).

Now set

1 _dF)+ 21 —g)+d(F) +2(1 ——g,_)
& 2mb

Now dividing the inequality (x*) by &, we get

ny+n
( L 5 2 1) (a,1k¥%, + a,1k%,) + dimV,, , | —(dimK, + dimK,)

(728 — —
. dimm“(d(wmz(l 00) %) + gg)

_ (d(?l) + k%) —g,) | dF) + kD)1~ gz)) >0

mb mb

Now our assumptions on the subtriple (%,,%,, B) of
—_—
( ‘qlxX1®$® mﬁ‘qzx){z®$£®_ma A®)~®—m

imply that dimV,, , =r1k%,, hence the above inequality is a consequence of the
inequality (**) and Theorem 5.1.

The remaining part of the proof of the lemma is similar to the proof of the
Proposition 4.2 of [5].

Proof of Theorem 5.3 (continued). For sufficiently large n it can be proved that (proofis
similar to the proof of Theorem (5.6) of [8] and also see [11])

7,:Hom(F,, F,)— H,(E, ®E,)"**!

is injective and by Lemma 5.5, it follows that the restrlcuon to semistable points
induces a morphism :

7. :Hom(F,, F,)* —(H,(E, @Ez)"Hl)ssa

which maps the set of stable points Hom(F,,F,)* into the set of stable points
(H,E, @ E,)"™*'y. Thus Hom(F,, F,)//G = Hom(F,, F,)*/ G exists by [6]. Since the
normalization of this quotient can be identified with an irreducible component of the
moduli space of rank 2 torsion free sheaves on X, it is irreducible and projective by
([11], septiéme partie, III, Théorém 15). This is the required variety M(2, a, 1)
Moreover, when y is odd, we see that “semistable” = “stable”, hence the variety
M(2,a,,7%) is smooth. '

Note. In the proof of the above theorem, we used the fact that the moduli space of
torsion free sheaves is proper to conclude that the moduli space of triples M(2,a,, ) is
proper. We believe that, using methods similar to the Langton’s proof of properness of
moduli of semi-stable vector bundles on a smooth curve, one can also directly prove the
properness of the moduli space of triples.
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6. Another proof of Theorem 4.1

Note that by Theorem 3.1, if & is a torsion free (a,, a,) semi-stable sheaf on X of rank
two and Buler characteristic y, then there exists a unique triple (#,, F,, A) (resp. o
(#',F ", B)) such that & (resp. &) is locally free of rank 2 on X, (i = 1,2), satisfying 7

a ) <ix(F1)<ax+2 and a,y < xy,(F) < a,y+2

(resp. a;y < xx(F D <ayx+2 and a,x <y (Fy)<a,y+2)
and :
A F) + 2= 203 (F1) + 2,(F,) (resp. yx(F)+ 2= Xx(F D)+ xx(F2)
with —
A:F\(p) > Fo(p) (tesp. B:F')(p) = F(p)),
a nonzero linear map. Moreover,

(a) if Z is locally free, then A is invertible and &, = #(i=1,2) with B=(4)"",
(b) if # is not locally free, then A (resp. B) has rank one and

e

ax<yy(F1)<agx+1 and a,x+ 1 <y, (Fr)<ayx+2

(resp.a;x + 1 <y (FP<ayx+2 and a,x <y (Fo)<a,y+1).
The triples (#,, % 2,2 )and (F1, 5, B) are related by the following diagram:

F L Fip)

Bt

-
Fp) &2 Fy(p)

where j:F,—>F, (resp. i:, —F) is the canonical Hecke modification such that

Im(j(p)) =Im(4) (resp. Ker(i(p)) =Ker(4)) and Ker(j(p)) =Ker(B) (resp. Im(i(p)) =
Im(B) (see Remark 2.4).

Let M, = M(2,a,,7) be the moduli space of (a4, a,)-semi-stable triples (#,, % ,, 4 ) of
rank two with

i <xp(Fi)<ax+1 and a,x+1 <t (F)<ax+2

and yy(F)+2=xy,(F,) + xx(F,) (this space is constructed in Theorem 5.3). Let
M, =M(2,a,, ) be the moduli of (a,, a,) semi-stable triples (#,, & ,, B) of rank two with

a ) <yy(Fi)<a;x+2 and Ay X < Yo F o) <ary+1

and yx(F) + 2 = 14, (F,) + 2x,(F ,) (the construction of M, is exactly similar to that of
M,). Let

M, ={[(%,,F, A)]eM,|rk(4d)=1}
and

M, ={[(#},#;,B)]eM,|rk(B)=1}.

From (b) above, we observe that there is a natural isomorphism M’ — M. Now by
lemma 2.3 and Remark 2.9, it follows that M (2,(ay,a,), y) is isomorphic to M, UM,
with the natural identification of the closed subscheme M of M, with the closed
subscheme M}, of M,. Moreover, when y is odd, both M 1 and M, are smooth (see
Theorem 5.3) and M, (resp. M 2) 1s 2 smooth closed subvariety of M, (resp. M,) (see

Theorem 6.1 below). Thus, if y is odd, M (2, (a,, a,), ) is 2 normal crossing variety. This
proves the theorem.

"f;%,
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Theorem 6.1. Notations are as above. Let P, be the moduli space of parabolic semi-stable
(= parabolic stable) bundles (#,,0 = F*> F,(p) = #,(p)) of rank two on X, with para-
bolic weight (a,/2,a,/2) (if a; < a,, otherwise (a,/2, a,/2)) and degree of &, equal to ¥,
where x,, is an integer satisfying a,y <yx, <a,x+ 1 with x as in the theorem above.
Similarly let P, be the moduli space of parabolic semi-stable (= parabolic stable) bundles
(F,,0 = F? F,(p) = F,(p)) of rank two on X, with parabolic weight (a,/2,a,/2)
(if a, < a,, otherwise (a,/2,a,/2)) and degree of F, equal to y,, where x,, is an integer
satisfying a,y + 1 <y, < a,x + 2 with x as above. Moreover, we see that P, and P, are
smooth. By sending [(F,,F,A)]eM, to (#,0cF*F(p) = fl(p)) X (Z5,0
c F2#,(p)c F,(p))eP, x P,, with F2 F(p)=Ker(d) and F>%F'(p)=Im(4),
we can identify M| with P, x P,. Similarly we can identify M’, also with P, x P,.

Proof. Let(¥ ,, % ,, A ) be a semi-stable triple such that [(# |, #,,4)]e M',. Then we

provethat (#,,0 c F2Z, (p) < F 1(p))(resp.(F ,,0 = F>F ,(p) = F ,(p)))is parabolic

stable on X, (resp. X,) with respect to the weights (a,, a,). By Theorem (5.1) we know

that & | (resp. & ,) is semi-stable on X, (resp. X ;). Thus for any line subbundle Z (resp.
&£,)of ? (resp. # ,) we have (assummg a, < a,)

UL 1) +ay/2<)(F1)/2+ 1/4 (tesp. y(£L3) +a,/2 < y(F,)/2 + 1/4).

Thus, if either &£, (p) # F2.# ,(p) or x(& ) <3x(F ) (resp. if either &Z,(p) # F>F,(p)
or x(&,) < 3x(F,)) we see that par deg (&£,) < par u(F ,)(resp. par deg(.#,) < par
W(F ,)). We next show that there is no subbundle %, of #, such that y(&,) = (% ;)/2
and Z,(p)=F*%,(p) (resp. ¥, of %, such that (& ) 2F,)/2 and
ZL,(p)= F2 »(p)). If such a line-bundle &, exists, then (%,,0, O) is a subtriple of
(F L F, 4) but semi-stability of the triple (37 uF A ) implies y(#,) < a, x/2. Thus
%(F ;) < a, x, which contradicts the fact a, y < x(%,). (The proof that there is no line
subbundle ¥, of #, such that y(%,) = x(ﬁ )/2and Z,(p) = F*% ,(p) is similar.)

This ir__gplies that we get a morphism from the moduli space of triples (# , % ,,A4)
with rk(A4 ) = 1 into the product of parabolic moduli spaces under consideration. This
moduli space of triples is proper, being a closed subset of the moduli space of all
semi-stable triples. Further the above morphism is injective and both the spaces have
the same dimension. Hence the morphism is bijective and the required implication
follows. In fact, the required assertion can be checked directly by a case-by-case
analysis.

7. ‘det’ of semi-stable torsion free sheaf of rank 2 on X

Notations are as in the previous sections. Let & be a rank two, (a,,a,)- semi-stable
torsion free sheaf on X. Assume that y = y(#)#0 and a, ¥ is not an integer. If #

a vector bundle of rank two, then its second exterior power /i(J ) is a line bundle
denoted by det(#). Moreover, if (#,, #,, A)(tesp. (F',, F 5, B )) is the triple represen-

ting &, then we see that det(&) is represented by the triple (/\(,/ /((f 2), det et (4))

(resp. (/i(g"' i /%(,97 "), det (B))). Note that in this case. #', ~ %, and F', =~ %, and
B=A"11f # isnota vector bundle, then we see by Theorem 3.1 that # , =~ 0, @ mX )

and # =0y D0y forallxe X —p.Thus /i( F),/(torsion) ~ m, ,and /i(,f/’) Xx
for all xe X — p. Also, when % is not a vector bundle, we see that if (#,, 7 2,A)
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(resp. (#3, 3’2‘" 5B )) is the triple representlng F, then /i(_/ )/(torsion) is represented by

the triple (A% |, AF ,,0) (resp. (/\ /2\97 5 6)). Note that in this case we have the
following exact sequences

0—F, >F| —k(p)—0,
0-F,->F,—k(p)—0,
where k(p ) denotes the residue field at p. Thus we see that /2\,97 |~ /i(/f 1@ (9 ( ) and
Fy /\./‘2®(9 ,(—p). Consider the trlple(/\ " /\JZ,/I)(resp (/\ AT
where A (resp. u) is an isomorphism of one dimensional vector spaces
F,(p)— AF,(p) (resp. AF!(p)— AFy(p)). If L, (resp. L,) is the line bundle on
2
X associated to the triple (/2\ Z A 972,7), resp.((/< F NF, , 1)), then
Lied, 4 oX )X T, _1_p)(X2)
(resp LZEJ/ +1-(1- g1)(X1) X Jx2—1~(1—g2)(X2))3

where y,, x, are integers satisfying a;y <y <ax+1, a0+ 1 <y, <a,x + 2, with
Xitx—2=yxand J __ g)(Xi) is the Jacobian of line bundles on X; of Euler
characteristics y; — (1 —g;) for i = 1,2. Also, note that under the natural isomorphism

Jpr1-g-gn(X1) X Jp-t==gy(X2) = g gy (X ) ¥ sz——(l—-gz)(X 2)
(gl’ gZ) H("gl ® (OXI( —p)> a?2 ®(9X2( P)),
L, maps to L,. Moreover,
2 .
2 (A F [(torsion)) = y(L,) = x(L,)
(see Remark 2.12). |

Let M(2,(a;,a,),x #0)° be the moduli space of (a,, a,)-semi-stable rank two vector
bundles on X with Euler characteristic x(#0). Assume that 4, y is not an integer. From
the results of § 2, we see that M(2,(ay,a,), x #0)° = M2 UMY, where M? (resp. M?) is

- the moduli space of (a,,a,)-semi-stable vector bundles & on X such that

ax <Xy (Flx)<ayx+1
(resp.a,;x +1 <X, (37|X)<a1x+2)

anda,x-!—1<xx(/\x)<a2x+2(resp Ao <ix(Flx) <ayy+1)
Thus we have amorphlsm '

(det);: M9 =J o gy(X 1) X sz—(l—gz)(XZ)

(resp. (det)y: M2 = J, 1 __ (X)) % Ty ~1-t1-g(X2))
where y,, x, are integers satisfying

| GE<yi<ax+1, ayx+1<y,<ay+2,

with x; + X, — 2 = x. Now using the isomorphism

Tyt —-gg(X1) X Tim1—-a)(X D) > Ty g)(X) X J—1-a(X 2)
(£, L) (L1 @0y (—D), £, 00, (p)),
we get a morphism

(det):M(2, (@, az)x #0)° > T,y (X) X T, iy, (X ).

Y
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Now the arguments of the previous paragraph show that the morphism
(det): M(2,(ay, az)x # 0)°— g =gy (X 1) X sz-(l—gz)(Xz)

can be naturally extended to a set theoretic map from the moduli space M(2,(a;,a,),
x 5 0) of (a,, a,)- semi-stable rank two torsion free sheaves on X with Euler characteris-
tics x(#0).

PROPOSITION 7.1
The map
(det):M(2,(ay,a5),x #0) > J, g (X 1) X sz—-(l—gz)(XZ)

is a morphism.

Proof. The proof follows from the following two facts:
(a) & is a torsion free sheaf of rank two on X with Euler characteristic y, then

1( A/(torsion)) =y — (1 —g).

(This can be proved considering the associated triple and the Remark 2.7).

(b) Let %, bea(a,,a,)-semi-stable rank two torsion free non-free sheaf on X with Euler
characteristic ( #£0). Let # be a coherent sheaf on § x X which is flat over the base
scheme S (finite type over the field C of complex numbers) and such that for all
seS, %], , is an (a,,a,)-semi-stable rank two torsion free sheaf on X with Euler
characteristic y( #0) and for the closed point s,€5,% |, , y = %o Let T be the maximal

subsheaf of modules of A% with proper support. Then /:@/T is a pure sheaf
of modules on S x X. The natural surjection

(RGIT) x> A& s x)
induces an isomorphism
(RGIT),, x = (A(&|,, ) (torsion),

for all seS. Thus I /T is a flat family of torsion free sheaves of rank one and Euler
characteristic y — (1 — g) with the property

(RG/T), x = A (@, x)/(torsion).

PROPOSITION 7.2
The fibres of the morphism

(det):M(za (a1> aZ),X # 0) e JXL —(l—gl)(Xl) x sz--(l—gz)(XZ)
are all reduced.

Proof. Notethat any [#]eS((ay, a,),(2,2), x # 0)is represented by a triple (%, %5, 4)
with the property a,y <y (F1) <a;x+2, a1 < Ax(F2) <y + 2,tk(A)=1 and

A (F)+ qx (F)—2=1. Let LyeJ, - g)(X1) X J, ——gn(X2) be represented by

(&L, %, 1), Let FeS((ay,a,),(2,2),x#0) be such ‘that a,x < Xxl(g'—ﬂ <a;x+1,
A+ 1<y (Fo)<ay+2 and ‘det’(#) = L,. Then note that for all such # there
exists a fixed integer n such that % (n) admits a trivial line subbundle. If (%, FyA)
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is the triple associated to such a torsion free sheaf &, then we see that
F, € Ext(},x (&, (na), (OXl (—na)), F, € Ext.j.Xn (&5 (n(b—a)), @xz( —n(b—a))).

Thus (#,, 9"2,2) is isomorphic to a triple given by a point of the rank four vector
bundle Hom ( p;(F,), p5(F,)) on

Extéxl(,?l(na),@xl(—na)) X Ext% (,‘fz(n(b——a)),@ (—n(b—a),

where F, (resp. F,) is the restriction to Ext( (&1(na), O (—na)) x p (resp. Extl
(Zon(b—a)), Oy ( —n(b—a))) x p) of the umversal rank two vector bundle on Ext "’X
(Z1(na),0, (—na)) x X, (resp. Ext1 ($z(n(b ), Uy (—n(b— a))) x X,). Hence
there is a surjectlve morphism from an open subvanety of the smooth variety
Hom (pi(F,), ps(F,)) to the variety of all & e M(2,(a,,a,).x #0) such that g,y < Ax,
(FY<ayx+lay+1<y(F)<a,y+2 and ‘det’(¥)=L,. Thus the variety
of .all FeM(2, (al,az),x%«é 0) such that a;y<yy(F)<ay+lay+1<yy
(F,) <ayy+2 and ‘det’(#)=L,, is reduced and irreducible. Similarly, the variety
of all FeM(2(a;,a,).x#0) such that a,x+1<yy (F:)<ax+2a0<x,
(F,) <a,x+1 and ‘det’(#) =L, is reduced and irreducible. This proves that the
fibres of ‘det’ morphism are all reduced.

Remark 7.1. The ‘det’ morphism has good specialization properties in the folowing
sense:

Let S = Spec(R) be a spectrum of a complete discrete valuation ring R with residue field
C and x, be its closed point. Let £ — S be a flat family of curves with y a two
dimensional regular scheme and Z|, ~ X. Choose a relative ample line bundle O, (1) on

¥ — S such that its restriction to the special fibre induces the polarization of type (a,,4,).
Then the moduli scheme

M2, 04,y #0)— S

of rank two torsion free sheaves along the fibres with Euler characteristic y and
semi-stable with respect to ¢(1), exists as a flat scheme over S (see Theorem 4.2). By the

results of §4, we see that .#(2, @,, x # 0) is an integral scheme flat over S and regular if
“x 18 odd. Moreover,

M2, O, 1 #0)|, =M (2,(a,05)7 #0).

‘Similarly, there exists a flat family
J(&)—-S

of Jacobians, the fibres of Z — S of Euler characteristics y —(1—g) and
JZ ) =T, g (X1) ¥ sz—(l—gz)(X?.)‘

Using the results proved above we see that there is a natural morphism
(det)/S: M (2,04 ,x #0)/S = J(X)/S

of S schemes such that

(det)/S|, ;M (2,04, 3 #0)/S\, = J(&)/S),

i D oR
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is same as the morphism

(det): (2, (a1, a2), 1 % 0) = T,y g X)X T, _1g(X 2.

Remark 7.2. It follows from the above remark that if we have a family such that
a smooth curve Y of genus g specializes to the curve X and a line bundle & (with
v(&)#g—1) on Y specializes to a line bundle L, then the moduli space of rank two
vector bundles on Y with fixed determinant % specializes to the moduli space of rank
two torsion free sheaves on X with fixed determinant L. Moreover, this specialization
carries the nice properties of the specializations of moduli space of vector bundles
(without fixing the determinant) on Y to the moduli space of torsion free sheaves
(without fixing the determinant) on X.

8. Fixed determinant moduli space over an irreducible nodal curve

Throughout this chapter, we let X denote an irreducible projective nodal curve with
exactly one node. Let p be the node of X and my , the maximal ideal of X at p.

The notion of a triple in this paper can be suitably modified so that giving a torsion
free sheaf # on X is equivalent a couple (V,$), where V is a vector bundle on the
normalization X and @ : V( p,) = V( p,) is a homomorphism of the vector spaces, and
P, P, €X are the points above the node peX and V(p,), V(p,) are fibres of V.

, Remar& 8.1. Let & be a torsion free, but not free sheaf of rank n and degree d on X and
let (V, ¢ ) be the associated couple. Note that in this case det(¢) =0.

(a) If rank (@) =n—1(ie., locally at p, # is of the form ((Q"XT; @my ,)), then it is easy to
see that

AF /(torsion) =~ L,

where L, is the }ors_ipn free (but not free) sheaf of rank one of degree d on X associated
to the couple (AV, 0).

(b) If rank (¢) < n—1 (i.e, locally at p, ¥ is of the form (0%, @ my ), (r =2)), thenitis

easy to see that for every linear map 4: /'{V( p.)— /n\V( p,) we have

AF /(torsion) = L,
wilere L, is the torsion free sheaf of rank one and degree d on X associated to the couple
(AV,A.

Let Y be a non-singular projective curve which specializes to X and n>1 be an
integer. Let M(Y,n,d) (resp. M(X,n,d)) denote the moduli space of vector bundles
(resp. torsion free sheaves) of rank n and degree don Y (resp. X)(see [8, 11]). Oneknows
that M(Y,n,d) specializes to M(X,n,d) (for example this follows from the general
theory of [13]). If # is a vector bundle of rank n and degree d on Y (resp. X), then

Frodet(F):=AF

induces a morphism det:M(Y,n,d)—M(Y,1,d)=:J(Y) (resp. det: M(X,n,d)°—
M(X ,1,d)° = J¥X), where M(X,n,d)° denotes the moduli space of vector bundles
of rank n and degree d on X, which is an open subvariety of M(X,n,d)). For & eJUY),
set ‘

M(Y,n, &) = det™ (&)
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and for L e J4X), set
M(X,n,L)° = det ™ (L)
DEFINITION 8.1

Let L be a torsion free sheaf of rank one and degreed on X. Define M(X, n, L) as the set
{{#F1eM(X, n,d)l(/n\?)/(Torsion) =L and mjLc( /'iﬁ/"“)/(Torsion)},

where (Torsion) denotes the maximal subsheaf of modules of AF with proper support
and m, is the ideal sheaf of the point pe X.

Remark 8.2. In fact we can define a subfunctor of the moduli functor so Fhat this
subfunctor is representable and is represented by a subscheme whose support is the set

M(X,n,L). Thusitis easy to see that M(X,n, L) can be defined as a closed subscheme of
M(X,n,d).

Conjecture. (a) If L is a line bundle on X ,then M(X, n, L) is the closure of M (X,n,L)°in
M(X,n,d).

(b) Let &, (resp. L) be aline bundle (resp. torsion free sheaf of rank one) of degree d on
Y (resp. X ). Assume that 2 specializes to Ly as Y specializes to X. Then M (X,n,Ly)is
the specialization of M(X, n, %)

Below we provide some evidence to the conjecture.

Evidence. For simplicity, letn be equal to two. Let # be a rank two torsion free sheaf of
degreed on X.If % is a vector bundle (resp. torsion free sheaf of type (© x.p @1y ), then

clearly ( AF )(resp.( A )/(torsion))is a line bundle (resp. torsion free shneaf of rank om.%)
of degree d on X. If # is a torsion free sheaf of type(my ,@ my ) then ( AF)/(torsion) is
a torsion free (but not free) sheaf of rank one and degreed — 1. Thus for any torsion free
sheaf L of rank one and degree d such that (AZF)/(torsion) = L, we see
F e M(X,n,L):let # be a torsion free sheaf of type my ,@ my , of degree d and let L be

a torsion free sheaf of rank one and degree d such that (/%37 )/(torsion) = L. Let R be
ad.vr. and let F be a flat family of torsion free sheaves of rank two and degree d on

2
X parametrized by S = Spec(R). Assume that for the generic point of neS, (A
Fl..x)~L®Q(R)and 7for the closed point se S, F lsxx = & where Q(R)is the quotient

field of R. Noow if L = (AF)/(Torsion), where (Torsion) denotes the maximal subsheaf of

modules of A F with proper support, then L s a flat family of sheaves of rank one and
degree d on X and there is an injective homomorphism

L-n3(L),

where 7,:S x X — X is the second

2
projection. Since the surjection L|,, , — ( AZF)/
(torsion) induces an isomorphism

(L1, x)/(torsion) =( A #)/(torsion),
it follows that # e M( X, n, L), QED.
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