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Abstract. Ito’s stochastic integral is defined with respect to a Wiener process taking values
in a locally convex space and Ito’s formula is proved. Existence and uniqueness theorem is
proved in a locally convex space for a class of stochastic evolution equations with white
noise as a stochastic forcing term. The stochastic forcing term is modelled by a locally
convex space valued stochastic integral.
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~ List of symbols

Let E and F be two sequentially complete locally convex space and ((2,%3,P) be a
complete finite measure space. T € R, T <« and r = 1.
P g = family of all continuous semi-norms on E.

L(E, F) = space of all continuous linear operators from E into F.
L(E, E) will be denoted by L(E).
E* = space of all continuous linear functionals on E.

L"(Q,E,P) = space of all Bochner integrable functions X from € into E
such that [ {p(X)} dP < = for every p € P.

C([0,T], E) = space of all continuous functions from [0,7] into E.
pn = Lebesgue measure on [0,7].

w(de) will be denoted by dr.

Let A be a densely defined linear operator from E into E.

p(A) = resolvent set of A.

R(A,A) = (I-1A)™! (inverse of the operator (I—AA)) for —};e p(A).

1. Introduction

Stochastic analysis in infinite dimensions appears in several fields e.g. random
,, vibrations, random particle system, etc. An abstract theory of stochastic evolution

o equation has been established by Curtain [2], Curtain and Pritchard [3], Ichikawa

[5] and others in Hilbert space, Kuo [8] in abstract Wiener space. However it is also

79

e S



80 S L Yadava

interesting from the viewpoint of applications to discuss stochastic evolution
equation in some locally convex space. In this paper, we consider the following
class of stochastic evolution equation :

du(r) = A(2) u(t) di+ ¢()dw()+f(1) dt, 0< = T @)
u(0) = ug

in a locally convex space F, where A(r) for each ¢ € [0, T] is a linear unbounded
operator on F, {w(t), 0 = t = T} a Wiener process in a locally convex space E, ¢(¢)
and f(f) are stochastic processes with values in L(E,F) and F respectively. In §2 of -
this paper, we will study Bochner integrals, evolution operators and Wiener
process in a locally convex space. In §3, we will define stochastic integrals in F with
respect to a Wiener process in E and will describe some of its properties. We will
also prove Ito’s formula in §3. In the last section, we will prove the existence and
uniqueness theorem for the stochastic evolution equation (1).

2. Notations and preliminary results

2.1 Bochner integration in locally convex space

Let (2, B, P) be a complete finite measure space and E be a real sequentially
complete locally convex space. Let @z be the collection of all ¢ontinuous
semi-norms on E. A function X from Q into E is said to be Bochner measurable if
there exists a sequence (X, ),y Of simple functions from  to E such that X,

converges to X in E. If X is Bochner measurable then p(X) is measurable for all
pePg. Let

X = Z | E;
i=1
- be a simple function. For B € %, define

JB XdP= > @ P(BNE).

i=1

A function X from Q into E is said to be Bochner integrable if there exists a
sequence (X, ),en of simple functions converging to X in E a.s. such that

dm | px-x)dp=0

for every p € P¢. For a Bochner integrable function X and B € B, define

fB XdP=s- lim | X,dP.

n—» @

For a Bochner integrable function X, we have
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@) p(JB XdP) = fB p(X) dP
for every.p € Pg.

(b) Let A be a closed linear operator with domain @#(A) C E (E is a Fréchet
space) and range in a Fréchet space Y. Let X from {} into E be a Bochner integrable
function such that X(Q) C @(A) and AX is also Bochner integrable, then

jBXdPe@(A) @)
and
AJBXdP=JB AXdP 3)

for every B € 3. We will say that the two Bochner integrable function are equail if
they are equal a.s. For 1 = r < o, define

L’(.Q, E, P) = {X:Q — E, X Bochner integrable and

[o (XY dp<=Vpe®e)

L’(Q, E, P) becomes sequentially complete locally convex space under the family
of semi-norms :

q(X) = (X, p) = [ [ {p(X)Y dP]",

where pe Pg. Let (Q, B, P) be a complete probability space. A Bochner
integrable function X from () into E is called a random variable.

For a random variable X, E(X) will denote the [ X dP and will be called
expectation of X. For every x* belongs to E* (space of all continuous linear
functionals on E) we have :

E(X, x*) = (E(X), x*).

Let B’ be a sub o-algebra of B and X be an E-valued simple random variable

defined on (Q, %, P) such that X = > ;| E;. Define
i=1"
E(XIB') =S o P(E/B). | @)

=1
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Obviously E(X/®') is a B'-measurable E-valued random variable. E(X/®") will
be called the conditional expectation of X given @B’'. The following properties of
E(X/®') can be easily obtained.
(a) for every p € P,
P(E(X/®')) = E(p(X)IB"),
(b) E(E(X/B)) = E(X),
(c) for every x* € E*,
(E(XIB"), x*) = E((X, x*)/B").

Let X belong to L'(Q, E, P) then there exists a sequence {X,,} of E-valued simple
random variables such that X, converges to X in E a.s. and

n—sco

lim Jn p(X,—X)dp =0
for every p € Pg. Define
E(X/®') = nlinoxo E(X,/R") 5)

in LY(Q, E, P). Since L(Q, E, P) is complete, we have E(X/®') is an E-valued
R'-measurable, unique upto equivalence class, random variable. E(X/®B’) will be
called conditional expectation of X given %’. Properties (a), (b), (c) of conditional
expectation stated earlier for simple random variable are also obviously true for
any X in L'(Q, E, P). For analogous result in Banach spaces see [9].

2.2 Evolution operator in locally convex space
Definition (2.1).

Let F be a locally convex space and T = [0, T] a real finite interval and denote
AM(Ty={(t,s), 0=s=t=T} A function U(.,.) from A(T) into L(F)
(space of all continuous linear operator from Finto F) is said to be almost §trong
evolution operator if

(@ Ut,r) U(r,s) = U(t,s) for 0=ss<sr=t=<T,
(b) U(t, s) is strongly continuous in s on [0, ¢] and in ¢ on [s, T].

(c) for each ¢ € T there exists a densely-defined closed linear operator A(t) on F
such that

U(t, s) : DA(s)) > D(A@)) for t > s

(d) jf ’ A(r) U(r, s)x ds = (U(t, s)—I)x
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for x € D, , (A) = {x € F: U(r, s)x € D(A(r)) for s =r =t}
Condition (d) implies that

d
(d') o U(t, s)x = A(f) U(t, s)x a.s. (Lebesgue measure in [0, T]) for

every xe 9, ,(A).

{A(D), t € [0, T] is called generator associated to almost strong evolution operator -
ug,.).

Regarding the existence of almost strong evolution operator, we have the following
theorem from Yosida [12].

Theorem 2.1.

Let F be a sequentially complete locally convex space and A(t) for each ¢, be a
closed linear operator with domain @ (A (#)) and range R(A(?)) both in F. Suppose
that {A(?), t €[0, T]} satisfies the following conditions:

(1) @(A(2)) is independent of ¢ and it is dense in F.

(2) (0, ) C p(A(?)) (resolvent set of A(£)) for each t. There exists a fundamental
family P of continuous semi-norms on F satisfying the following condition:

for every A > 0, pe Pr, there exists a positive constant M such that
 PAR(A, A(8)) R(A, A(ti-1) - - R(X, A(0))x} = M p(x).

Here M is independent of A, £;(1 < i =< n), n and x; R(A, A(f)) = (I-1 A(®)™!
and 0=t <...=t,= T is a partition of [0, T].

(3) A(s) e L(F), AQ) A™'(s) e L(F), 0=s,t=T,
(4) For every x€F,

(tlTs) c(t, s)x = (—tl—_——g) (A A7 (s)—D)x

is bounded and uniformly continuous in ¢ and s, ¢ # s and
. 1
lim & c(t, - E)x = c()x

exists uniformly in ¢, where c¢(f) € L(F). We have moreover,

p((tis) c(t, 's)x) = Np(x)

for some constant N > 0 independent of x € F, t and 5. Then {A(f),0 = ¢t = T}is
generator of an almost strong evolution operator.
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Let u denote Lebesgue measure on [0, 7] and as usual, we will denote w(dt) by dt.
For the existence and uniqueness of the solution of deterministic non-homogeneous
evolution equation, we have

Proposition 2.2

Let F be a sequentially complete locally convex space and {A(z), 0 < ¢t =< T} be the
generator of almost strong evolution operator U(.,.). Assume that

(1) U@,.) f(.) € D(A()) for almost all ¢,
(2) fe L'([0, T], F, n) and for each ¢, A(?) U(t,.) f(.) € L'([0, T}, F, n)
Then the abstract évolution equation

i(t) = A(t) u(t) +£(),

u(s) = ug € D(A()), (6)

in F has a unique strongly continuous solution

u(®) = U, s)u0+[s’ UG, r)f(r) dr. 7)

2.3 Wiener process in locally convex spaces

Let (€, 9, P) be a complete probability space and E be a reflexive real Fréchet
space with a Schauder basis {e,},<n such that for every p € P there exists a
constant M, satisfying p(e,) = M, for all n. Thus for every x € E we have

[+ ]
x= y {(x, el)e,,
n=1

where e, € E* (strong dual of E). Further assume that {e ¥} be a Schauder basis of
E*. For x,, x, € E, define a linear operator x;0x, from E* into E by

X10X2(x%) = (X2, x*)x;

for all x* € E*. Obviously x; o x, defines a continuous linear operator from E* into
E.

Definition 2.2.

Let u be an E-valued random variable defined on (Q, 3, P) and u € L*(Q, E, P).
The covariance of u denoted by cov(u) is a linear operator from E* into E, defined
by :

cov(u) = E{(u~E(u))o(u—E(u))}. @)
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Since u € L*(Q, E, P), cov(u) exists as a bounded linear operator from E* into E.
We have following representation for the covariance operator of u,

(Cov(w)) (x*) = J | (5 x*) x P(dr) - ] R RN C

_ JE {x1, x*) x P (dx) + {xq, x*) x1,

where Xy = E{u} and P, is the probability distribution of the random variable u.
Let O be any probability measure on E such that [z (p(x))? Q(dx) < © V p € P
and x; be any fixed element of E. Then the linear operator T: E* — E, given by

Tx* = J'E (x, x*>xQ<dx)-—jE (x, x*) x; Q(dx)
- [, 0@ + (s x)

is obviously a covariance operator of an E-valued random variable u on the
probability space (E, Bg, Q) with u(x) = x Vx E and E{u} = x;.

Definition 2.3.

An E-valued stochastic process {(f), 0 = t < T} of Gaussi.an”r random variables is
called a Wiener process if :

(a) w(f) € L*(Q, E, P) for all te [0, T], (0) =0 as.,

(b) E{w() - w(s)} =0,

(©) cov{w(t)—w(s)} = (t—)W,

where W: E* — E is a continuous linear operator defined by

We\ =A,e, C)
such that A, =0 and > J, < .
n=1

(d) {@(f), 0 <t = T}is a process of independent increments and almost all paths
of w(f) are continuous.
Note that W has the following form

t An E-valued random variable u is called Gaussian if (1, ;) is a real Gaussian random variable for all
n.
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Wx* = > (x*, e,) A, e,.
n=1
Since E* is barreled and £ is quasi-complete, therefore W is a nuclear operator

[10].

Lemma 2.3.

Let {w(¢), 0 = ¢ = T} be an E-valued Wiener process. Then
(a) There exists a sequence {B,(f)} of mutually independent real Wiener processes-
such that

() E{Bu(t)—Bu(s) = (t—5)A,,
(ii) Zl A, < oo,

i) () = 5 Baen.

n=1

(b) for every p € Py there exists a positive constant C such that
E[plo() - o(s)F] = C(1—s) (10)

for t = s.

Proof: (a) Define B,(f) = (w(f), e;). It is easy to see that {B,(f)} is the
required sequence of mutually independent real Wiener processes.

(b) Define w,(t) = > Bm(f)em. For any pePp, p(w,()) converges
m=1 . ‘

to p(w(?)) a.s. and p(w,()) = M, i |B.()|. Since i JA,, < ©, we have
m=1

m=1

HVZE

|Bn(t)] € L*(Q, R, P). Rest of the proof follows by a simple application

t

of Lebesgue dominated convergence theorem.
We have the following converse of the lemma 2.3 (a).

Lemma 2.4. Let {B,(1)} be a sequence of real valued mutually independent
Wiener processes such that E{B,(f)— 8,(s)}* = (t—s)A, and > f):_ < o,
n=1

Then the process w(t) = > B.(f)e, is an E-valued Wiener process.

n=1




Stochastic equations. in.locally convex space 87

Proof. Since > JA, < ®, w()eL*(Q,E,P). Since (w(t),er)= B0,
n=1

{w(?)} is a Gaussian process. It is easy to verify that {w(f)} is an E-valued Wiener
process with cov {w(?) —w(s)} = (t—s)W, where Wey = A, ¢e,.

3. Stochastic integration

Let F be a countably Hilbert space, i.e., F is a complete locally convex space
which topology is given by countable family of compatible Hilbertain norms ||, ||,
n e N such that ||, [i,, =I|, ||, for all ny, n; € N with n; <n,. Since F is

complete, we have F=(1E,, where F, be the completion of F under the norm
n .

[, 1. Let E be a locally convex space of §2.3 and {w(#), 0 < ¢t = T be a Wiener
process in E. Let L(E, F) be the space of all continuous linear operators from E
into F. By Banach Steinhaus theorem, L(E, F) be a sequentially complete locally
convex space under the topology of simple convergence [11]. Let B, = o(w(s),
s = t). Define

M(E, F) ={¢(.,.): ¢ is an L(E, F)-valued measurable prucess
adapted to %},

MYE, F) = {¢(.,.) e M(E, F): ¢ is a t-step function on

[0, T] and ¢ eL7([0, T]1XQ, L(E, F), uXp),

MJ(E. F) = {¢(.,.)e M(E, F) : $ eL’([0, T|XQ, L(E, F), pX P)}

where r = 1 is an integer. Define a locally convex topology-on M,(E, F) by family
of semi-norms given by

r

a(#) = a6, p) = | " E{p(()Y dn”

0

for some p e P g It is easy to see that MY(E, F) is dense in M>(E, F).
Definition 3.1

Let ¢ € M3(E, F) such that
N ~
¢(t, 0)) = Z ¢(t]7 (!)) ng)’tjul’ ‘ (11)
j=1 ‘

where 0 =t; <1, < ... <ty=T. The stochastic integral of ¢ with respect
to the Wiener process {@w(f), 0 =¢t=T} i§ an F-valued random variable
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denoted by I ! ¢(¢) do(?) and is defined by
o :

T N
[, 80 4o = 3 66) @)~ w()} (12)

Lemma 3.2

If $ M3 (E, F), then
T _
(a) E{ | 20 dw(z)} — 0 | |
(b) Given any n € N there exist a constant C > 0 and g Pr, £ such that
T 2 s ]
F ” J, 0 Il =C | Elg(s@)F o

Proof: (a) is an easy consequence of the fact that {w(£),0 < t < T}isa process of
independent increments. The proof of (b) follows from the fact that if A|e|L(E, F)
then A € L(E, F,) for every n. Define a map I: MJ(E, F) — L*(Q, F, P), by

1) = OT () du(s).

For lemma 3.2b, we conclude that I is a continuous linear map from M,(E, F) into
L*(Q, F, P)defined on MY(E, F). Since L*(Q), F, P) is complete and M(E, F)is
dense in M,(E, F), map I has unique extension [ as a continuous linear map from
M,(E, F) into L*(Q, F, P). For any ¢ € M,(E, F), I(¢) will still be denoted by

T
j | 60 do()

and is called the stochastic integral of ¢ with respect to Wiener process {w(),
0 =t = T}. From lemma 3:2, we have

Theorem 3.3

If ¢ My(E, F), then

@ [(s0dw0=3 [Ts0awn, 13)
0 i=1 JO

®) E{[ o0 dod} =0 | | (14




Stochastic equations in locally convex space ; 89

(c) Given any n € N there exist a constant C > 0 and g € & L(E.F) such that
T 2 T ]
EIUO #(t) do(f) "n =C J . E{q(¢(n)Y dt. (15)

Proof. (a) ¥ ¢eMI(E, F), then equation (13) is obvious. For ¢ € M,(E, F),
equation (13) holds by the usual limiting arguments.

(b) Let ¢, € MY(E, F) such that ¢, converges to ¢ in M,(E, F) and I (én)
converges to I(¢). By Holder’s inequality, we have

. T T
Jim £ [ 6,0) do) = E [ 6(0) do(®)

in F, which completes the proof.
(c) Let {¢n}men be same as in (b). Then for any n € N, we have

EIU "6 do(®) ” = E{H [7(@n=9) © 40 I

J,¢

+E“ L)qum

JrEll [T im0y @ 0@ L1 [ 40 g0 |

By Holder’s inequality

5[l

= tim £ [T 00|,

= ¢ lim | Elq(6,@)P &,

c| " E{g(6(9)P dt
0

for some positive constant C and for some g € Pr(e.F) -
Analogous to (2) and (3) we have

Lemma 3.4.

Let A be a closed linear operator on F and ¢ € M,(E, F) such that
(i) for all ¢t € [0, T] and for all i

o(t) e; € D(A) as.,
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(ii) for every ne N, : i

[V

EJTHAmnaum<w.
0

l

Then

(@) jOT¢>(s) doo(s) € B(A), ' :
0 A 66 o) = [T A6() das)

Lemma 3.5.

Let U(t, s) be an almost strong evolution operator and ¢ € M, (E, F). Then

»=fumwmwmw
0

is strong continuous in mean square, i.e. y, € C([0, T], L*(Q, F, P)).

Proof: Define

yi= [ UG 9) (e i)
For any neN and 6§ > 0, we have |
Ellyts=yillz = 2E|| (Ue+8, - Dyl ||
+C [ E@(a6)P ds
for some ¢, € Pre,F) and for some constant C > 0. Thus we have

Jm Ellyi.s—yill2 =o.
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Similarly, we have for every n e N and 8 > 0 sufficiéntly small
Jim Ellyi—y!s |2 = 0.

Using mutual ihdependence of Wiener processes B;(¢), it is easy to see that

. N P
> J U(t, s) ¢(s)e; dB;(s) converges to
0

i=1

f OT U, s) $(s) dw(s)

in C([0, T], L*(Q, F, P)), which completes the proof of lemma. The stochastic
version of Fubini’s type of theorem is not difficult to prove. We have

Lemma 3.6

Let ¢(t, s, w): [0, T]x[0, T]xQ — L(E, F) be such that for each x e E,
¥(t, s, w)x is measurable on [0, T]x [0, T1x Q and (¢, -, -)x and ¢(-, 7, -)x are
measurable relative to @&, for almost all ¢ e [0, T]. Suppose that for every
g€ @L(E,F) s

[T Elqo)p asdr <
0 J0

If we define
yi(w) = Z

i=1

| OT{ [ s, e ds}dﬁi(o,

ya@) = | OT{ é | OT u(t, s, wye; db; (t)}ds.

Then y;, = y, a.s. and y;, y, € L*(Q, F, P).
The following lemma is crucial in the proof of Ito’s formula.

Lemma 3.7. Let G be a countably Hilbert space and {X(f), 0=t =T} be a
L (F, L(F, G))-valued stochastic process which is adapted to %, and is such that
X(t)!e\Lz(Q., L(F, G)), P) for all t &[0, T]. Let Y, be a L(E, F)-valued random
variable measurable with respect to &, (0 < to < T) and Y, € L*(Q, L(E, F), P).
Then

E{X(Y, Aw) [Yo Aw)/®B,} = (t—s) i A X(Yoe) [Yoel (16)

i=1
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foralls, twith# = s = ¢, where X = X(s) and Aw = w(f) — w(s). The proof of the
following theorem is similar to the proof of Curtain and Falb [1] of Ito’s formula in
Hilbert space. ‘

Theorem 3.8 (Ito’s formula)

Let E, Fand G are as before and {w(#), 0 < ¢t = T} be an E-valued Wiener process.
Let £(f) be a F-valued stochastic process with stochastic differential
dé(?) = b(t)dt+o(H)dw(f) and g: F— G be a continuous function such that

(a) g is twice weakly differentiable,’

(b) Dg and D% are bounded continuous functions from F into L(F, G) and
L(F, L(F, G)) respectively,

(c) b(¥)is a F-valued stochastic process adapted to B, and o € M, (E, F) such that
T
J g(b(s)) ds< © as. Vge Pp
0

and oeL*([0, TIxQ, L(E, F), uXP).
Then the process z(f) = g(£(f)) has G-valued stochastic differential

a2() = (D(EOBO+3 3 AD*(E0)
(o(0)e) [o(Ded]} di+[Dg(E®) (o(0)] du). 17)

4. Stochastic evolution equation

Let {A(¢), 0 = t =< T} be generator of almost strong evolution operator U(.,.)ina
countably Hilbert space F and {w(#), 0 = ¢ = T} be a Wiener process in a locally
convex space E. Consider the following stochastic evolution equation

du(f) = A u(@) dt+f(t) dt+ ¢ (1) dw(?),

in F, where ¢ € M,(E, F), ug € F and fe L*([0, T]|xQ, F, uX P). By (18),
we mean that

u () =u0+J; AP u(r) dt + L’) FO) dr + j; &) do(r).

TFor definition and other details about weak differentiability in locally convex space we refer 7.

S

e

R
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Definition 4.1.

A solution u(z) of (18) is said to be strong solution if u(f) € D(A()) as.,
u(®) € C([0, T], L*(Q, F, P)) and u(f) satisfies (18) a.s. on Tx . The strong
solution u(f) is said to be unique solution if whenever v(¢) is another solution

P — =
{OggT @ =v (@) [l # 0} 0
for every n € N.

Theorem 4.1

Assume that
(i) U, O)up € B(A(r)) for every ¢,
(i) U(t, s) ¢(s)e; € D(A(?)) a.s. for all i and for almost all £> s, and

5 ][] 140 U6 60l o) <

forevery n, E||A() U(t, r) ¢(r)e;]| % e L' ([0, T]x [0, T]) for every n and every i,
(iii) U, s) f(s) e D(A(?)) a.s. for almost all z, and

[" 1140 UGN )]l ds < =

a.s. for every ne N.

Then (18) has a unique strong solution with continuous sample path given by

u(®) = U(t, Ouo + J ; U, r) ¢() do(r)
+ J " U, nfo) dr. (19)
0 . .

Proof. Uniqueness of solution follows from the uniqueness of solution of
deterministic homogeneous evolution equation X (f) = A (f) x(¢). From lemma 3.5
and strong continuity of U(¢, s) in ¢ we have

J “ U@, P ¢(r) do@) e C(0, T], L3*(Q, F, P))
0 .
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and
' J " U@, ) f) dre C([o, T], L2(Q, F, P)).
1]

Thus we have u(f) € C([0, T}, L2(Q, F, P)). It remains to show that u(¢) given by
(19) satisfies (18). From lemma 3.4, we have

AQ) L‘) U(t, 1) ¢(r) do(r) = j; AW U@, 1) ¢(r) do()) as.  (20)

From lemma (3.6) and equation (20),

[ a0 { [, ve, @) () dm(a)} dr

= [ {Z [ A0 UG, @) $()e dﬁi(a)}dr,
i=1 Q

Jo

f‘ { I; A U(r, @) ¢(a)e; dr} dB;(a),
= i L: {U(t, a) ¢(a)e;— P(a)e;} dB;(a),

= J " U@, a) ¢() dw(a) ~ j; d(a) do(a). (21)

Similarly, we can prove
j[; A UO U, o) f(a) da}dr

= [} vt f@ da ~ [* f(o) da 22)
0 0 ‘

From (21) and (22), we see that u(r) satisfies (14}

Example. (Stochastic transport equation).

Let F = L?[0, 1] and A be a linear operator on L2[0, 1] with domain

B(A) = {fL?[0, 1], f is absolutely continuous and f’e L2[0, 1], f(1) = 0}
defined by : ' '

Af =f
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Obviously A is the generator of a strongly continuous semi-group on L?[0, 1] and
o(A) = ¢. For each t € [0, T}, let A(f) = A. It is easy to see that the family {A
(), t € [0, T1} of linear operators on L?[0, 1] satisfies conditions (1), (2), (3), (4)
of theorem 2.1 and hence a generator of an almost strong evolution operator.

Let E = L?[0, 1] (for any 2 =< p < «) with {e,} as its Haar basis, namely,

e(H) =1
ERTE==
€1 (1) =<" 2, te :21:11 ’ 2341-1]
0, for other :.

(I=1,2,...,25 k=0,1,2,...).

Consider the following stochastic process in L?[0, 1]
CO(t) = Z Bn(t)en:
n=1

where {B,(f)} is a sequence of mutually independent real Wiener processes
such that E{B,(f) —B.(s)F = (I/n*) (t—ys).

By lemma 2.4, {&(?)} is an E-valued Wiener process.

Define a bounded linear operator &: L7[0, 1] — L?[0, 1] by

B @ = | L) dy.

X

Let ¢(7) = B(non-random) for every ¢ € [0, T]. Obviously ¢ € M>(E, F). Let
{T(t), t = O} be the strongly continuous semigroup generated by A and let
U(t, s) = T(t—s),t = s. {U(t, s)}is an almost strong evolution operator generated
by {A(f)}. Note that the semi-group {T(?), ¢ = 0} is obviously given by

f(s+1t) for s+t=1

THf = g, s) =
Of=g &) 0 for s+t > 1.
We would like to solve the following stochastic transport equation:
du(t) = v’ (¢) dt+ B do(r),

1 € B(A). (23)
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Since uy € D(A), Be,e B(A) for all n and ||AU(t, r) Be,||.: < constant
* (independent of n), conditions (i) and (ii) of theorem 4.1 are satisfied. Therefore
by theorem 4.1, equation (23) has a unique solution given by

u(t) = T() + i j " T(t-s) Be, dB, .
n=1 0
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