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Abstract. The notion of spectral invariance of a locally convex ∗-algebra
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1. INTRODUCTION

Recent developments in non-commutative geometry ([11]) demand the search for,
and the investigations of, smooth structures associated with a C∗-algebra B, usu-
ally (but not always) manifested as dense ∗-subalgebras A of B ([9]). Differential
seminorms provide a general mean to construct a differential structure associated
with a dense subalgebra A of B ([9]). The differential Fréchet ∗-algebra Aτ and
the differential Banach ∗-algebra AT defined by a differential ∗-seminorm on A are
generally not subalgebras of B, though there exist surjective ∗-homomorphisms
Aτ → B, AT → B. Now besides completeness in an appropriate locally convex
∗-algebra topology, spectral invariance and closure under appropriate functional
calculus have been recongnized as important attributes of smooth subalgebras
([9]). One says that A is spectrally invariant in B if ∀x ∈ A, SpA(x) = SpB(x).
This is known to imply the K-theory isomorphism K∗(B) = K∗(A). We aim to
discuss spectral invariance and the closure under holomorphic functional calculus
in a situation where there is a natural homomorphism from A to B instead of
inclusion with a view to understand the structure of the differential algebras Aτ

and AT .
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In fact, spectral invariance of a locally m-convex algebra A in its homo-
morphic image has been considered in [19] to give a short proof of the assertion
that Mn(A) is local if A is local and Fréchet, whereas the spectral invariance
of a Banach ∗-algebra A in its enveloping C∗-algebra has been considered in [3]
to discuss the discretized version of CCR algebras. First we shall characterize
the spectral invariance by the spectrality of submultiplicative ∗-seminorms or of
C∗-seminorms on a pseudo-complete locally convex ∗-algebra A in which every
element is bounded in a natural sense ([1]). A submultiplicative ∗-seminorm p on
A is said to be spectral if γA(x) 6 p(x) for each x ∈ A, where γA(x) is the spectral
radius of x in A. If there exists a non-zero continuous spectral submultiplicative
∗-seminorm (respectively C∗-seminorm) on A, then A is said to be spectral (re-
spectively C∗-spectral). The spectral invariance of A is defined as follows: Let
CRep(A) be the family of all non-zero (automatically, bounded ([5])) continuous
∗-representations of A. Suppose CRep(A) 6= ∅, then a C∗-seminorm | · |u on A
called a Gelfand-Naimark C∗-seminorm is defined by

|x|u = sup{‖π(x)‖ : π ∈ CRep(A)}, x ∈ A

and the C∗-algebra E(A) obtained by completion of the normed C∗-algebra
A/ ker | · |u is called an enveloping C∗-algebra. If CRep(A) 6= ∅ and SpA(x) =
SpE(A)(j(x)) for each x ∈ A, where j is a natural map of A onto A| ker(| · |u),
then A is said to be spectral invariant. We define A to be local (or closed under
the holomorphic functional calculus (of E(A))) if given x ∈ A and a function f
holomorphic on SpE(A)(j(x)), there exists y ∈ A such that f(j(x)) = j(y). This
refines the usual notion of local subalgebras ([19]). By Lemma 1.2 of [19], if A
is a Fréchet subalgebra of an m-convex Fréchet Q-algebra B (in particular, of a
C∗-algebra B), then A is closed under the holomorphic functional calculus of B if
and only if A is spectrally invariant in B. Here we shall incorporate this at the
generality of the present paper where A is not a subalgebra of a C∗-algebra B,
but there exists the continuous ∗-homomorphism j : A → E(A) = B. In The-
orem 2.11, it is shown that A is spectral and hermitian (SpA(x) ⊂ R for each
x∗ = x ∈ A) if and only if A is C∗-spectral if and only if A is spectrally invariant
if and only if A is local and radA = sradA (the strong radical of A). Speak-
ing the proofs roughly, suppose A is spectral and hermitian, then sA defined by
sA(x) ≡ γA(x∗x)1/2, x ∈ A, becomes a continuous spectral C∗-seminorm on A,
that is, A is C∗-spectral. The converse is trivial. Suppose that A is C∗-spectral,
that is, there exists a non-zero continuous spectral C∗-seminorm p on A. Then it
can be shown that p = | · |u = sA, which implies that A is spectrally invariant.
The necessary and sufficient condition of the spectral invariance of A and of the
locality of A and radA = sradA is based on the holomorphic functional calculus
in pseudo-complete locally convex algebras ([1]).

It is also known that the spectral invariance plays an important rule for the
structure theory and for the representation theory of locally convex ∗-algebras
([6], [7]) and so in Theorem 2.15 we shall characterize the spectral invariance by
the properties of ∗-representations (the existence of spectral ∗-representations, the
dilation property of ∗-representations etc.) though they are not used in this paper.

In Section 3 we shall consider the K-theory isomorphisms of Fréchet ∗-
algebras and the differential structure of a C∗-algebra as applications of Theo-
rem 2.11. Given a dense ∗-subalgebra A of a C∗-algebra B, the significance of the
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spectral invariance of A in B lies in the fact that it induces K-theory isomorphism
K∗(A) = K∗(B) (Chapter III, Appendix C, [11]). This can be extended to more
general Fréchet ∗-algebras applying Theorem 2.11 and the K-theory for Fréchet
algebras developed by Phillips ([15]). In Theorem 3.1, it is shown that if A is a
Fréchet locally m-convex ∗-algebra in which each element is bounded, then the
spectral invariance of A implies the K-theory isomorphisms K∗(A) ' K∗(E(A)).
As an application of Theorems 2.11 and 3.1, we investigate the properties of the
C∗-spectrality and the spectral invariance of a Fréchet ∗-algebra defined by a dif-
ferential seminorm. Let A be a C∗-algebra and A a dense ∗-subalgebra of A. Given

a differential ∗-seminorm T ∼ (Tk)∞0 on A in the sense of [9], let pk(x) =
k∑

i=0

Ti(x).

Then (pk)∞0 is a separating increasing sequence of submultiplicative ∗-seminorms.
Let τ be a locally convex ∗-algebra topology on A defined by (pk)∞0 . The com-
pletion Aτ of A with respect to τ is a Fréchet ∗-algebra which is an inverse limit
lim
←−

A(k) of the Banach ∗-algebras A(k) obtained by the completion of A with re-
spect to pk. Let B denote A(k) or Aτ . In Theorem 3.3, it is shown that B is a
C∗-spectral and spectral invariant hermitian Q-algebra such that E(B) = A and
K∗(B) = K∗(A) = K∗(A(k)) for all k.

2. SPECTRAL INVARIANCE

We begin with the basic definitions and properties about locally convex ∗-algebras.
For more details refer to [1] and [2]. The term locally convex ∗-algebra means a
∗-algebra A equipped with a topology τ such that

(i) A[τ ] is a Hausdorff locally convex space;
(ii) the multiplication of A is separately continuous;
(iii) the involution on A is continuous.

We may essentially restrict our considerations in this paper to the case in
which A has an identity 1l by considering the adjunction A1l of an identity if A
has no identity. Henceforth it will be assumed, without further mention that A
has an identity 1l.

Let A be a locally convex ∗-algebra. An element x of A is bounded if, for some
non-zero λ ∈ C, the set {(λ−1x)n : n ∈ N} is bounded. The set of all bounded
elements of A is denoted by A0. We write B for the collection of all absolutely
convex, bounded and closed subsets B of A such that 1l ∈ B and B2 ⊂ B. For each
B ∈ B, let A[B] denote the subspace of A generated by B. Then A[B] = {λx : λ ∈
C, x ∈ B} and the equation: ‖x‖B = inf{λ > 0 : x ∈ λB} defines a norm on A[B],
which makes A[B] a normed algebra. If A[B] is complete for each B ∈ B, then A
is said to be pseudo-complete. We remark that if A is sequentially complete, then
A is pseudo-complete. Throughout this paper we consider only a locally convex
∗-algebra A with A = A0.

We define the spectrum SpA(x) and the spectral radius of x in A as follows:

SpA(x) = {λ ∈ C : 6 ∃(λ1l− x)−1 in A}, rA(x) = sup{|λ| : λ ∈ SpA(x)}.
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Then it is known in [1] that

(2.1)

γA(x) = β(x) ≡ inf{λ > 0 : {(λ−1x)n : n ∈ N} is bounded}

= sup{ lim
n→∞

|f(xn)| 1n : f ∈ A′}

= sup{ lim
n→∞

p(xn)
1
n : p ∈ P},

where A′ is the dual space of A and P is a family of seminorms which define the
topology.

Definition 2.1. A (continuous) seminorm p on A is said to be spectral if
γA(x) 6 p(x) for each x ∈ A.

An element x of A is said to be quasi-regular if (1l − x) has the inverse
belonging to A. Let Aqr be the set of all quasi-regular elements of A.

By Lemma 4.1 of [5]) we have the following

Lemma 2.2. Let A be pseudo-complete and p a seminorm on A. Then the
following statements are equivalent:

(i) p is spectral;
(ii) {x ∈ A : p(x) < 1} ⊂ Aqr.

A locally convex ∗-algebra A is said to be Q-algebra if Aqr is open.
By Theorem 4.2 of [5] we have the following

Lemma 2.3. Let A be a pseudo-complete locally convex ∗-algebra. Consider
the following statements:

(i) A has continuous quasi-inverse, that is, there exists a neighbourhood U
of 0 such that U ⊂ Aqr and the quasi-inverse x→ xq is continuous at 0;

(ii) A is a Q-algebra;
(iii) there exists a continuous spectral seminorm on A.

Then the following implications hold: (i) ⇒ (ii) ⇔ (iii).
In particular, if A has jointly continuous multiplication, then (i), (ii) and

(iii) are equivalent.

We next define the notions of C∗-spectrality, spectral invariance and stability
of locally convex ∗-algebra. A seminorm p on a (locally convex) ∗-algebra A is said
to be am∗-seminorm (respectively a C∗-seminorm) if it is ∗-submultiplicative, that
is, p(xy) 6 p(x)p(y) and p(x∗) = p(x), ∀x, y ∈ A (respectively p(x∗x) = p(x)2,
∀x ∈ A). Let p be a m∗-seminorm on A. Then Np ≡ ker p = {x ∈ A : p(x) = 0} is
a ∗-ideal of A and the quotient space A/Np is a normed ∗-algebra equipped with
the multiplication (x+Np)(y+Np) ≡ xy+Np, the involution (x+Np)∗ ≡ x∗+Np

and the norm ‖x+Np‖p ≡ p(x). We denote by Ap the Banach ∗-algebra which is
the completion of A/Np. In particular, if p is a C∗-seminorm on A, then Ap is a
C∗-algebra.
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Lemma 2.4. Let p be a (continuous) m∗-seminorm on a locally convex ∗-
algebra A. Then the following statements are equivalent:

(i) p is spectral;
(ii) γA(x) = lim

n→∞
p(xn)

1
n , ∀x ∈ A;

(iii) γA(x) = γAp
(xp), ∀x ∈ A, where xp ≡ x+Np;

(iv) SpA(x) = SpAp
(xp), ∀x ∈ A.

In particular, if p is a C∗-seminorm on A, then the above statements (i)–(iv)
are equivalent to

(v) γA(x) = p(x), ∀x ∈ Ah ≡ {a ∈ A : a∗ = a}.

Proof. (i) ⇒ (iv) Let x ∈ A. It is clear that SpAp
(xp) ⊂ SpA(x). We

show the converse. Take an arbitrary λ ∈ C such that (λ1lp − xp)−1 exists in
Ap. Since Ap is the completion of the normed ∗-algebra AdNp, there exists an
element y of A such that ‖1lp − (λ1lp − xp)yp‖p = p(1l − (λ1l − x)y) < 1 and
‖1lp − yp(λ1lp − xp)‖p = p(1l− y(λ1l− x)) < 1, which implies by the spectrality of
p that (λ1l − x)y and y(λ1l − x) are invertible. Hence, (λ1l − x) is invertible, and
so λ 6∈ SpA(x). Thus we have SpA(x) ⊂ SpAp

(xp).
(iv) ⇒ (iii) This is trivial.
(iii) ⇒ (ii) This follows from the equalities:

γA(x) = γAp(xp) = lim
n→∞

‖xn
p‖

1
n
p = lim

n→∞
p(xn)

1
n , x ∈ A.

(ii) ⇒ (i) This follows from the submultiplicativity of p. Suppose p is a
C∗-seminorm on A. Then the equivalence of (ii) and (v) is clear.

Definition 2.5. A locally convex ∗-algebra A is said to be spectral (re-
spectively C∗-spectral) if there exists a non-zero continuous spectral m∗-seminorm
(respectively C∗-seminorm) on A.

We define the Gelfand-Naimark C∗-seminorm | · |u on A and the enveloping
C∗-algebra E(A) of A. We state the definition of ∗-representation of A. Let D be a
dense subspace in a Hilbert space H and L†(D) the set of all linear operators X in
H with the domain D for which XD ⊂ D, D(X∗) ⊃ D and X∗D ⊂ D. Then L†(D)
is a ∗-algebra under the usual operations and the involution X 7→ X† ≡ X∗dD. A
∗-homomorphism π of A into L†(D) satisfying π(1l) = I is a ∗-representation of A
on H with domain D, and then we write D and H by D(π) and Hπ, respectively.
For more details refer to [16] and [18]. If π(x) ∈ B(Hπ) for each x ∈ A, equivalently
D(π) = Hπ, then π is said to be bounded. By Corollary 3.13 from [5] we have the
following

Lemma 2.6. Every ∗-representation π of A is bounded and ‖π(x)‖ 6 sA(x)
≡ γA(x∗x)1/2 for each x ∈ A.

It is natural to consider unbounded ∗-representations for general locally con-
vex ∗-algebras, but by Lemma 2.6 it is here sufficient to consider only bounded
∗-representations. We denote by CRep(A) the family of all continuous (automat-
ically, bounded by Lemma 2.6) ∗-representations of A.
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Definition 2.7. If CRep(A) 6= ∅, then A is said to be representable.

We remark that even a Banach ∗-algebra is not necessarily representable
(Example 37.16, [10]). Suppose A is representable. By Lemma 2.6, a C∗-seminorm
on A is defined by

|x|u = sup{‖π(x)‖ : π ∈ CRep(A)}, x ∈ A,

and it is said to be the Gelfand-Naimark C∗-seminorm onA. The C∗-algebraA| · |u
constructed from the C∗-seminorm | · |u is said to be an enveloping C∗-algebra of
A and denoted by E(A). The natural map j : x ∈ A 7→ x + N| · |u ∈ E(A) is a
∗-homomorphism.

Definition 2.8. If A is representable and SpA(x) = SpE(A)(j(x)) for each
x ∈ A, then A is said to be spectrally invariant.

The family C∗N(A) of all C∗-seminorms on A is a partially ordered family
with order r1 6 r2 defined by r1(x) 6 r2(x), ∀x ∈ A.

Lemma 2.9. Let r be a spectral C∗-seminorm on A. Then r = sA and r

is the largest element in the partially ordered family C∗N(A). Thus, a spectral
C∗-seminorm is unique. Further, if r is continuous then A is representable and
r = | · |u.

Proof. It follows from Lemma 2.4, (v) that r(h) = rA(h) for ∀h ∈ Ah, which
implies that r = sA. Thus, a spectral C∗-seminorm is unique. Let p ∈ C∗N(A).
Then it follows that q ≡ max(r, p) ∈ C∗N(A) and q is spectral. By the uniqueness
of a spectral C∗-seminorm we have q = r, which implies that r is the largest in
C∗N(A). Suppose that r is continuous. Then the continuous ∗-representation
πr of A is defined by πr(x) = Πr(x + Nr), x ∈ A, where Πr is a faithful ∗-
representation of the C∗-algebra Ar on a Hilbert space. Hence it follows that A
is representable and

r(x) = ‖πr(x)‖ 6
∥∥∥ ⊕

π∈CRep(A)

π(x)
∥∥∥ = |x|u

for all x ∈ A. On the other hand, since r is the largest in C∗N(A), we have
| · |u 6 r. Thus, we have r = | · |u. This completes the proof.

We define the locality of A.

Definition 2.10. A is said to be local if for x ∈ A and a function f holo-
morphic on SpE(A)(j(x)), there exists y ∈ A such that f(j(x)) = j(y).

This refines the usual definition of local subalgebras ([19]).
The spectral invariance of A can be characterized by the (C∗-)spectrality

and the locality of A as follows:
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Theorem 2.11. The following statements are equivalent:
(i) A is spectrally invariant;
(ii) A is C∗-spectral;
(iii) A is spectral and hermitian;
(iv) A is local and radA = sradA.

Proof. The equivalence of (i) and (ii) follows from Lemmas 2.4 and 2.9.
(ii) ⇒ (iii) This is trivial.
(iii) ⇒ (ii) We can show in a slight change of proof of Theorem 41.7 from

[10] that sA is a spectral C∗-seminorm on A. We first show the Ptak inequality:

(2.2) γA(a) 6 sA(a), ∀a ∈ A.

In fact, take an arbitrary a ∈ A such that sA(a) < 1. Since A = A0 and A is
pseudo-complete, there exists B∗ = B ∈ B such that a∗a is an element of the
Banach ∗-algebra A[B]. By Proposition 12.11 of [10] there is a unique element x
of A[B]h such that 2x− x2 = a∗a and γA[B](x) < 1. Since γA(x) 6 γA[B](x) < 1,
it follows that h ≡ 1l − x is invertible and 1l − a∗a = h2. Since (1l + a∗)(1l − a) =
h{1l + h−1(a∗ − a)h−1}h, ih−1(a∗ − a)h−1 ∈ Ah and A is hermitian, it follows
that (1l + h−1(a∗ − a)h−1) is invertible, which implies that 1l− a is left invertible.
Similarly, 1l− a is right invertible. Hence 1 6∈ SpA(a) and so γA(a) < 1. Thus we
have γA(a) 6 sA(a). We next show the inequalities:

γA(hk) 6 γA(h)γA(k), ∀h, k ∈ Ah(2.3)
sA(xy) 6 sA(x)sA(y), ∀x, y ∈ A.(2.4)

In fact, since A is spectral, there exists a continuous m∗-seminorm p on A such
that

(2.5) γA(x) 6 p(x), ∀x ∈ A.

Take arbitrary h, k ∈ Ah. Then we have

γA(hk) 6 γA(kh2k)
1
2 by 2.2

= γA(h2k2)
1
2

6 γA(h2n

k2n

)
1

2n by repeating this
6 p(h2n

)
1

2n p(k2n

)
1

2n by 2.5
= γA(h)γA(k), by 2.1

which implies immediately the inequality (2.4). We can prove the same way as
Theorem 41.7 in [10] that sA is a seminorm onA. It is clear that sA(x)2 = sA(x∗x),
∀x ∈ A. Thus sA is a spectral C∗-seminorm on A. Further, it follows from (2.5)
that sA is continuous. Thus, A is C∗-spectral.

(i) ⇒ (iv) Assume (i). Then SpA(x) = SpE(A)(j(x)) (≡ K) for an arbitrary
fixed x ∈ A, and K ⊂ C is compact. Let f be a function holomorphic on an open
set U containing K. Let Γ be a rectifiable Jordan curve in U \K enclosing K. Put
z = j(x). Then by the holomorphic functional calculus in E(A),

(2.6) f(z) =
1

2πi

∫
Γ

f(λ)(λI − z)−1 dλ =
1

2πi

∫
Γ

j(f(λ)(λ1l− x)−1) dλ.
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Now A = A0 = ∪{A[B] : B ∈ B}, and by the pseudo-completeness of A, each
(A[B], ‖ · ‖B) is a Banach algebra. Also, by Proposition 5.1 of [1], there exists
B ∈ B such that both the resolvent Rλ = (λ1l − x)−1, ∀λ ∈ Γ, and f(x) =
1

2πi

∫
Γ

f(λ)(λ1l − x)−1 dλ exist in A[B] in the sense of the norm convergence in

A[B]. Consider the following diagram:

(A[B], ‖ · ‖B)
id

y ↘ j̃

(A, τ) j−→ (E(A), ‖ · ‖).

Here τ is a given topology of A. The map id : (A[B], ‖ · ‖B)→ (A, τ) is continuous.
Also A is C∗-spectral. Let p be a continuous spectral C∗-seminorm on A. Let τ ′
be the topology defined by τ and p. Then (A, τ ′) is a Q-algebra, and the map
id : (A[B], ‖ · ‖B)→ (A, τ ′) is also continuous. Since j is a ∗-homomorphism from
the Q-algebra (A, τ ′) to the C∗-algebra E(A), j is τ ′-continuous. It follows that
the map j̃ = jdA[B] is ‖ · ‖B-continuous. This is used in (2.6) to show that

f(z) = j

(
1

2πi

∫
Γ

f(λ)(λ1l− x)−1 dλ
)
.

Thus we have f(j(x)) = j(f(x)). Also A is hermitian and C∗-spectral. Then for
all x ∈ A,

γA(x) 6 p(x) = |x|u = sA(x).

Hence, sradA ⊂ radA ⊂ sradA. Therefore we have radA = sradA.
(iv) ⇒ (i) Assume that (iv) holds. It is clear that SpA(x) ⊃ SpE(A)(j(x))

for each x ∈ A. Let λ 6∈ SpE(A)(j(x)). Then Rλ = (λI − j(x))−1 ∈ E(A).
The function f(µ) = (λ − µ)−1 is holomorphic on a neighborhood of the closed
set SpE(A)(j(x)) and Rλ = f(j(x)). Hence by (vi), there exists y ∈ A such
that (λI − j(x))−1 = f(j(x)) = j(y), and so j(y(λ1l − x)) = j((λ1l − x)y) = I.
This implies that λ 6∈ Spj(A)(j(x)). Thus we have Spj(A)(j(x)) ⊂ SpE(A)(j(x)) ⊂
Spj(A)(j(x)). Hence the ∗-subalgebra j(A) is spectrally invariant in the C∗-algebra
E(A), and so j(A) is hermitian. Since radA = sradA by the assumption, it
follows that j(A) = A/radA and j(x) = x + radA. Hence we have SpA(x) =
Spj(A)(x+ radA) = SpE(A)(j(x)). Thus (i) follows. This completes the proof.

We give an example of a C∗-spectral locally convex ∗-algebra.

Example 2.12. The Schwartz spaces S(Rn×Rn) and D(Rn×Rn) equipped
with the Volterra convolution and the involution:

(f ◦ g)(x, y) =
∫

Rn

f(x, z)g(z, y) dz and f∗(x, y) = f(y, x)

are C∗-spectral. In fact, let f ∈ D(Rn × Rn). We put

[π0(f)ϕ](x) =
∫

Rn

f(x, y)ϕ(y) dy, ϕ ∈ D(Rn).
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Then we can show that π0(f) can be extended to a bounded linear operator π(f)
on L2(Rn) and π is a continuous bounded ∗-representation of D(Rn × Rn) on
L2(Rn). We show that the continuous C∗-seminorm r on D(Rn × Rn) defined by
r(f) = ‖π(f)‖, f ∈ D(Rn × Rn) is spectral. By the simple calculation we have

f [n] ≡
n︷ ︸︸ ︷

f ◦ · · · ◦ f =
( ∫

Rn

f(x, x) dx
)n−1

f, n ∈ N

and ∣∣∣∣ ∫
Rn

f(x, x) dx
∣∣∣∣ < 1 if r(f) < 1,

which implies that r is spectral. Similarly, we can show that the Schwartz space
S(Rn × Rn) is also C∗-spectral.

Next we shall consider to characterize the spectral invariance of A by the
notions different from (ii), (iii) and (iv) in Theorem 2.11.

We define the spectrality of ∗-representations and the stability of A.

Definition 2.13. A continuous ∗-representation π of A is said to be spectral
if SpA(x) = SpC∗(π)(π(x)) for each x ∈ A, where C∗(π) is a C∗-algebra generated
by π(A).

Definition 2.14. If for any closed ∗-subalgebra B of A, any continuous
∗-representation π of B on a Hilbert space Hπ admits a dilation to a continuous ∗-
representation π̃ of A on a Hilbert space Hπ̃ in the sense that there exist a Hilbert
space Hπ̃ containing Hπ as a closed subspace and a continuous ∗-representation π̃
of A on Hπ̃ such that π(x) = π̃(x)dHπ for each x ∈ B, A is said to be stable.

Theorem 2.15. The following statements are equivalent:
(i) A is spectrally invarinat;
(ii) A is spectral and stable;
(iii) there exists a spectral continuous ∗-representation of A into bounded

linear operators on a Hilbert space;
(iv) every algebraically irreducible representation of A on a vector space is

similar to an algebraically irreducible continuous bounded operator ∗-representation
on a pre-Hilbert space;

(v) every algebraicaly irreducible representation of A on a vector space ex-
tends to an irreducible ∗-representation of the C∗-algebra E(A) on a Hilbert space.

Proof. The equivalence of (i), (ii) and (iii) is shown similarly to Theorem 6.10,
Proposition 6.12 and Theorem 6.8 in [7], and Theorem 1.6 in [6].

(i) ⇒ (iv) and (i) ⇒ (v) Assume (i). Let π : A 7→ L(V ) be an algebraically
irreducible representation of A on a vector space V . Here L(V ) is the algebra of all
linear operators on the vector space V . Let v 6= 0 in V , N = {x ∈ A : π(x)v = 0}.
Then π(A)v = V , and N is a maximal modular left ideal of A. We define a
representation σ : A 7→ L(A/N) by σ(x)(y + N) = xy + N. Then we show that

(2.7) π is similar to σ.

Indeed, the similarity is implemented by the bijective linear map U : A/N 7→ V ,
U(y + N) = π(y)v satisfying Uσ(x)ξ = π(x)Uξ, ∀ξ ∈ A/N, ∀x ∈ A. We show
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that there exists a pure state f on the enveloping C∗-algebra E(A) such that πf

is an extension of π in the sense that there exists an injection W : V 7→ Hf with

dense range such that

(2.8) πf (j(x))Wξ = Wπ(x)ξ, x ∈ A, ξ ∈ V.

This is proved as follows. Since N is a maximal left ideal of A, we have N∩Ar = ϕ,

where Ar is the set of all regular elements of A. By the assumption (i), j(N) ∩

E(A)r = ϕ. Now E(A) being a C∗-algebra, E(A)r is an open set in E(A). Hence
j(N) (= closure in E(A)) is a proper subset of E(A), and so

(2.9) j(N) is a closed left ideal of E(A)

and there exists a maximal left ideal M of E(A) containing j(N). Since E(A)

is a C∗-algebra, M is closed, and by p. 56 of [12] there exists a pure state f on

E(A) such that M = Nf ≡ {x ∈ E(A) : f(x∗x) = 0}, and by p. 53 of [12] the
pre-Hilbert Hf ≡ E(A)/Nf is complete. Since j(N) ⊂ Nf , we can define a linear
map j̃ : A/N 7→ Hf by

j̃(x+ N) = j̃(x) +Nf , x ∈ A.

Since j(N) is a left ideal of E(A) and j(A) is dense in E(A), it follows that
j−1(j(N)) 6= A. Thus j−1(j(N)) is a proper left ideal of A containing N. By the
maximality of N we have N = j−1(j(N)). Further, j−1(Nf ) is a proper left ideal
of A. In fact, suppose j−1(Nf ) = A. Then, f(j(x)∗j(x)) = 0 for all x ∈ A, and so
f(j(x)) = 0 by the Cauchy-Schwartz inequality. Since f is continuous and j(A)
is dense in E(A), we have f = 0, which is contradition. Hence j−1(Nf ) 6= A.
Since N = j−1(j(N)) ⊂ j−1(Nf ) 6= A, it follows from the maximality of N that
N = j−1(j(N)) = j−1(Nf ), which implies that j̃ is an injection. Here we put
W = j̃ ◦ U−1. Then W is an injection from V onto a dense subspace of Hf

satisfying (2.8). We put g = f ◦ j. Then g is a pure state on A satisfying

g(y∗x∗xy) 6 |x|2ug(y∗y), ∀x, y ∈ A.

Hence, πg is continuous. Further, since N ⊂ Ng ⊂ j−1(Nf ) 6= A, it follows from
the maximality of N that N = Ng = j−1(Nf ), which implies that the restric-
tion π◦g of πg to the pre-Hilbert space A/Ng coincides with σ. Hence it follows
from (2.7) that π is similar to the algebraically irreducible continuous bounded

∗-representation π◦g of A on a pre-Hilbert space A/Ng. We have thus shown that
(i) ⇒ (iv) and (i) ⇒ (v) hold.
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(iv) ⇒ (i) Let x ∈ A. This follows from

SpA(x) =
⋃
{Sp(π(x)) : π is an algebraically irreducible representation

of A on a vector space}
(by [17], Theorem 2.2.9)

=
⋃
{Sp(π(x)) : π is an algebraically irreducible continuous

bounded ∗-representation on a pre-Hilbert space}
(by assumption (iv))

⊂
⋃
{Sp(π(x)) : π is a topologically irreducible continuous bounded

∗-representation on a pre-Hilbert space}
=

⋃
{Sp(σ(j(x))) : σ is a topologically irreducible ∗-representation

of E(A) on a Hilbert space}
=

⋃
{Sp(σ(j(x))) : σ is an algebraically irreducible ∗-representation

on a Hilbert space}
(by Kadison’s transitivity in the C∗-algebra E(A) ([12]))

= SpE(A)(j(x))

⊂ SpA(x).

This completes the proof.

Some comments on the relavance of Theorems 2.11 and 2.15 are in order. At

the level of general ∗-algebras, Theorems 2.11 and 2.15 supplements Theorem 1.6

in [6] and Theorem 6.10 in [7]. At the level of Banach ∗-algebras, it supplements

Corollary 2.7 in [6]. Further, it follows from Theorems 2.11 and 2.15 that a Banach

∗-algebraA is hermitian if and only if every algebraically irreducible representation

of A on a vector space extends to a topologically irreducible ∗-representation

of E(A) on a Hilbert space. This is a non-commutative analogue of the well

known result that a commutative Banach ∗-algebra A is hermitian if and only if
ϕ(x∗) = ϕ(x) for all x ∈ A, for all complex homomorphisms ϕ on A ([10], Theorem

35.3). Also, Theorem 4.7.11 from [17] implies that if A is hermitian, then any ∗-

representation of a closed ∗-subalgebra B of A dilates to a ∗-representation of A.

In Theorem 2.15 (ii) implies (v) provides a converse of this.
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3. K-THEORY ISOMORPHISM AND APPLICATION TO DIFFERENTIAL STRUCTURE

OF C∗-ALGEBRAS

We begin with considering the K-theory isomorphisms of Fréchet ∗-algebras as an
application of Theorem 2.11.

Theorem 3.1. Let A be a Fréchet locally m-convex ∗-algebra in which each
element is bounded. Let A be spectrally invariant. Then the K-theory isomor-
phisms K∗(A) ∼= K∗(E(A)) hold.

Proof. Let (pn)∞n=1 be a sequence of submultiplicative ∗-seminorms defining
the given topology τ ofA. We haveA = A0. Assume thatA is spectrally invariant.
By Theorem 2.11, A is hermitian and C∗-spectral. Let q be a continuous spectral
C∗-seminorm on A. By Lemma 2.9, q = sA = | · |u. By Lemma 2.3, (A, τ) is
a Fréchet Q-algebra. Notice that radA = sradA. Let Aq = A/radA, which is
a dense ∗-subalgebra of the C∗-algebra E(A) and is a Fréchet Q-algebra in the
quotient topology τq. The C∗-norm | · |u of E(A) is spectral. Thus Aq is spectrally
invariant in E(A). By Corollary 7.9 in [15], K∗(Aq) = K∗(E(A)). The maps

A j−→ Aq
id−→ E(A)

induces the ∗-homomorphisms for each n ∈ N,

Mn(A)
jn−→Mn(Aq) = [Mn(A)]q →Mn(E(A)) = E(Mn(A)).

By the spectral invariance of A in Aq, j(inv(A)) = inv(Aq). Let inv0(·) denote
the principle component of inv(·). Since A and also Aq are Fréchet Q-algebras,
inv0(A) (respectively inv0(Aq)) is the subgroup generated by the range expA (re-
spectively exp(Aq)) of the exponential function. This gives j(inv0(A)) = inv0(Aq),
and in view of the spectral invariance of Mn(A) in Mn(Aq) via the map jn, analo-
gous arguments give jn(inv0(Mn(A))) = inv0(Mn(Aq)). Now the surjective group
homomorphisms

inv(Mn(A))→ inv(Mn(Aq))→ inv(Mn(Aq))/inv0(Mn(Aq))
give the isomorphism of groups

inv(Mn(Aq)) \ inv0(Mn(Aq)) ∼= inv(Mn(A)) \ inv0(Mn(A)).
Hence by the definition of K1,

(3.1) K1(A) = lim
n→∞

inv(Mn(A))
inv0(Mn(A))

∼= lim
n→∞

inv(Mn(Aq))
inv0(Mn(Aq))

= K1(Aq).

Further, for B to be A or Aq, the suspension of B is
SB = {f ∈ C([0, 1],B) : f(0) = f(1) = 0} ∼= C0(R,B).

We use the Bott periodicity theorem K0(B) ∼= K1(SB) to show that K0(A) ∼=
K0(Aq). We have rad (SA) ∼= radC0(R,A) ∼= C0(R, radA), hence

SAq
∼= C0(R,Aq) = C0(R,A/radA)
∼= C0(R,A)/C0(R, radA) ∼= SA/radSA.

Hence by applying (3.1) to SA,
K0(Aq) ∼= K1(SAq) ∼= K1(SA/radSA)

∼= K1(SA) ∼= K0(A).
Therefore we have K∗(A) = K∗(Aq). This completes the proof of Theorem 3.1.
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In [9], Blackadar and Cuntz have developed an abstract theory of differential
structure in a C∗-algebra based on the notion of differential seminorm. Next we
investigate the properties of C∗-spectrality and spectral invariance of the Fréchet
algebra defined by a differential seminorm as a typical application of Theorem 2.11
and Theorem 3.1.

Let A be a ∗-algebra and ‖ · ‖ a C∗-seminorm on A. Let A = (A, ‖ · ‖)∼
be the Hausdorff completion of A. Following [9], a map T : A → l1(N) is said to
be a differential seminorm on A if T (x) = (Tk(x))∞0 ∈ l1(N) satisfies the following
(i)–(iv):

(i) T (x) > 0, i.e. Tk(x) > 0 for ∀x, ∀k.
(ii) T (x + y) 6 T (x) + T (y) for ∀x, y ∈ A; T (λx) = |λ|T (x) for ∀λ ∈ C,

∀x ∈ A.
(iii) T (xy) 6 T (x)T (y) (convolution) for ∀x, y ∈ A, i.e. for ∀ k ∈ N we have

Tk(xy) 6
∑

i+j=k

Ti(x)Tj(y) .

(iv) There exists some constant c > 0 such that T0(x) 6 c‖x‖ for ∀x ∈ A.

By (ii) each Tk is a seminorm. We say that T is a differential ∗-seminorm if further

(v) Tk(x∗) = Tk(x) for ∀x ∈ A, ∀k ∈ N.

T is said to be a differential norm if T (x) = 0 implies x = 0, i.e. (Tk)∞0 is a
separating family of seminorms. Following [9], the total seminorm of T is Ttot(x) =
∞∑

k=0

Tk(x), x ∈ A. Throughout this section we assume that T is a differential ∗-

norm. Then Ttot is a ∗-norm. Let AT = (A, Ttot)∼ be the completion of A with
respect to Ttot. AT is a Banach ∗-algebra. We construct a Fréchet ∗-algebra as

follows. For each k ∈ N, we put pk(x) =
k∑

i=0

Ti(x), x ∈ A. Then each pk is a

submultiplicative ∗-seminorm. On A, we have

p0 6 p1 6 p2 6 · · · 6 pk 6 pk+1 6 · · · ,

and (pk)∞0 is a separating family of submultiplicative ∗-seminorms on A. Let τ be a
locally convex ∗-algebra topology defined on A by (pk)∞0 . We denote Aτ = (A, τ)∼
the completion of A with respect to τ and A(k) = (A, pk)∼ the completion od A
with respect to pk. Aτ is a Fréchet ∗-algebra and A(k) is a Banach ∗-algebra. Then
we have

AT = b(Aτ ) : the bounded part of Aτ = {x ∈ Aτ : Ttot(x) = sup
n
pn(x) <∞}.

By the difinitions, there exist continuous surjective ∗-homomorphisms ϕk : A(k) →
A, ϕ : Aτ → A. Notice that even if each pk is a norm on A, pk need not be a norm
on Aτ . Also, the identity map A → A extends uniquely as continuous surjective
∗-homomorphism ϕk : A(k+1) → A(k) such that

A(0)
ϕ0←− A(1)

ϕ1←− A(2)
ϕ2←− A(3) ←− · · ·

is a dense inverse limit sequence of Banach ∗-algebras. Hence by the abstract
Mittag-Laffer theorem (e.g. [18]), the projections Aτ = lim

←−
A(k) → A(k) have

dense ranges. We summarize above discussion in the following.
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Proposition 3.2. Let T be a differential ∗-norm on a C∗-normed algebra
(A, ‖ · ‖). The following hold:

(i) Aτ is a Fréchet ∗-algebra and Aτ = lim
←−

A(k);

(ii) the projections Aτ → A(k) have dense ranges;
(iii) if T0(x) = c‖x‖ for ∀x ∈ A, then AT = b(Aτ ) is dense in Aτ .

Proof. (i) and (ii) were shown in the above. We prove (iii) only. Since
each pk is a norm, A is dense in A(k) for ∀k. Hence if πk : Aτ → A(k) be the
projections, then πk(AT ) = A(k) by above. Hence AT is dense in

⋂
k

π−1
k (πk(AT )) =⋂

k

π−1
k (A(k)) = Aτ . Therefore AT is dense in Aτ . This completes the proof.

We define
Ik = {x ∈ A(k) : ϕk(x) = 0},
I = {x ∈ Aτ : ϕ(x) = 0},
Itot = {x ∈ AT : ϕT (x) = 0},

where ϕT = ϕdAT
.

Theorem 3.3. Let (A, ‖ · ‖) be a C∗-normed algebra and A the completion
of (A, ‖ · ‖). Let B denote A(k) or Aτ with respective topologies. The following
hold:

(i) B is a hermitian Q-algebra;
(ii) E(B) = A;
(iii) B is C∗-spectral and spectrally invariant;
(iv) K∗(B) = K∗(A) = K∗(A(k)) for all k.

Proof. We have the following diagram:

A(k)
j−→ E(A(k))x ↘ϕk

y
A ↪→ Ay ↗ϕ

x
Aτ −→ E(Aτ )

id
x x

AT −→ E(AT ).

Case 1. Assume that T is of finite order, say n, so that Ti(x) = 0 for ∀x ∈ A,
∀i > n. Then Ttot = pn. Hence Aτ = A(n) is a Banach ∗-algebra denoted by AT .
Since I = kerϕ = {z ∈ AT : T0(z) = 0}, In = {0} by [9]. Then I is a nilideal,
hence I ⊂ radAT . Thus ψ : AT /I → AT /radAT , ψ(x + I) = x + rad AT , is a
well defined ∗-homomorphism. By standard Banach algebra arguments, for any
z ∈ AT ,

SpAT
(z) = SpAT /rad AT

(z + radAT ) = SpAT /I(z + I) = SpImage ϕ(ϕ(z)).

Now let K = AT /I, and let ϕ̃ : K → A be the surjective ∗-homomorphism induced
by ϕ : AT → A. Since T is of finite order, Ttot is analytic (p. 264, [9]), hence the
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quotient norm α on K is also analytic (p. 264, [9]). Further (K, α) is a Banach
algebra and is dense in A via ϕ̃. Since (A, ‖ · ‖) is assumed to be a C∗-normed
algebra, Proposition 3.12 in [9] applies showing that K is spectrally invariant in A
via ϕ̃. This with above equalities implies that SpAT

(z) = SpA(ϕ(z)) for ∀z ∈ AT .
Now let |z| = ‖ϕ(z)‖ with z ∈ AT be the C∗-seminorm induced by ϕ on

AT . Then | · | is continuous in Ttot. Further, let q be any C∗-seminorm on
AT , and let πq : AT → B(H) be the ∗-representation defined by q identifying
(AT / ker q, ‖ · ‖q)∼ with an operator algebra on an appropriate Hilbert space H.
Then for ∀z ∈ AT ,

q(z)2 = q(z∗z) = ‖πq(z)∗πq(z)‖ = γB(H)(πq(z)∗πq(z))

6 γImage ϕ(πq(z∗z)) 6 γAT
(z∗z) = γA(ϕ(z)∗ϕ(z))

= ‖ϕ(z)‖2 = |z|2.

It follows that | · | is the greatest C∗-seminorm on AT (the Gelfand-Naimark
pseudo-norm) and sradAT = kerϕ. Hence E(AT ) = A.

Case 2. Let T = (Ti)∞0 be not necessarily of finite order. For each k ∈ N,
let (k)T ′ = (T0, T1, T2, . . . , Tk, 0, 0, . . .) which is a differential ∗-seminorm of order
k, for which (k)T ′tot = pk, hence A(k)T ′

tot
= (A, pk)∼ = A(k). By the Case 1, A(k)

is spectrally invariant in A via ϕk and E(A(k)) = A. Thus A(k) is a hermitian
Banach ∗-algebra and E(A(k)) = C∗(A(k)) = A. Therefore the C∗-seminorm
induced on A(k) by ϕk is a spectral C∗-seminorm. Now Aτ = lim

←−
A(k). Hence

SpAτ
(z) =

⋃
k

SpA(k)
(ϕ(z)) for ∀z ∈ Aτ , and E(Aτ ) = lim

←−
E(A(k)) = A. Thus Aτ

is spectrally invariant in A via ϕ, sradAτ = kerϕ and Aτ is a hermitian Q-algebra.
That Aτ is a Q-algebra follows from the fact that on Aτ , the C∗-seminorm | · |
induced by the complete C∗-norm ‖ · ‖ on A is spectral, because for any z ∈ Aτ ,

γAτ
(z) = γA(ϕ(z)) 6 ‖ϕ(z)‖ = |z|,

and also from the fact that | · | 6 the Fréchet topology on Aτ . We also have, for
∀z ∈ Aτ ,

SpAτ
(z) = SpA(k)

(πk(z)) = SpA(ϕ(z)) = SpA(ϕk(z)).

This prove (i) and (ii). Then Theorem 2.11 and Theorem 3.1 imply (iii) and (iv).
This completes the proof.

It ought to be true, in the notations of Theorem 3.3, that B is closed under
the C∞-functional calculus of A in the sense that given h = h∗ in B and a C∞-
function f on SpA(ϕ(h)), there exists y ∈ B such that f(ϕ(h)) = ϕ(y). However,
we leave it open.

As shown in the proof of Theorem 3.3, we have the following

Corollary 3.4. The following equalities hold:
(i) radA(k) = sradA(k);
(ii) radAτ = sradAτ .

Following [9], a seminorm α on A is closable if for any sequence (xk) in A
such that ‖xk‖ → 0 as k →∞, α(xk)→ 0 as k →∞.
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Corollary 3.5. Suppose T0(x) = c‖x‖ for ∀x ∈ A. The following hold:
(i)The following statements are equivalent:

(1) T is closable (in the sense that each Tk is closable);
(2) I = {0};
(3) Aτ ⊂ A;
(4) Aτ is semisimple.

In this case, {A(k)} is an increasing sequence of Banach ∗-algebras and Aτ =
∞⋂

k=0

A(k).

(ii) If T is closable, then Ttot is closable.
(iii) I ⊂ radAτ .

Proof. (i) It is clear that pk is closable if and only if Ik = {0} if and only if
A(k) ⊂ A for ∀k. From this it follows that T is closable if and only if I = {0} if
and only if Aτ ⊂ A. That Aτ is semisimple if and only if Aτ ⊂ A we shall prove
using (iii).

(iii) Let x ∈ I. Then x ∈ Aτ and ϕ(x) = 0. Hence there exists a sequence
(xn) ⊂ A such that xn → x in τ . Therefore for all k ∈ N, pk(xn − x)→ 0. Hence
πk(xn)→ πk(x) in A(k). Then

T̃0(πk(x)) = lim
n
T0(πk(xn)) = lim

n
T0(xn) = c lim

n
‖xn‖ = c‖ϕ(x)‖ = 0,

where T̃0 is the extension of T0 to Aτ . Hence for ∀k, πk(x) ∈ Ik ⊂ radA(k).
Therefore x ∈

⋂
k

π−1
k (radA(k)) ⊂ radAτ . Thus we have I ⊂ radAτ .

(i) We prove Aτ is semisimple if and only if Aτ ⊂ A. Let Aτ be semisimple.
Then rad Aτ = {0}. Hence I = {0} and so Aτ ⊂ A. Conversely let Aτ ⊂ A. Then
(Aτ )− = A. Now Aτ is a hermitian Fréchet Q-algebra having E(Aτ ) = A. Hence
RepAτ = RepA for ∗-representations. Therefore sradAτ = Aτ ∩ sradA = {0}
as A is a C∗-algebra. Hence radAτ = {0} as radAτ ⊂ sradAτ . Thus Aτ is
semisimple.

(ii) follows from the definition. This completes the proof.

Acknowledgements. Thanks are due to the referee for his suggestions.
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