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In THE statistical theory of attributes! a double order of ideas is used. In
the first place the logical calculus is applied to the attributes, so that the
symbol (AB) represents the logical product of the attributes A and B; that
is, (AB) means, by definition, the attribute possessed by, and only by,
those elements of the universe of discourse, that possess simultaneously the
attributes A and B. In a similar manner, A @ B representing the logical
sum of A and B, is the attribute possessed by, and only by, those elements
of the universe which possess at least one of the attributes A, B. These
two fundamental operations of the logical calculus -are associative and
commutative? ; further each of them is distributed by the other, so that,
contrary to what happens in the case of the arithmetical sum and the
arithmetical product, there is a dual symmetry between the properties of .
these two operations. - For example, the fundamental law of absorption
2a@ab=a, in the logical calculus is paralleled by a (a ® b) = a, which
is obtained by interchanging the two operations.
In the second place, in the statistical theory each attribute-symbol A
is made to represent also the number (supposed to be finite) of elements of
the universe of discourse, which possess the attribute A. “This permits
attribute-symbols to be subjected to the arithmetical operations of addition
and subtraction, in addition to the logical operations of addition and
multiplication. By this double-edged use of the symbolism, the formule
~of the theory of attributes are able to represent definite numerical relations,
~ instead of being merely qualitative, as those of the logical calculus.

In this paper this double use of the symbolism will be adopted, and
the methods of the logical calculus will be utilised to study the properties
of what I call the logico-symmetric fumctions, and the arithmetico-logical
- symmetric functions of n attributes A, Ay, ---, A,.. Particular cases of these
T ties are known, but the general results and their applications I

's Introduction to the Theory of Statistics, Part 1.
head's Universal Algebra, or any book on Symbolic Logic,
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believe to be new. We shall begm by a compact formulation and proof of
two known results.

§1. The logical sum of # attributes A;, Ay,---, A, can be expressed in
terms of their logical products, by means of arithmetical operations. The
precise expression is: |

THEOREM I. A @A ® - i @A, = A; — Z (AjA) +3 (AjAzA5)—- -+,
where 2’s represent always arithmetical sums.
Proof. An element of the universe which possesses exactly ¢ of the #

attributes is enumerated ( { )times in the first term of the right-hand

side, (é) times in the second term, ( g) times in the third and so on.

Hence the number of times it is enumerated on the right-hand side is:

(i)" (é)+(é)—— =1 (1—1)

0,if£=0
{1 if £ > 0. A
Thus any element which actually possesses one or more of the attri-
butes A is enumerated exactly once on the right, and also exactly once in
the logical sum of the # attributes. Hence the result.

From the symmetric relation between logical addltlon and 10g1ca1
multiplication, we may expect an analocous expression for the logical
product of the n attributes in terms of their logical sums. We have in
fact: .

THEOREM II. (AjAs---A,) = 2 A} —2 S+ 2 Spo3— 2 Spoge + -+,
where S,,,... denotes A, A, DA, @ - |
Proof. An element which possesses exactly t of the attributes is

enumerated £ times in the first term on the right, ( 9 ) - ( o ) times in

the second ferm, (g) — (n;—t) times in the third term, and so on.

Hence the number of times it is enumerated on the right is:

[(D)-G)+1-107)-(2) + ]
= (1—1yt — (1-1)»
{0, othraise.

Thus every element is enumerated the same number of times on the
right as in the logical product on the left. Hence the result.
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§2, The elemmtary logico-symmetyic Junctions of 41, 49, ++-, 4,,.

By analogy with the algebraic theory of symmetric functions, we may
define ¢he rth elementary logico-symmetric Sunction a, of AL As -+, A, tobe

the logical sum of their (f) logical products 7 at a time. Thus the logical

sum and the logical product of A Ay oo, A, are respectively their first and

nth logico-symmetric functions, The fo,lloWing simple properties of the
logico-symmetric functions a, should be noted ;

(@) The rth symmetric Junction a, of A, Ay, -0, 4, is not ohly the
logical sum of their logical products r at 4 time, but also the logical
product of their logical sums n—y +1 at a time,

For, the logical sum ar of the logical products 7 at a time of
Ay Ay vl A, enumerates exactly once every element ¢ of the universe
which possesses at least » of the attributes AL A, ..., A,. Ttis clear that
these elements ¢ are precisely those that Possess one attribute at least out of
every set of n—7+1 attributes chosen from A;, As, oo A, (for example,
if an element ¢’ Possesses less than 7 of the attributes A, it is obvious that
we can choose at least one set of n—7+1 attributes A, none of which is
possessed by ¢). Thus the elements ¢ are precisely those that are

enumerated without repetition and exception by the logical product of
the logical sums #n—r+1 at a time of A A, .

**» A,, which proves our
statement,

(0) There is a relation of implication bet

represented by the symmetric functi

- sum and product of any two a's m
down. We have in fact;

ween any two attributes
OnsS a, so that the logical
ay be immediately written

ey ® a, = azg}

(apa) = ag) if pg.
, These are obvious from the meaning of the o
definition of the a’s. If we use the ordinar
adopted in the logical calculus, ‘the attributes ay, ag, -+, a, will correspond
to » regions each of which contains the next.
t follows from these equations that the distinct values of
oducts 7 at a time of @1, az, -+ -, a, are q,,

ese logical pProductsis q

gical operations and the
Y geometric interpretation

the logical
@41, **+, ay. Hence the logical
. In other words the attributes aj, o, «»

(=]

y . » LN " * ’ an
er their own successive Symmetric functions, It follows that
# are the only symmetric functions of A, A, ..

‘ " A?l that
rely by means of the two logical operations, ‘
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§3. The Aorithmetz’co-logical symmetric functions of Ay, Ag, .., An,

If however we are permitted to use arithmetical addition over and
above the two logical operations, then every expression of the form ;

a; ay + aag + -+ 4 Ay Oy,

where. gy, ..., a, are positive or negative integers, is a symmetric function
of Ay, Ay, v+, A,,; strictly speaking, it does not represent an attributé but
an enumerating process carried out by means of the attributes. Con-
versely, we may shew that any arithmetico-logical symmetric function S of
the attributes Aj, Ay, ..+, A, can be represented as a linear function with
integer coefficients, of a;, as, - - -, a,. For since by hypothesis S is a symmetric
function of Ay, Ay, - -+, A, the number of times S (t) which it enumerates an
element e possessing ¢ of the attributes A, does not depend on which of the
attributes A are possessed by ¢, but only on the number . The symmetric
function S is therefore completely characterised? by the » non-negative
integers S(1), ---, S(n). Now, the number of times which an element
possessing ¢ of the attributes A is enumerated by @01+ asay+-- + a4y a, is
a+as+--+a; Hence S must be identical with S(1) o +{S(2) —S(1)}
ag+ -+ +{S)—S(n—1)} a,. We have thus expressed an arbitrary arith-
metico-logical symmetric function S as a linear form with integer-coefficients
n ay, ag, * -, a,.

Among the arithmetico-logical symmetric functions of A;, A,, --., A,
the functions Af are of fundamental importance. We define 4 ? to0 be the

arithmetic sum of the (:L) pth logico-symmetric functions of sets of v attributes
chosen from Ay, As, ---, A,. This definition implies that p 7. It is clear
that A,’; =ay; apart from the functions «, there are (g) functions A‘: . Since
A: can be expressed as a linear form in the o’s, we may write

? __ ?
AZ ——%’ a,, o

THEOREM ITI. aftz(;:i) : (:1:;), so that a?, = 0, if t<p or >n—r+p,

Proof. The number of times which an element possessing exactly ¢ of
the attributes A, is enumerated by A? is equal to the number of 7-com-
binations of the » attributes which contain at least p of the £ attributes.
This number is evidently :

% 0-()()+ (L) (250 + -

3 It is assumed that the symmetric function does not enumerate the elements of the
universe, which possess none of the attributes A,
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Also:
af, = AP (t) — A? (t—1)

7t

=G0
It follows that Ap can be expressed in terms of #—7+1 of the logico-

symmetnc functions, namely, Apy Oprls ** % Qpepipe
In partmular

A: = a,, (l) ar+1+( 1) ar+2+(7+2> Apyg T+ o +( ) (s O

A:, = (1’__1) (L1+<n 2) agt .-+ a,,_,.H.

Tt follows that the deterrnmant of the n—r + 1 furctions A A:Ii, e,

A: qua linear forms it a,, a,41, -+, a, isunity. * It follows that as can be
eXpressed for p > as an integral linear’ form in A ATFL LA

7+1 )y A
The actual expression is given by:. . - - -
) . r r+1 r4+1 42
THEOREM IVv: ""=Ar—_(1) Ar+1 ( o ) A:+2 —_ ..

For, the coefﬁc1en’c of a,,; on the rlght is

()= () + () (17 -

= coefficient of #7 in (L+2)71 (14 2)7 = (1+x)

= {(1)’ ]1'; i:__ % which proves the result.

Similarly, A Ar TR A are lmear forms in a;, as, «* -, an_}+1, with
determinant + 1. Hence a;_,4; isan 1ntegral linear form in A;, oo, AL
We have : S : ,

1 r+1
Tamoren V. anpn =& —(7) AL+ (5 1) AL, — .

~ For the coefficient of a,_,,;-; on the right is:

(r—i—t——l) ( )( +t——1)' .

= Coefficient of # in (1+2)"*#1 (1 + %)~ = (1+ )1
) {1’ 1> 0 which proves the result.

M@re generally the forms AZ, AZYl, ... A""™*? are 4411 lnear

ith non-vanishing determinant in a, asy, ---, %urip. Hence ay

A as ali L. ? p+1 #-r+p .
sed as a linear form in A?, AZYY, ..., A2 We have in
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TrEOREM VI. (?:ﬁ) ap=AZ — (jl)) AP 4 (lb'”) APYE

7+1 r+2

Proof. ‘The coefficient of ay,; on the right is:

(27 [T - Q) CHT) + () (O —-?]

As before, the part within square brackets is equal to 1 or 0, accord-
ing as¢ = 0 or >0. This proves the result.

In the same way, the forms Ap A? A? are n—7+1 linear forms

AP
with non-vanishing determmant in as, apse1, * s e Hence a,,;5 can

be expressed linearly i in terms of them. We have in fact:

Treorsu VIL ("7 A PRV U () FUN

7 jb +2
+ ( ) Ar+2
Proof. 'The coefficient of a,,+-+ 00 the right is:

() (A

The part within square brackets is, as before, equal to 1 or 0, accord-
ing as ¢ = 0 or ¢t >0. This proves the result.

Theorem VI is an extension of Theorem IV, which is itself an extension
of Theorem I ; similarly Theorem VII is an extension of Theorem V, which
is itself an extension of Theorem II.

§4. Application to n real numbers.

Let A;, Ay, As, ---, A, ben real numbers represented by points
Ay A,, ---, A, on'a straight line. Choose a point O on the line to the left
of all the pomts A, and let d; = the distance OA;. Let the universe of
discourse be a set of points to the right of O, whose distances from O are
integral multiples of an infinitesimal (¢). Let now A; represent also the
attribute of lying between O and A;. It is then clear that the number A; is
proportional to the distance d;. Also the numbers corresponding to (A;A/)
and A; @ A; are clearly proportional to the lesser and the greater of the two
distances d;, d;. Hence the logical product and the logical sum of A;, A,
correspond respectwely to the less distant from O, and the more d1stant

from O, of the two points A;, A;. If we denote by R)‘ ~, that one among

the points Ay Ay Ap - which is the Ath in order from the right, it is
. A -

clear that the pomt Ry, corn;sponds to‘thg ‘Ath logico éymmetnc': function

of Ay Ay A, e Similarly L _, which is the Ath in ascending order

of magnitude of the k real numbers Ay, Ay -+, or the Ath in order from
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the left of the % points Ay A, ..., corresponds to (k—A+1)
symmetric function of A4 A, - .-

We shall now state the forms which our previous theoretx
this concrete instance of the calculus:

. THEOREM I. R, , = the greatest of the numbers A}, A,, - -
=2A1_EL;2 +L;23““2L;234+
TrEoREM II. LI, , = the least of the numbers A, Ay, - -, £
2A1—2R12+2R;23~2ﬂ11}234+ e

THEOREM IV. R}, , = the th in descending order of magnit

I

numbers A;, A, -+, A,

=2 lelz...r“(g) Z L;-Z...(r-l-l)—i- (7; 1) Z

THEOREM V. L], = the rth in ascending order of magnit
| numbers Ay, Ay, -+, A,

7\ . r+1
=3 R;z_._,—-(l) Z Ry, i) +( 2 ) =

THEOREM VI. (’::ﬁ) szm,,=(’::£) X the pth in descendir

the numbers A,
=z —(R) rigti, +(25)

v r-2-
) le...

THEOREM VII. (?:ﬁ) Lfﬁ,ﬂ__,, = (Mr: P) X the pth in ascen
‘ of the numbers,
- Vs . + 1N
=2 erz.p.:-l - (?) >} ;ff(lr-u) _1_(?2

7

ZR;Y
" We may make now a formal extension of these results. Let
t of m real numbers (ay, a3, ---, a,,) be called an m-dimensic
the components 4, @, --+.. Given # vectors A, Ay, --., !
aponents A; = (@a, &, * -+, 4;,), We can determine a vector B,
bym) whose kth component &,; is the rth in descending
ude of the numbers @y, 4oz, ++ ) G (B=1,2, ---, m),
the vegto;: B, in a purely formal mauner, the rth descendin
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of the  vectors Ay, Ay - -+, A, We similarly define the »th ascending composite
of Ay, Ay, -+ -, A, as the vector whose kth component is the rth in ascending
order of magnitude of the numbers @z, asz, - - *» @zz. We may denote the 7th
descending and ascending composites of Ay, A, -+ - by R, L; oo Then,
the following vector equations hold, which are of the same form as those

established for numbers: ‘
n— . -2 .
Teroren VI (D) RG, = 5 170 — (B)z 5o+
Tazoxex VI (32) 15, = ZR;ZS — (1) ZRGE,, +
For, the éorresponding equations have been established for any

particular component of all the vectors involved.

These equatioris and the concept of the rth ascending and descending
composites of # vectors will find application in the theory of theg.c.d.and
l.c.m. of a set of integers.

§6. The greatest common divisor and least common multiple.
Every integer which does not involve prime factors other than a

given finite set of primes (#, s, -+ -, p»n), may be represented in the form
plapls. . . plm, where a), a4z ---, a, are positive integers or zero. Thus

each such integer may be represented by a vector (a;, a3, - - -, 4,,) in such a
way, that the product of two such integers is represented by the vector-
sum of the corresponding vectors. Also it is clear that the g.c.d. and l.c.m.
of a number of such integers A;, Ay, - -+, A, (say), is represented the first
ascending composite, and the first descending composite of the correspond-
ing vectors. Let g; be the g.c.d. of A}, Ay, - - -, A, and let g, be the g.c.d. of
the lL.c.m.’s 7 at a time of A}, Ay, -+, A,. The series of numbers g;,g,, * - -, &
may be called the first, second, - -+ 7th, ... g.c.d.’s of Ay, Ay, -+, A, Itis
clear that g, is thel.c.m. [ of A;, Ay, - -+, A,,. We may similarly define l, to be
the Le.m. of theg.c.d.’s7atatime, and call /, therthl.c.m. of Ay, Ay, - -+, A,,.
It is clear that the vector corresponding to g, is the rth ascending composite
of the vectors corresponding to Aj, Ay, ---, A, and that the vector cor-
responding to I, is the rth descending composite of the same vectors.

Since the 7th ascending composite of # vectors is the # —7 + 1 descend-
ing composite of the same vectors, it follows that g, = [,,._,,,.

Denote the kth g.c.d. and kth lem. of Ay, A, A,... by gz’;qr
and lzqr._‘ respectively. Since the addition and subtraction of vectors

correspond to the multiplication and division of the corresponding numbers,
we see that the two vector relations of last para would lead to multiplicative

®
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expressions for I, and g, in terms of the (r—p+1)th g.c.d.’s and the
(r—p + 1)th Le.m.’s respectively of subsets of the # numbers. The actual

expressions are:
' oD g

TEEOREM VI ( )(,_p, T 8. 2.0 (7+2) T 812, ptd
. ? p+2
o Pt 4 r=p+1 ( 3 )
( 812.. (r+1)) T 812...(r+3) Tt

-2 r-p+1 r-p+1 p+1) y=p+1 (?+3)
( ) 1/,.. (77 ! +2)) ( Ly +4))

TurorEM VII. (

(w1200 - (2 157 (m;z)...

12...741 12...7+3
These relations are very general. Their particular cases are:

3
(...

1 1
ngz»-.p * (ﬂ.g12"‘ﬁ+

THEOREM IV, Iy =

(77 giz..-(pﬂ))? '('n' gia---(zﬁﬁ))
AiAg- -4, - Wg:m t T 12345'”

THEOREM I. Iy = 5 -
™ gl‘l tm g1234.

and relations of the same form with / and g interchanged.




