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ABSTRACT

In many community-based surveys, multi-level sampling is inherent in the design. In the design of these
studies, especially to calculate the appropriate sample size, investigators need good estimates of intra-
class correlation coefficient (ICC), along with the cluster size, to adjust for variation inflation due to
clustering at each level. The present study used data on the assessment of clinical vitamin A deficiency
and intake of vitamin A-rich food in children in a district in India. For the survey, 16 households were
sampled from 200 villages nested within eight randomly-selected blocks of the district. ICCs and compo-
nents of variances were estimated from a three-level hierarchical random effects analysis of variance
model. Estimates of ICCs and variance components were obtained at village and block levels. Between-
cluster variation was evident at each level of clustering. In these estimates, ICCs were inversely related
to cluster size, but the design effect could be substantial for large clusters. At the block level, most ICC
estimates were below 0.07. At the village level, many ICC estimates ranged from 0.014 to 0.45. These
estimates may provide useful information for the design of epidemiological studies in which the sampled
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(or allocated) units range in size from households to large administrative zones.
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INTRODUCTION

In most epidemiological studies, the units of observa-
tions are individuals. Individuals are usually nested
within higher-level units of social organization. In com-
munity-based studies, subjects could be residing within
households, which are located in villages, which are, in
turn, situated in blocks or cities. In healthcare-based
studies, individuals may be clustered within hospitals,
health insurance plans, or physician practices. In these
situations, it is inappropriate to estimate the effect of
treatment with methods that assume the observations
to be statistically independent. This is because, at various
levels, individual responses within the same cluster are
likely to be correlated (1). This interdependence of sub-
jects can be introduced at each level of sampling.
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When a survey is carried out using cluster sampling,
between-cluster variation at each level of sampling con-
tributes an additional source of variation, which must
be allowed for in addition to between-subjects, within-
cluster variation, to validly estimate parameters or to
test their significance. This means that the number of
subjects needed for a cluster sample is larger than fora
study of the same power in which individual subjects are
randomly sampled (2,3). To estimate the required sam-
ple size, the design effect or variation inflation factor
(VIF) must be incorporated into the sample-size for-
mulae (4,5). VIF is the ratio of the variance of an over-
all sample mean estimated from cluster means to the va-
riance of an overall sample mean estimated from sub-
jects within clusters. VIF is a function of the average clus-
ter size and the intra-class correlation (ICC) for the out-
come variable under study (6):

VIF=1+(v-1) p

where v is the average number of subjects per cluster
and p is the ICC for the outcome variable. The intra-class



67  J Health Popul Nutr Mar 2005

Agarwal GG et al.

correlation coefficient (p) measures the degree of simi-
larity among responses within a cluster. This parameter,
p, may be interpreted as the standard Pearson's correla-
tion coefficient between any two responses in the same
cluster (see equations [4] and [5]).

In designing cluster-based surveys or intervention
studies, accurate estimates of [CCs are required from
previous studies. However, there are relatively few pub-
lications (7-14), which present these estimates when re-
porting trial results.

Vitamin A plays an important part in the body's de-
fenses against infection. The importance of early recog-
nition of vitamin A deficiency (VAD), particularly in
young children, is essential not only in the preservation
of sight but in many instances in saving a young life.
The World Health Organization states that VAD is a
major public-health problem in around 96 countries,
including India (15). The national consultation on the
"Benefits and safety of administration of vitamin A to
preschool children and pregnant women", held at New
Delhi in September 2000, concluded that VAD exists
as a public-health problem in scattered pockets of India,
especially in rural areas. The availability of ICC values
for the assessment of VAD and VAD-related outcome
variables will be necessary for designing future studies
for the control of VAD, especially in young children.
This is very important in view of the wide variation in
the prevalence of VAD disorders between districts (16).
Consequently, the aim of this paper is to provide esti-
mates of ICCs (with standard errors) for some impor-
tant VAD-related controlling and mediating variables
in a rural district-based sample. The estimates of ICCs
and components of variance presented here could also
provide guidelines for planning studies involving the
nutritional status of populations, particularly in relation
to micronutrient deficiencies and intervention studies
to combat them. The use of these estimates to calculate
sample sizes for future studies on malnutrition is illus-
trated by suitable examples.

MATERIALS AND METHODS
Data

Data for this study were collected from Hardoi district,
a rural part of north India. The district, with an area of
5,986 sq km, has a population of 3,397,414 (17). This po-
pulation is distributed in 19 administrative blocks (or
towns) and 1,883 villages. In the first stage, eight blocks
were randomly selected. In the second stage, 25 villages

were randomly selected from each block. Finally, 16
households were chosen using systematic and purposeful
sampling from each village. Only those households that
had at least one child in the eligible age range were se-
lected. Within the selected house-hold, one child was
randomly chosen from all the eligible children. Thus, 3,200
children aged 0.5-3 years were selected for the study.

Four well-trained teams—each comprising a medical
officer and a non-medical research assistant—conducted
the survey. The medical officer examined the child for
Bitot's spot and interviewed the parents for nightblind-
ness, immunization, and actual doses of vitamin A taken
by the child during the past year. The research assistant
used a questionnaire for obtaining data from the parents
concerning their awareness of nightblind-ness and vita-
min A dietary habits, focusing on the quantitative esti-
mate of intake of vitamin A-rich food.

Model

We propose a linear model for our observations, reflec-
ting the multi-stage sample design. We have a three-
stage sampling and describe an individual observation as
Vi WtAit B, tekg) [1]
where y;;, is the observation of the kth unit (child) in the
i th first stage (block) sample, j th second stage (village)
sample. Here i goes from 1 to n, j goes from 1 to m, and
k goes from 1 to u. 4; denotes level i of factor 4 (block).
The levels of factor B (village) are nested within levels
of factor 4, which is expressed by using B, in the mo-
del. Here, both factor 4 and factor B are assumed to be
random. The random errors, €k, are nested within the
levels of i and j. Each of the three variables on the right-
hand side of equation [1] has expectation equal to zero
and their variances are 0,2, 03?, and 0,2 respectively.

The variance components in the above model can be
estimated from the sum of squares from the usual analy-
sis of variance table for testing the null hypotheses of
equality of block effects and equality of village effects
respectively. The mathematical expectations of different
sum of squares are given in Table 1.

Unbiased estimates of the variance components can be
given by:

6, =MSE

6, (MSB-MSE)/u 2]

6, A MSA-MSB)/mu
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Table 1. Analysis of variance for two-factor (nested) experiment

Source Degree of freedom  Sum of squares Mean square Expected mean square
Factor A n-1 SSA=S4 MSA=S4/(n-1) g tucy tmuoc *
Factor B n(m-1) SSB=Ss MSB=S8/n(m-1) O Uy

Error nm(u-1) SSE=SE MSE=Se/nm(u-1) g’

Total nmu-1 SST

Intra-class correlation coefficient

ICC measures the dependence between any two mem-
bers of the same cluster, such as a block (Factor 4) or
village (Factor B). It is the ratio of the variance compo-
nents due to blocks or villages to the total variance (0,?)
for individual children. Under the model [1], we have

0,’=0, 05 0, [3]
ICC for the subjects within the blocks is defined as:
p4=0,° /(0 +05+0g") [4]

ICC for subjects within the villages nested within the
block is defined as:

P~ +05 ) (0, +05 +0g) [5]

Since the responses of subjects within villages are more
likely to be similar than responses of subjects within
blocks, pp is always greater than or equal to p,,. Note
that p,=0 means that there is statistical independence
among subjects of a block. On the other hand, p,=1
implies that there is total dependence among children
of a block. All the responses of a block would then be
identical, so that the total information supplied by the
block is no more than that supplied by a single obser-
vation (13). This is a hypothetical example. In practice,
we would mostly have

0< py, Ppay<l1.
Variables and measures

The children were examined for the following clinical
signs of VAD: (i) Bitot's spot (X1B) and (ii) Corneal
xerosis (X2).

The parents were interviewed to assess their know-
ledge and practice relating to vitamin A-rich food:

Vitamin A-rich food knowledge (VIT A FOOD). Eight
questionnaire items were used for assessing the parent's
knowledge of vitamin A-rich food. A parent's score on
this scale was the number of items for which the parent
answered correctly.

Nightblindness reason's knowledge (NT BLIND CAUSE).
Nine questionnaire items were used for assessing the
parent's knowledge about causes of nightblindness in a
child. A parent's score on this scale was the number of
items for which the parent answered correctly.

Nightblindness prevention and treatment knowledge
(NT BLIND PREVENT). Ten items assessed the parent's
knowledge about preventive measures and possible treat-
ments for blindness. The number of items answered cor-
rectly gives the score on this scale.

Food stuff useful for nightblindness knowledge (NT
BLIND FOOD). From a list of nine food items, the num-
ber of items chosen correctly gives the score on this scale.

Number of servings of animal source food per week
(VIT ANIMAL SOURCE). This includes milk, milk pro-
ducts, eggs, fish, and meat.

Number of servings of plant source food per week (VIT
PLANT SOURCE). This includes vitamin A-rich vege-
tables and fruits.

Number of servings of vitamin A-rich food per week
(VIT TOTAL). This is the total number of servings of
animal source and plant source food.

Deficient intake of vitamin A-rich food (VIT DEFI-
CIENT). There is deficiency in intake of vitamin A-rich
food if VIT TOTAL is less than or equal to six servings
per week.

The reliability coefficients (Cronbach's alpha, (18))
of various knowledge scales were examined.

Analysis

For each of the outcome variables, ICCs were calcu-
lated at both block and village levels. The variance
components, o, (block level) and 65> (village level),
were estimated using equation [2]. Since our data were
multilevel in a balanced design (number of children
within villages and number of villages within blocks
were equal), the mean squares required to estimate the
variance components can be obtained using a two-factor
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nested random effect ANOVA model for balanced data
(Table 1). For this purpose, we used the 'variance com-
ponent' module of STATISTICA software. Following the
estimation of variance components, ICCs for various out-
come variables and measures were estimated using for-
mulae [4] and [5]. For unbalanced design, MLn and
MLwiN are the most extensive multilevel packages,
written by researchers working at the London Institute
of Education (19,20).

The same models were used for continuous and bi-
nary variables. In the case of binary variables, the point
estimate of parameters was obtained by applying the
standard analysis of variance (ANOVA) formula [2] to
the (0,1) binary observations, where 0 denotes failure
and 1 success (§ 6.2.1,13). For binary variables, the in-
terval estimates were not attempted since the distribu-
tional assumptions of ANOVA are not met. For conti-
nuous variables, the approximate confidence intervals
were calculated using the variance formula for ICC
derived by Fisher (21):

Var(p,)=2(1-p,) [1+(mu-1)p I lmu(mu—n - [6]

and

Var(Pp)=2 (1= Py [1Hu=1)pgo P fuu=ym - [7]

where u is the number of children per village, » is the
number of blocks, and m is the number of villages.

RESULTS

Of the original cohort of 3,200 children, 55.1% were
males and 44.9% were females. Table 2 shows the dis-
tribution of male and female children in different age
groups.

The difference in distribution of male and female chil-
dren in different age groups was not significant (p=0.55).

The mean age of children was 20.5 months and stan-
dard deviation was 8.8 months. There was no significant
difference between the average age (20.46 months) of
male children and the average age (20.57 months) of
female children (p=0.80).

The reliability (Cronbach's alpha coefficient) of the
four knowledge scores is given below:

Vitamin A-rich food knowledge: 0.82

Nightblindness reasons knowledge: 0.60

Nightblindness prevention and treatment knowledge: 0.70
Food stuff useful for nightblindness knowledge: 0.80.

Table 3 shows the estimated ICCs, 95% confidence
intervals, and estimates of variance components for each
of the outcome variables at the block and village levels.

Only point estimates of ICC were calculated for bi-
nary variables (clinical signs for VAD). The confidence
intervals for the continuous variables were computed
using normal approximation for the distribution of ICC
estimates and the variances given in equations [6] and
[7] respectively. Since the estimated parameter was non-
negative, redefining it to be zero, when it was negative
modified the lower limit of the confidence limit.

As expected from their definitions, ICCs and vari-
ance components at the village level were higher than
those at the block level. For example, ICC for vitamin
A food knowledge was 0.011 at the block level and
0.034 at the village level. The block level ICCs ranged
from 0.007 to 0.060. ICCs at the village level were below
0.3 for most variables. However, ICC for knowledge
about food to prevent nightblindness at the village level
was as high as 0.43. This indicates that the responses
of the parents on the awareness of foods to prevent
nightblindness within a village are moderately similar,
but differ considerably between villages.

Implication for future research

The question of sample size is basic to the planning of
any cluster-based studies. Decisions have to be made,
first, on the number of clusters which should be selected
and, second, on the number of units which should be se-
lected from each cluster. We shall show that even very
small ICC values can have a big impact on sample-size
estimation.

Several authors have discussed how to use ICC esti-
mates in calculating the number of blocks needed per
treatment condition to detect a treatment effect (22,23).
We will illustrate below the use of the ICC estimates
for sample-size calculation in testing the hypothesis
about the difference between means of two treatment
groups. Type I error is fixed at o, and we want the test
to have power 1-f. If we were using simple random
sampling, the sample size required would be (24):

20 [z1.00t21p I
— o

(8]
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Table 2. Distribution of children by gender in different age groups

Age category (years)

Gender 05-1.0 1.0-15 1.5-2.0 2025 2.53.0 Total
Male 479 403 274 389 219 1,764
Female 408 304 246 304 174 1,436

X.=3.04, p=0.55

Here, N is the number of children required per treatment
group, z;_y; and z;_g are the values of standard normal
variate for which the probability of smaller values is 1-0/2
and 1-P respectively, 62 is the variance (assumed com-
mon) in each treatment group, and § is the difference in
either direction in the treatment means which we would
want to detect. If we fix the number of children per block
at v, the number of blocks n required using simple random
sampling will be obtained from [8], by taking N=nv. To
take into account the intra-block correlation, we have to
multiply the variance by a factor of VIF, the variation in-
flation factor (22). So, the number of blocks required (using
cluster sampling) for each treatment group will be:

2
262 [Zl—(X/2+Zl—ﬁ ] VIF

n

(9]

where VIF=[1+(v-1)p,] and the intra-block correlation
pa is defined in equation [4]. We shall use formula [9]
in estimating the number of blocks when the probability
of type I error (o) is 0.05 and power of the test (1-B) is
0.80. The values so obtained were rounded up to the
nearest integer to get the required number of blocks.
Table 4 gives the estimated number of blocks for dif-
ferent values of intra-block correlations, varying the num-
ber of children per block, v, from 12 to 200. These esti-
mates are given when relative effect size is small (6/6=0.1)
and when relative effect size is medium (6/6=0.5). We
see that the number of blocks for each treatment combi-
nation increases as the ICC estimate increases. The value
of ICC=0.0 corresponds to the simple random sampling

vo? situation.
Table 3. Estimated ICCs, confidence intervals for intra-class correlation, and estimates of variance components at
block and village levels
Outcome variable AI nira-class correlatlor? Variance components*
p Confidence interval
Bitot's spot Block 0.007 0.00006
Village 0.014 0.00011
Corneal xerosis Block 0.009 0.00004
Village 0.018 0.00007
VIT A food knowledge Block 0.011 0-0.025 0.00257
Village 0.034 0.015-0.052 0.00760
NT blind cause knowledge Block 0.060 0.003-0.117 0.07884
Village 0.287 0.240-0.335 0.38118
NT blind prevent knowledge Block 0.027 0-0.055 0.04986
Village 0.240 0.196-0.284 0.43829
NT blind food knowledge Block 0.038 0-0.076 0.12251
Village 0.429 0.375-0.483 1.38869
VIT plant source per week Block 0.021 0-0.043 0.29818
Village 0.057 0.035-0.080 0.82564
VIT animal source per week Block 0.012 0-0.025 0.24392
Village 0.152 0.117-0.187 3.42479
VIT total per week Block 0.015 0-0.031 0.66270
Village 0.091 0.064-0.118 4.79910
VIT deficient Block 0.010 0-0.021 0.00122
Village 0.133 0.100-0.166 0.01835
*In the notation of equation (4) and (5), variance component for block is ¢ A2 and variance component for
village is ¢ A2+632
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For larger cluster sizes, even small ICCs might have a
substantial impact on the total sample size. For example,
(a) when 6/6=0.5, p,=0.1, the total sample size (N) re-
quired using the number of children per block as 12
and 200 would be 12x11=132, and 200x6=1,200 res-
pectively (last column of Table 4), (b) when 6/6=0.1,
p.=0.01, the total sample size required using 12 and 200
children per block would be 1,740 and 4,600 respec-
tively (column 4 of Table 4).

In the calculations for Table 4, the number of children
per block was assumed to be given (column 1). If the
number of children per village was available and we
were interested in estimating the required number of
blocks, we shall require the estimates of intra-village
correlations pgy), given in equation [5].

reported on the correlation of nutritional indicators (25),
diarrhoea (26), cough and fever (27), and ocular disease
(28) within households and villages. To the best of our
knowledge, no one has previously published ICC esti-
mates for the assessment of vitamin A deficiency and
intake of vitamin A-rich food in children. Since our
study was based on a large sample size and there was
good representation by sex, we also expect the ICC es-
timates for the outcome variables to be generalizable.

The general conclusions which can be drawn from
the present study and similar other studies are that the
variation inflation factors are often large and cannot be
ignored. These factors may vary from one variable to
another variable and from one study design to another
study design. ICC is preferred compared to VIF, since

Table 4. Estimated number of blocks (n) for different intra-block correlations and at different number of
children (v) per block to provide a minimum of 90% power to detect treatments' relative mean
difference of 0.1 and 0.5 in either direction

Intra-block correlation

v Mean relative difference=0.1 Mean relative difference=0.5
0.0 0.005 0.01 0.05 0.1 0.0 0.005 0.01 0.05 0.1
12 131 138 145 203 275 5 6 6 8 11
25 63 70 78 138 213 3 3 3 6 9
50 31 39 47 108 185 1 2 2 4 7
100 16 23 31 93 171 1 1 1 4 7
200 8 16 23 85 164 1 1 1 3 6

DISCUSSION the latter is dependent on the cluster. There exists an

In this paper, we have presented ICCs for a range of
outcome variables, which may be relevant in community-
based studies. The types of units, which might be sampled
in a community-based study, may vary in different
districts, states, or countries, but the three levels which
we have used for our data may be broadly generalized.
The household, for example, will generally correspond
closely to a family. The village corresponds fairly close
to electoral wards. The blocks are often similar to small
towns, counties, or section of cities.

Despite a widespread appreciation of the need to
obtain ICCs for the design of cluster-based studies, the
data presently available are very limited. Murray ef al.
and Siddiqui et al. reported ICCs for measures of smo-
king behaviour in adolescents, with schools or classes
used as the units of clustering (7,11). Mickey and Good-
win studied variability in design effects estimated for
mortality due to cardiovascular diseases and cancer among
counties in the United States (9). Katz and colleagues
analyzed data obtained from low-income countries and

inverse relationship between the cluster size and the
amount of between-cluster variation (29). Our data con-
firm that ICCs tend to be larger for small clusters, such
as villages, than for larger clusters, such as blocks.

Our results are presented in such a way that they can
be generalized to more than three levels of sampling
using analysis of variance (Table 1). We have used STA-
TISTICA software for calculating the variance compo-
nents. If STATISTICA is not available, ICCs can alter-
natively be derived from expected mean squares avail-
able from standard ANOVA calculations (Table 1). How-
ever, using the present methods, the exact estimates of
parameters can be obtained for balanced designs. When
there is a wide variation in the number of subjects from
one cluster to another, the scope of the present methods
is limited, especially for calculating the standard error
of ICC estimates. An approach based on generalized es-
timating equation could be used (30), but these are not
easily approachable, nor are they applicable when there
are several stages of cluster sampling.
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